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Abstract: We present a study on the estimation and Monte Carlo simulation of continuous
distributions, in particular with infinite support, with Bernstein polynomials extending
previous approaches in this direction.
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1. INTRODUCTION

Bernstein polynomials came to light with the pioneering paper by Serge
Bernstein in 1912 [1] and has ever since become an indispensable tool in
calculus and approximation theory (see e.g. [2]). In this paper, we comment
on methods to estimate the quantile function of a continuous distribution –
especially with infinite support – using Bernstein polynomials in a subtle
way, extnding similar ideas of Babu et al. [3] or Vil’chevskii and G. L.
Shevlyakov [4]. This allows for an easy way to simulate continuous
distributions on the basis of given data, in particular for risk management
purposes when the estimation of a risk measure like Value at Risk (VaR) is
required.

2. THE GENERAL SETUP

Suppose that n i.i.d. observations 1, , nX X�  distributed as a risk X are given.
We assume that these observations come from a fixed, but unknown
continuous distribution PX with cdf F, concentrated on a – possibly infinite
– interval I. One often assumes that PX belongs to a certain class of
distributions like lognormal, Fréchet, Pareto etc. There are several methods
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to estimate XP  or F, resp., for instance by a Q-Q-plot or other statistical

procedures (see e.g. Pfeifer [5]). Denote the estimated cdf by ˆ .F  In risk
management, one is often interested in larger Monte Carlo simulations for
PX, for instance for the estimation of a risk measure if X is one out of several
risks with a certain dependence structure.

We can assume that the Xi can be represented as � �i iX Q U�  with the

quantile function 1Q F��  and independent standard uniform random
numbers Ui. For a Monte Carlo study, we need to know Q or a good
approximation of it, based on the given sample. Now let G be a (first of all)
arbitrary continuous and strictly increasing cdf with support I. Then

obviously � �� �1( ) ( ) , 0 1.Q u G G Q u u�� � �  Our idea is the following:

Approximate � �( )G Q u  by a Bernstein polynomial ( )B u  in an
appropriate way on the basis of the given sample and use
� �1 ( ) , 0 1G B u u� � �  as approximate quantile function for the risk X. Note

that � �( )G Q u  is bounded with � �(0) 0G Q �  and � �(1) 1.G Q �

From a statistical point of view, it might be wise to use an empirical
estimate G for the true underlying cdf F. Then the procedure is as follows:

1. Transform the observations according to � �:: , 1, ,k k nY G X k n� � �

where :k nX  denotes the k-th order statistic, and put 0 1: 0, : 1.nY Y �� �

2. Calculate the corresponding (random) Bernstein polynomial, i.e.
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and use � �1�
nG B  as an approximation for the true underlying

quantile function F–1.
The advantage of this approach is that due to the boundedness of the

� �:k k nY G X�  we get no problems with the tails, other than when Bernstein

polynomials are directly used as an interpolation of the empirical
distribution function.

Example. We consider the data given in Cottin and Pfeifer [6] with

20.n�  The fist risk is assumed to be lognormally distributed, or,
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alternatively, the log data Xi are assumed to be normally distributed. We
use the estimated location and scale parameters �̂  (empirical mean of log

data) and �̂  (empirical standard deviation of log data) for a normal cdf G
with these parameters as in Cottin and Pfeifer [6].

Table 1: Data and their transformations for the first risk in the above Example

k 1 2 3 4 5 6 7 8 9 10

Xk:n –2.765 –1.483 –0.853 –0.759 –0.392 –0.200 –0.194 –0.144 –0.041 0.169
G(Xk:n) 0.005 0.076 0.195 0.219 0.330 0.395 0.397 0.414 0.451 0.527
k 11 12 13 14 15 16 17 18 19 20
Xk:n 0.182 0.247 0.351 0.438 0.666 0.679 0.713 1.088 1.907 2.298
G(Xk:n) 0.531 0.555 0.592 0.622 0.697 0.701 0.712 0.816 0.950 0.977

Figure 1: Graph of G-transformed empirical quantile function (red) and
corresponding Bernstein polynomial (blue)

With this approach, we get an approximate Value of Risk VaR�  for a
risk level of � = 0.005 of VaR� = 24.558 while with the estimated lognormal
distribution from [6], we only get VaR� = 18.911.
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As can clearly be seen, the G-transformed cdf is closer to the empirical
cdf than the statistically estimated lognormal cdf.

The second risk is assumed to be Fréchet distributed, or, alternatively,

the log data iY  are assumed to be Gumbel distributed. We use the estimated

location and scale parameters �̂  and �̂  as 
6

ˆ m s� �
�

� �  and 
6

ˆ s�
�

�

with Euler’s constant 0.577216...� �  and the empirical mean m and the
empirical standard deviation s for a Gumbel cdf G with these parameters.

Table 2: Data and their transformations for the second risk in the above Example

k 1 2 3 4 5 6 7 8 9 10

Yk:n –0.342 –0.178 –0.112 –0.109 –0.106 –0.086 –0.069 –0.045 –0.035 0.008
G(Yk:n) 0.039 0.182 0.268 0.272 0.275 0.305 0.328 0.363 0.378 0.439

k 11 12 13 14 15 16 17 18 19 20

Yk:n 0.040 0.063 0.074 0.112 0.132 0.150 0.290 0.535 0.810 0.985
G(Yk:n) 0.484 0.515 0.530 0.577 0.602 0.624 0.761 0.901 0.965 0.982

With this approach, we get an approximate Value of Risk VaR� for a
risk level of ��= 0.005 of VaR��= 4.770 while with the estimated Fréchet
distribution, we get only VaR��= 3.708.

Figure 2: Graph of empirical cdf (green), estimated lognormal cdf (red)
and G-transformed cdf (blue)
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As can clearly be seen, the G-transformed cdf is again closer to the
empirical cdf than the estimated Fréchet cdf.

3. CONSISTENCY

Note that the � �:: , 1, ,k k nY G X k n� � �  can be considered as order statistics

:k nZ  from random variables : ( ), 1, , .� � �k kZ G X k n  These are bounded,

Figure 3: Graph of G-transformed empirical quantile function (red) and
corresponding Bernstein polynomial (blue)

Figure 4: Graph of empirical cdf (green), estimated lognormal cdf (red)
and G-transformed cdf (blue)
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hence their quantile function � �1( ) ( ) , 0 1�� � �ZQ u G F u u  is uniformly

continuous. This means that the convergence of the empirical quantile

functions pertaining to the : :( )�k n k nZ G X  is uniform to ,ZQ  cf. prop. 5, p.
250 in Fristedt and Gray [7], the same being valid for the completed empirical

quantile function by adding the values 0 1: 0, : 1.�� �nZ Z  Hence the

random Bernstein polynomial converges almost surely (a.s.) with limit ZQ

and hence � �1�
nG B  converges a.s. to F–1 with increasing sample size, which

implies consistency of the method proposed.

4. CONCLUSIONS

Estimating underlying risk distributions and their Monte Carlo simulation
is an important task in risk management which sometimes leads to an
underestimation of the true risk measures if only standard statistical
methods are used. The approach which we suggest in this paper overcomes
the problem of estimating an appropriate tail behaviour of the risk
distributions, in particular if the underlying support is unbounded. Practical
examples from the insurance industry show that our method often gives
higher estimates for risk measures than with standard statistical methods,
which is probably a desirable fact for a cautious estimation of the overall
risk of an insurance company especially under regulatory requirements.
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