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1. Introduction 
 
Bernstein polynomials came to light with the pioneering paper by Serge Bernstein in 1912 [1] 
and has ever since become an indispensable tool in calculus and approximation theory (see 
e.g. [2]). In this paper, we comment on methods to estimate the quantile function of a 
continuous distribution – especially with infinite support – using Bernstein polynomials in a 
subtle way, extending similar ideas of Babu et al. [3] or Vil'chevskii and G. L. Shevlyakov 
[4]. This allows for an easy way to simulate continuous distributions on the basis of given 
data, in particular for risk management purposes when the estimation of a risk measure like 
Value at Risk (VaR) is required. 
 
 2. The general setup 
 
Suppose that n i.i.d. observations 1, , nX X  distributed as a risk X are given. We assume that 

these observations come from a fixed, but unknown continuous distribution XP  with cdf F, 
concentrated on a – possibly infinite –  interval I. One often assumes that XP  belongs to a 
certain class of distributions like lognormal, Fréchet, Pareto etc. There are several methods to 
estimate XP  or F, resp., for instance by a Q-Q-plot or other statistical procedures (see e.g. 

Pfeifer [5]). Denote the estimated cdf by ˆ .F  In risk management, one is often interested in 
larger Monte Carlo simulations for ,XP  for instance for the estimation of a risk measure if X 
is one out of several risks with a certain dependence structure.  
We can assume that the iX  can be represented as ( )i iX Q U=  with the quantile function 

1Q F-=  and independent standard uniform random numbers .iU  For a Monte Carlo study, 

we need to know Q or a good approximation of it, based on the given sample. Now let G be a 
(first of all) arbitrary continuous and strictly increasing cdf with support I. Then obviously 

( )( )1( ) ( ) , 0 1.Q u G G Q u u-= < <  Our idea is the following: 

Approximate ( )( )G Q u  by a Bernstein polynomial ( )B u  in an appropriate way on the basis of 

the given sample and use ( )1 ( ) , 0 1G B u u- < <  as approximate quantile function for the risk 

X. Note that ( )( )G Q u  is bounded with ( )(0) 0G Q =  and ( )(1) 1.G Q =  
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From a statistical point of view, it might be wise to use an empirical estimate G for the true 
underlying cdf F. Then the procedure is as follows: 
 
1. Transform the observations according to ( ):: , 1, ,k k nY G X k n= =   where :k nX  denotes 

the k-th order statistic, and put 0 1: 0, : 1.nY Y += =   

2. Calculate the corresponding (random) Bernstein polynomial, i.e. 
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and use ( )1-

nG B  as an approximation for the true underlying quantile function 1.-F   

 
The advantage of this approach is that due to the boundedness of the ( ):k k nY G X=  we get no 

problems with the tails, other than when Bernstein polynomials are directly used as an 
interpolation of the empirical distribution function. 
 
Example. We consider the data given in Cottin and Pfeifer [6] with 20.n =   The fist risk is 
assumed to be lognormally distributed, or, alternatively, the log data iX  are assumed to be 

normally distributed. We use the estimated location and scale parameters m̂  (empirical mean 
of log data) and ŝ  (empirical standard deviation of log data) for a normal cdf G with these 
parameters as in Cottin and Pfeifer [6]. 
 
Table 1. Data and their transformations for the first risk in the above Example.  
 

k   1 2 3 4 5 6 7 8 9 10

:k nX  –2.765 –1.483 –0.853 –0.759 –0.392 –0.200 –0.194 –0.144 –0.041 0.169

( ):k nG X  0.005 0.076 0.195 0.219 0.330 0.395 0.397 0.414 0.451 0.527

 
k   11 12 13 14 15 16 17 18 19 20

:k nX  0.182 0.247 0.351 0.438 0.666 0.679 0.713 1.088 1.907 2.298

( ):k nG X  0.531 0.555 0.592 0.622 0.697 0.701 0.712 0.816 0.950 0.977
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Figure 1. Graph of G-transformed empirical quantile function (red) and corresponding 
Bernstein polynomial (blue) 

 
With this approach, we get an approximate Value of Risk VaRa  for a risk level of 0.005a=  

of 24Va 58R .5a =  while with the estimated lognormal distribution from [6], we only get 

18.VaR 911.a =  

 

 
 

Figure 2. Graph of empirical cdf (green), estimated lognormal cdf (red) and G-transformed 
cdf (blue) 

 
As can clearly be seen, the G-transformed cdf is closer to the empirical cdf than the 
statistically estimated lognormal cdf. 
 
The second risk is assumed to be Fréchet distributed, or, alternatively, the log data iY  are 

assumed to be Gumbel distributed. We use the estimated location and scale parameters m̂   

and ŝ as 
6

ˆ m sm g
p

= -  and 
6

ˆ ss
p

=  with Euler’s constant 0.577216...g =  and the 

empirical mean m and the empirical standard deviation s for a Gumbel cdf G with these 
parameters. 
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Table 2. Data and their transformations for the second risk in the above Example.  
 

k   1 2 3 4 5 6 7 8 9 10

:k nY  –0.342 –0.178 –0.112 –0.109 –0.106 –0.086 –0.069 –0.045 –0.035 0.008

( ):k nG Y  0.039 0.182 0.268 0.272 0.275 0.305 0.328 0.363 0.378 0.439

 
k   11 12 13 14 15 16 17 18 19 20

:k nY  0.040 0.063 0.074 0.112 0.132 0.150 0.290 0.535 0.810 0.985

( ):k nG Y  0.484 0.515 0.530 0.577 0.602 0.624 0.761 0.901 0.965 0.982

 
 

 
 
Figure 3. Graph of G-transformed empirical quantile function (red) and corresponding 
Bernstein polynomial (blue) 

 
With this approach, we get an approximate Value of Risk VaRa  for a risk level of 0.005a=  

of 4V R 70a .7a =  while with the estimated Fréchet distribution, we get only 3.Va 8.R 70a =  

 

 
 

Figure 4. Graph of empirical cdf (green), estimated Fréchet cdf (red) and G-transformed cdf 
(blue) 
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As can clearly be seen, the G-transformed cdf is again closer to the empirical cdf than the 
estimated Fréchet cdf. 
 
Finally, we consider combined ratio data from a buildings insurance (VGV) with 18,=n  

taken from [5]. For a first approximation, we use a lognormal distribution, i.e. a normal 

distribution for the log data. The estimated location and scale parameters are ˆ 0.0781m=  

(empirical mean of log data) and ˆ 0.1180s=  (empirical standard deviation of log data).  

Table 3. Log data and their transformations for the VGV risk in the above Example.   
 

 
 
 
 

 
 
Figure 5. Graph of G-transformed empirical quantile function (red) and corresponding 
Bernstein polynomial (blue) 
  
 
With this approach, we get an approximate Value of Risk VaRa  for a risk level of 

0.005a=  of  157VaR .05%a =  while with the estimated lognormal distribution from [5], 

we only get  146, %VaR 51 .a =  
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Figure 6. Graph of empirical cdf (green), estimated lognormal cdf (red) and G-transformed 
cdf (blue) 
 
As can clearly be seen, the G-transformed cdf is again closer to the empirical cdf than the 
statistically estimated lognormal cdf. 
 
 
3. Consistency 
 
Note that the ( ):: , 1, ,k k nY G X k n= =   can be considered as order statistics :k nZ  from 

random variables : ( ), 1, , .= = k kZ G X k n  These are bounded, hence their quantile function 

( )1( ) ( ) , 0 1-= < <ZQ u G F u u  is uniformly continuous. This means that the convergence of 

the empirical quantile functions pertaining to the : :( )=k n k nZ G X  is uniform to ,ZQ   cf. prop. 

5, p. 250 in Fristedt and Gray [7], the same being valid for the completed empirical quantile 
function by adding the values 0 1: 0, : 1.+= =nZ Z  Hence the random Bernstein polynomial 

converges almost surely (a.s.) with limit ZQ  and hence ( )1-
nG B  converges a.s. to 1F-  with 

increasing sample size, which implies consistency of the method proposed. 
 
4. Conclusions 
 
Estimating underlying risk distributions and their Monte Carlo simulation is an important task 
in risk management which sometimes leads to an underestimation of the true risk measures if 
only standard statistical methods are used. The approach which we suggest in this paper 
overcomes the problem of estimating an appropriate tail behaviour of the risk distributions, in 
particular if the underlying support is unbounded. Practical examples from the insurance 
industry show that our method often gives higher estimates for risk measures than with 
standard statistical methods, which is probably a desirable fact for a cautious estimation of the 
overall risk of an insurance company especially under regulatory requirements. 
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