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Abstract: The central idea of the paper is to present a general simple patchwork construction principle for
multivariate copulas that create unfavourable VaR (i.e. Value at Risk) scenarios while maintaining given
marginal distributions. This is of particular interest for the construction of Internal Models in the insurance
industry under Solvency II in the European Union. Besides this, the Delegated Regulation by the European
Commission requires all insurance companies under supervision to consider di�erent risk scenarios in their
risk management system for the company’s own risk assessment. Since it is unreasonable to assume that
the potential worst case scenario will materialize in the company, we think that a modelling of various un-
favourable scenarios as described in this paper is likewise appropriate. Our explicit copula approach can be
considered as a special case of ordinal sums, which in two dimensions even leads to the technically worst
VaR scenario.
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1 Introduction
Reasonable VaR-estimates from original data or suitable scenarios for risk management within so-called In-
ternalModels are of particular interest in the insurance industry under Solvency II (see, e.g., [1, 4, 6–8, 21, 31]).
In this paper, we propose a simple stochastic Monte Carlo algorithm on patchwork copulas for the generation
of VaR scenarios that are suitable for comparison purposes in Internal Models for the calculation of Solvency
Capital Requirements (SCR), in particular for the Non-Life Module. Note that in the Standard Formula of Sol-
vency II, there is a formula for the calculation of the non-life premium and reserve risk SCR given by the
volume factor

ρ1−α(σ)VaR =
exp
(
k1−α

√
ln
(
1 + σ2

))
√
1 + σ2

− 1

applied to the volume measure (i.e. premium income) of the year considered (see, e.g., [31, p. 324, relation
(21.9b)]; cf. also [16, p. 329 �.]). Here α denotes the risk level (i.e. 0.5% in Solvency II) and k1−α the corre-
sponding 1− α quantile of the standard normal distribution. Further, σ denotes the standard deviation of the
underlying risk, i.e. the ultimate combined loss ratio, which is assumed to be lognormally distributed with
expectation 1=100% (which is the limit towards certain ruin according to the law of large numbers). How-
ever, this formula is questionable from a scienti�c point of view (see [14]). Note also that this formula was
simpli�ed in the Commission Delegated Regulation of the EU [12, Article 115]:

ρ1−α(σ)VaR ≈ 3σ for α = 0.005.
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Figure 1: Plot of the Non-Life SCR volume factor ρ1−α(σ)VaR vs. its simpli�cation 3σ.

This is a reasonable conservative approximation as long as ρ < 0.15 (see Figure 1).
Another questionable point here is the aggregation to the overall SCR from di�erent module SCR’s by

correlations in Solvency II (see, e.g., [31]). This has been discussed in detail, e.g., in [24, 29].
Note that no o�cial legislative paper onSolvency II contains a strictmathematical de�nition of theunder-

lying risk measure Value at Risk, cf. [11, Article 104, L 335/52, No. 4] or the Commission Delegated Regulation
of the EU [12, L 12/20 (53)]. The wording used in these documents, however, suggests that “the Value-at-Risk
measure with a 99.5% con�dence level” is the corresponding lower quantile of the risk distribution.

Note also that the above-mentioned Commission Delegated Regulation [12] concerning the implemen-
tation of Solvency II in the EU requires the consideration of risk scenarios in several Articles, in particular
in Article 259, L 12/161 on Risk Management Systems saying that insurance and reinsurance undertakings
shall, where appropriate, include performance of stress tests and scenario analyses with regard to all rele-
vant risks faced by the undertaking, in their risk-management system. The results of such analyses also have
to be reported in the ORSA (Own Risk and Solvency Assessment, see, e.g., [23]) as described in Article 306
of the Commission Delegated Regulation of the EU [12]. In the light of the outlined structural problems with
the standard formula above, the ORSA is probably a better instrument to rate the enterprise’s risks in a more
reliable way. The problem is, however, that the Commission Delegated Regulation does not make any clear
statements on how such stress tests or scenario analyses have to be performed.

Article 1 of the Commission Delegated Regulation of the EU [12, L 12/20, No. 2] de�nes a “scenario anal-
ysis” as an analysis of the impact of a combination of adverse events. The Monte Carlo simulation algorithm
developed in this paper allows for a mathematically rigorous description how such scenarios can be gener-
ated, being �exible enough to cover also extreme situations.

In what follows, we shall focus mainly on the Non-Life Modules under Solvency II. Therefore, we only
consider continuous risk distributions. In this case, VaR is simply a lower quantile of the cumulative risk dis-
tribution function. For corresponding considerations for the Life and Capital Asset Modules under Solvency
II, we refer to [3, 32].

Besides Solvency II aspects, the method proposed in this paper might also be of interest for reinsurance
companies for the risk assessment of statistically dependent natural perils like windstorm, hail or �ooding
triggered by adverse climate conditions.

2 Unfavourable patchwork copulas
Patchwork copulas in the context of riskmanagementhavebeen treated indetail in [1, 5, 15, 24–26, 30], among
others. In several of the cited papers the question of an unfavourable, i.e. superadditive VaR estimate for a
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Figure 2: Shape of the support of the underlying patchwork copulaW.

portfolio of aggregated risks was in particular emphasized, see also [27]. However, the construction of worst
VaR scenarios in this context is quite complicated; note that a worst VaR is a supremum of VaR’s over the
Fréchet class of all possible joint distributions with given marginals (see, e.g., [10, Sections 1.1 and 1.3]). The
situation ismore simple in the two-dimensional case with identical margins (see [10, Section 2]). A numerical
approach to a constructive solution to the general problem is given, e.g., by the rearrangement algorithm (see,
e.g., [1, 10, 20]). From a practical point of view, simpler and yet explicit constructions for unfavourable but
not necessarily worst VaR estimates by appropriate copula constructions seem to be a useful alternative. In
this paper, we describe how such a construction could be performed. We start with an explicit approach in
two dimensions, which is later extended to arbitrary dimensions. For better readability, all proofs are shifted
to the Appendix.

Lemma 1. Let, for d ≥ 2, d ∈ N,U = (U1, . . . , Ud) andV = (V1, . . . , Vd) be d-dimensional random vectors over
[0, 1]d with continuous uniform margins (i.e., U andV represent d-dimensional copulas). Let further I denote a
binomially distributed random variable, independent of U and V, with P(I = 1) = p ∈ (0, 1). Then the random
vectorWwith componentsWi := IpUi + (1− I)[p + (1− p)Vi] for 1 ≤ i ≤ d also has continuous uniformmargins,
i.e.W represents a d-dimensional copula.

Note thatW can be considered as a special case of ordinal sums (cf. [22, Chapter 3.3.2] for the two-dimensional
case, and [18, relation (4.31)], [19, De�nition 2.1] and [9, Example 2.2.10 and Chapter 3.8] for the multivariate
case).

Suppose now that a portfolio of d insurance risks is considered where a mutual probabilistic depen-
dence structure is assumed to be described by U. If the d (for simplicity assumed continuous) marginal
risk distribution functions are denoted by F1, . . ., Fd and by Q1, . . ., Qd their pseudo-inverses (quantile
functions), then both random vectors

(
Q1(U1), . . . , Qd(Ud)

)
and

(
Q1(W1), . . . , Qd(Wd)

)
represent a risk

vector X = (X1, . . . , Xd) with the given marginal distributions. However, w.r.t. to risk aggregation, X :=(
Q1(W1), . . . , Qd(Wd)

)
creates in general an unfavourable VaR scenario for S =

∑d
i=1 Xi, even if p is close

to 1 and therefore U andW di�er only marginally. The graph in Figure 2 shows the corresponding support of
W in two dimensions.

In the sequel, put p := 1 − β for 0 < β < 1. ThenW = I(1 − β)U + (1 − I)(1 − β + βV).
We start with some further preliminary Lemmata.

Lemma 2. LetW1 := (1 − β)U,W2 := 1 − β + βV, Z1i := Qi(W1i) and Z2i := Qi(W2i), i = 1, 2. Then there hold

FZ1i (x, β) =


Fi(x)
1 − β , 0 ≤ x ≤ Qi(1 − β),

1, x ≥ Qi(1 − β),
and FZ2i (x, β) =

0, 0 ≤ x ≤ Qi(1 − β),
Fi(x) + β − 1

β , x ≥ Qi(1 − β).
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Lemma 3. Assume that f and g are Lebesgue densities of independent random variables X and Y, concentrated
on the same �nite interval [0,M] with M > 0. Then S := X + Y has the density h1 given by

h1(x) =
{∫ x

0 f (x − y)g(y) dy, 0 ≤ x ≤ M,∫ M
x−M f (x − y)g(y) dy, M ≤ x ≤ 2M.

If f and g are concentrated on the same in�nite interval [M,∞) with M ≥ 0, then S := X + Y has the density h2
given by

h2(x) =
∫ x−M

M
f (x − y)g(y) dy, x ≥ 2M.

In particular, if F and G are the corresponding cdf’s pertaining to f and g, respectively, then in either case,
d
dx F * G(x)

∣∣
x=2M = 0, where *means convolution.

Lemma 4. Assume that all Fi ≡ F being equal with quantile function Q, and that U and V have independent
components each. Denote

F(x, β) :=


F(x)
1 − β , x ≤ Q(1 − β),

1, x ≥ Q(1 − β),
and F(x, β) :=

F
(
x + Q(1 − β)

)
+ β − 1

β , x ≥ 0.

Let further denote Xi := Q(Wi) and S =
∑d

i=1 Xi. Then we can conclude that

FS(x, β) =
{
(1 − β)Fd*(x, β), x ≤ dQ(1 − β),
(1 − β) + βFd*

(
x − dQ(1 − β), β

)
, x > dQ(1 − β),

where * again means convolution. If F has a density f , then correspondingly

f (x, β) :=


f (x)
1 − β , x ≤ Q(1 − β),

1, x ≥ Q(1 − β),
and f (x, β) :=

f
(
x + Q(1 − β)

)
β , x ≥ 0,

and

fS(x, β) =

(1 − β)f
d*(x, β), x ≤ dQ(1 − β),

(1 − β) + βf d*
(
x − dQ(1 − β), β

)
, x > dQ(1 − β).

The following examples show the e�ect of a risk aggregation with an unfavourable VaR scenario for two
dimensions in detail.

Example 1 (exponential distributions). Assume that

F1 = F2 =
{
0, x < 0,
1 − e−x , x ≥ 0.

Then

FZ1i (x, β) =
1 − e−x
1 − β , 0 ≤ x ≤ − ln(β), and FZ2i (x, β) =

β − e−x
β = 1 − e−x−ln(β), x ≥ − ln(β), i = 1, 2.

For the corresponding densities, we obtain by di�erentiation

fZ1i (x, β) =


e−x
1 − β , 0 ≤ x ≤ − ln(β),

0, x > − ln(β),
and fZ2i (x, β) =

{
0, x < − ln(β),
e−x−ln(β), x ≥ − ln(β),

i = 1, 2,

and

f (x, β) =


e−x
1 − β , 0 ≤ x ≤ − ln(β),

0, x > − ln(β),
and f (x, β) =

{
0, x < 0,
e−x , x ≥ 0.



Generating unfavourable VaR scenarios | 331

Figure 3: Plots of the densities fS(x, β) for β = 0.1 and g(x) in Example 1.

By Lemma 4, we obtain the following density fS of the aggregated risk S:

fS(x, β) =



xe−x
1 − β , 0 ≤ x ≤ − ln(β),(
−2 ln(β) − x

)
e−x

1 − β , − ln(β) ≤ x ≤ −2 ln(β),(
x + 2 ln(β)

)
e−x

β , x ≥ −2 ln(β),

with the corresponding cdf FS:

FS(x, β) =



1 − (1 + x)e−x
1 − β , 0 ≤ x ≤ − ln(β),

1 − 2β + 2e−x ln(β) + (1 + x)e−x
1 − β , − ln(β) ≤ x ≤ −2 ln(β),

β − 2e−x ln(β) − (1 + x)e−x
β , x ≥ −2 ln(β).

For the graph in Figure 3, let g denote the density of T := Q1(U1) + Q2(U2) (independent summands,
Gamma distribution). In what follows, let G denote the cdf of T := Q1(U1)+Q2(U2) (independent summands,
Gamma distribution) and H be the cdf of S under the worst VaR scenario (see the graph in Figure 4), i.e. the
distribution ofV corresponds to the lower Fréchet bound or countermonotonicity copula (see, e.g., Remark 3
and the comments after Figure 3 in [10], or [24]). In this case we have

H(x, β) =


FS(x), x ≤ −2 ln(β),
1 − β, −2 ln(β) ≤ x ≤ −2 ln(β/2),
1 − β +

√
β2 − 4e−x , x ≥ −2 ln(β/2).
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Figure 4: Plots of the cdf’s FS(x, β), G(x) and H(x, β) for β = 0.005 in Example 1.

Figure 5: Plots of the cdf’s FS(x, 0.005 + ε) for ε ∈ {0.001, 0.002, 0.003} and H(x, 0.005) in Example 1.

Note that with the Solvency II standard α = 0.005, we get here, for β = α,VaRα(S) = −2 ln(β) = 10.5914 >
VaRα(T) = 7.4301, where VaRα(T) is the numerical solution to the equation (1 + x)e−x = α. For the worst
VaR scenario, however, we get wVaRα(S) = −2 ln

(
β
2

)
= 11.9829 with 10.5966 = SVaRα := VaRα(X1) +

VaRα(X2) > VaRα(S) = 10.5914. This means that even with the construction for S with β = α, we still have
a (quite small) diversi�cation e�ect, but not in the worst VaR scenario. This changes, however, if we look at
VaRα(S) = 10.9630 when we replace β by α + ε in the de�nition ofW for e.g. ε = 0.001.

The graph in Figure 5 shows the cdf’s in the tails for several choices of ε. The graph in Figure 6 shows the
values ofQS(0.995, β) = F−1S (0.995, β) in the range0.0062 ≤ β ≤ 0.0076. A numerical calculation shows that
for α = 0.005 the worst VaRα(S) = 10.9829 is attained for β = 0.0068, i.e. ε = 0.0018. Table 1 summarizes
the results found for α = 0.005.

Table 1: Summarized results for Example 1.

β 0.0050 0.0060 0.0068 0.0070 0.0080
VaRα(S) 10.5914 10.9630 10.9829 10.9821 10.9618
VaRα(T) 7.4301 7.4301 7.4301 7.4301 7.4301
wVaRα(S) 11.9829 11.9829 11.9829 11.9829 11.9829
SVaRα 10.5966 10.5966 10.5966 10.5966 10.5966
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Figure 6: Plot of the parametrized quantile function QS(0.995, β) = F−1S (0.995, β) in Example 1.

Example 2 (uniform distributions). Assume that

F1 = F2 =


0, x ≤ 0,
x, 0 ≤ x ≤ 1,
1, x ≥ 1.

Then
FZ1i (x, β) =

x
1 − β , 0 ≤ x ≤ 1 − β, and FZ2i (x, β) =

x + β − 1
β , x ≥ 1 − β, i = 1, 2.

By Lemma 4, we obtain the following density fS of the aggregated risk S:

fS(x, β) =



x
1 − β , x ≤ 1 − β,
2 − 2β − x
1 − β , 1 − β ≤ x ≤ 2 − 2β,

x − 2 + 2β
β , 2 − 2β ≤ x ≤ 2 − β,

2 − x
β , 2 − β ≤ x ≤ 2,

with the corresponding cdf FS:

FS(x, β) =



x2
2(1 − β) , x ≤ 1 − β,

4x(1 − β) − x2 − 2(1 − β)2
2(1 − β) , 1 − β ≤ x ≤ 2 − 2β,

4(1 − β)(1 − x) + x2 − 2β + 2β2
2β , 2 − 2β ≤ x ≤ 2 − β,

2β − 4(1 − x) − x2
2β , 2 − β ≤ x ≤ 2.

In what follows, g is the density of T := Q1(U1)+Q2(U2) (independent summands, triangle distribution),
see the graph in Figure 7. In the graph in Figure 8, G is the cdf for T := Q1(U1) + Q2(U2) (independent sum-
mands, triangle distribution) and H is the cdf for S under the worst VaR scenario, i.e. the distribution of V
corresponds to the lower Fréchet bound. In this case we have

H(x, β) =


FS(x), x ≤ 2 − 2β,
1 − β, 2 − 2β ≤ x < 2 − β,
1, x ≥ 2 − β.
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Figure 7: Plots of the densities fS(x, β) for β = 0.1 and g(x) in Example 2.

Figure 8: Plots of the cdf’s FS(x, β), G(x) and H(x, β) for β = 0.005 in Example 2.

Note that with the Solvency II standard α = 0.005, we have here, for β = α, VaRα(S) = 2 − 2α = 1.9900 =
VaRα(T). For theworst VaR scenario, however, we get herewVaRα(S) = 2−α = 1.9950 > 1.9900 = VaRα(X1)+
VaRα(X2) = SVaRα = VaRα(S). This means that with the construction for S we have no true diversi�cation
e�ect, in contrast to the worst VaR scenario. This changes, however, if we look at VaRα(S) = 1.9910when we
replace β by α + ε in the de�nition ofW for e.g. ε = 0.001.

The graph in Figure 9 shows the cdf’s in the tails for several choices of ε. The graph in Figure 10 shows
the values of QS(0.995, β) = F−1S (0.995, β) in the range 0.0054 ≤ β ≤ 0.0070. A numerical calculation shows
that for α = 0.005 the maximal VaRα(S) = 1.9915 is attained for β = 0.0060, i.e. ε = 0.0010.

Note that in this example a closed-form representation for QS(u, β) is given by

QS(u, β) = 2 − 2β +
√
2β(β + u − 1), 1 − β ≤ u ≤ 1 − β2 .

This implies
QS(1 − α, β) = 2 − 2β +

√
2β(β − α), α ≤ β ≤ 2α,

with its maximum being attained for β0 = 1+
√
2

2 α with value QS(1 − α, β0) = 2 −
(
1 +

√
2
2

)
α. Note that in

contrast the worst VaR here is wVaRα(S*) = 2 − α. Table 2 summarizes the results found for α = 0.005.
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Figure 9: Plots of FS(x, 0.005 + ε) for ε ∈ {0.001, 0.002, 0.003} and H(x, 0.005) in Example 2.

Figure 10: Plot of the parametrized quantile function QS(0.995, β) = F−1S (0.995, β) in Example 2.

Table 2: Summarized results for Example 2.

β 0.0050 0.0055 0.0060 0.0065 0.0070
VaRα(S) 1.9900 1.9130 1.9915 1.9914 1.9913
VaRα(T) 1.9900 1.9900 1.9900 1.9900 1.9900
wVaRα(S) 1.9950 1.9950 1.9950 1.9950 1.9950
SVaRα 1.9900 1.9900 1.9900 1.9900 1.9900
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Example 3 (Pareto distributions). Assume that

F1 = F2 =

0, x ≤ 0,
x

1 + x , x > 0.

Then

FZ1i (x, β) =
x

(1 − β)(1 + x) , 0 ≤ x ≤ 1β − 1, and FZ2i (x, β) = 1 − 1
β(1 + x) , x ≥ 1β − 1, i = 1, 2.

For the corresponding densities, we obtain by di�erentiation

fZ1i (x, β) =


1

(1 − β)(1 + x)2 , 0 ≤ x ≤ 1β − 1,

0, x > 1
β − 1,

and fZ2i (x, β) =


0, x < 1

β − 1,
1

β(1 + x)2 , x ≥ 1β − 1,

and

f (x, β) =


1

(1 − β)(1 + x)2 , 0 ≤ x ≤ 1β − 1,

0, x > 1
β − 1,

and f (x, β) =

0, x < 0,
β

(1 + βx)2 , x ≥ 0.

In order to calculate the density fS of the aggregated risk S, we need a suitable partial fraction representation
of f (x − y)f (y) and f (x − y)f (y). Note that in general, we have

1
(1 + x − y)(1 + y) =

1
2 + x

(
1

1 + x − y +
1

1 + y

)
and

1
(1 + x − y)2(1 + y)2 = 1

(2 + x)2

(
1

1 + x − y +
1

1 + y

)2

= 1
(2 + x)2

(
1

(1 + x − y)2 + 1
(1 + y)2 + 2

2 + x

(
1

1 + x − y +
1

1 + y

))
,

from which we obtain, by Lemma 4,

FS(x, β) =



x2 + 2x − 2 ln(1 + x)
(2 + x)2(1 − β) , 0 ≤ x ≤ 1β − 1,

(1 − 2β)x2 + (4 − 6β)x − 4β + 4 + 2 ln(βx + 2β − 1)
(2 + x)2(1 − β) , 1

β − 1 ≤ x ≤ 2
(
1
β − 1

)
,

x2 − 2x + 2
β ln(βx + 2β − 1)
(2 + x)2 , x ≥ 2

(
1
β − 1

)
.

The density fS(x) follows by di�erentiation.
In the following, g denotes the density of T := Q1(U1) +Q2(U2) (independent summands), see the graph

in Figure 11. In the graph in Figure 12, G is the cdf of T := Q1(U1) + Q2(U2) (independent summands) and H
is the cdf of S under the worst VaR scenario, i.e. the distribution of V corresponds again to the lower Fréchet
bound. In this case we have

H(x, β) =


FS(x), x ≤ 2β − 2,

1 − β, 2
β − 2 ≤ x ≤

4
β − 2,

1 − β +
√
β2 − 4β

2 + x , x ≥ 4β − 2.



Generating unfavourable VaR scenarios | 337

Figure 11: Plots of the densities fS(x, β) for β = 0.1 and g(x) in Example 3.

Figure 12: Plots of the cdf’s FS(x, β), G(x) and H(x, β) for β = 0.005 in Example 3.

Note that with the Solvency II standard α = 0.005, we have here, for β = α, VaRα(S) = 397.3168 <
VaRα(T) = 403.9161. For the worst VaR scenario, however, we get wVaRα(S) = 4

β − 2 = 798 > 398 =
VaRα(X1) + VaRα(X2) = SVaRα > VaRα(S) = 397.3168. This means that even with the construction for S we
still have a (quite small) diversi�cation e�ect, but not in the worst VaR scenario, as expected. This changes,
however, ifwe lookatVaRα(S) = 488.2116whenwe replace β by β+ε in thede�nitionofW for, e.g., ε = 0.001.

The graph in Figure 13 shows the cdf’s in the tail for several choices of ε. The graph in Figure 14 shows
the values of QS(0.995, β) = F−1S (0.995, β) in the range 0.007 ≤ β ≤ 0.012. A numerical calculation shows
that for α = 0.005 the maximum VaRα(S) = 509.3804 is attained for β = 0.0089, i.e. ε = 0.0039. Table 3
summarizes the results found for α = 0.005.

Table 3: Summarized results for Example 3.

β 0.0050 0.0070 0.0089 0.0100 0.0110
VaRα(S) 397.3168 503.2848 509.3804 508.6489 507.0076
VaRα(T) 403.9161 403.9161 403.9161 403.9161 403.9161
wVaRα(S) 798.0000 798.0000 798.0000 798.0000 798.0000
SVaRα 398.0000 398.0000 398.0000 398.0000 398.0000
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Figure 13: Plots of the cdf’s FS(x, 0.005 + ε) for ε ∈ {0.001, 0.002, 0.003} and H(x, 0.005) in Example 3.

Figure 14: Plot of the parametrized quantile function QS(0.995, β) = F−1S (0.995, β) in Example 3.
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Examples 1–3 show that it is generally possible to obtain unfavourable VaR scenarios by a suitable choice
of β = α+ε in the de�nition ofW, i.e. scenarios which lead to an opposite diversi�cation e�ect in the portfolio
and which are sometimes close to the worst VaR scenario.

We continue with a particular construction of W which allows in general for an unfavourable VaR sce-
nario.

Lemma 5. For d ∈ N, d > 1, let Id denote the d-dimensional unit matrix, ed = (1, . . . , 1) the d-dimensional
row vector consisting of just ones, and Ed = etrd ed the d × d matrix with all entries equal to unity. Then Σd =
(1 − r)Id + rEd is a correlation matrix i� − 1

d−1 ≤ r ≤ 1. In the general case, the latent roots λi of Σd are given by
λ1 = 1 + (d − 1)r and λi = 1 − r, i = 2, . . . , d. An orthonormal basis T1, . . ., Td of corresponding latent vectors
is given by T1 =

1√
d
etrd and Tj = (t1j , . . . , tdj)tr for 2 ≤ j ≤ d, where

tij =


− 1√

j(j − 1)
, 1 ≤ i < j,√

j − 1
j , j = i,

0, i > j.

Hence Σd possesses the spectral decomposition Σd = AAtr with A = T
√
∆, where T = [T1, . . . , Td] and ∆ =

diag(λ1, . . . , λd).

Note that there is also an alternative possibility to represent latent roots λ*j and normalized latent vectors
T*j = (t*1j , . . . , t*dj)

tr, j = 1, . . . , d, of Σd since Σd is a particular symmetric Toeplitz matrix for which the latent
roots and normalized latent vectors can be expressed via trigonometric functions (see [2, relations (5.89) and
(5.90)]). In particular, we can choose

λ*j = 1 + r
d−1∑
i=1

cos
(2πij
d

)
=
{
1 − r, j = 1, . . . , d − 1,
1 + (d − 1)r, j = d,

and

t*ij =
cos
(
2πij
d

)
+ sin

(
2πij
d

)
√
d

, 1 ≤ i, j ≤ d.

This is due to the fact that the latent roots have multiplicities, hence the linear space spanned by the cor-
responding latent vectors is (d − 1)-dimensional, allowing for di�erent representations of the corresponding
linear basis. However, for our purposes, the representation in Lemma 5 is more suited.

In what follows we will call a Gaussian copula derived from the correlation matrix Σd = d
d−1 Id −

1
d−1 Ed

for r = − 1
d−1 a minimal correlation Gaussian copula.

Note that the corresponding multivariate normal distribution is degenerated since Σd is singular, i.e. a
random vector X with zero mean and correlation matrix Σd has the representation X = AY, where Y has a
standard multivariate normal distribution with mean zero and variance-covariance matrix Id. For d = 2, the
minimal correlation Gaussian copula is identical to the lower Fréchet bound or countermonotonicity copula.

3 A case study
The following example shows the e�ects of such an approach for the 19-dimensional data set discussed in
[26]. Table 4 contains insurance losses from a non-life portfolio of natural perils in d = 19 areas in central
Europe over a time period of 20 years. The losses are given in million monetary units (MMU).

A statistical analysis of the data shows a good �t to lognormal LN(µ, σ)-distributions for the losses per
Area k, k = 1, . . . , 19. The parameters µk and σk for Area k shown in Table 5 were hence estimated from the
log data by calculating means and standard deviations.
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Table 4: Insurance losses from a Nat Cat portfolio in central Europe.

Year Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7 Area 8 Area 9 Area 10
1 23.664 154.664 40.569 14.504 10.468 7.464 22.202 17.682 12.395 18.551
2 1.080 59.545 3.297 1.344 1.859 0.477 6.107 7.196 1.436 3.720
3 21.731 31.049 55.973 5.816 14.869 20.771 3.580 14.509 17.175 87.307
4 28.990 31.052 30.328 4.709 0.717 3.530 6.032 6.512 0.682 3.115
5 53.616 62.027 57.639 1.804 2.073 4.361 46.018 22.612 1.581 11.179
6 29.950 41.722 12.964 1.127 1.063 4.873 6.571 11.966 15.676 24.263
7 3.474 14.429 10.869 0.945 2.198 1.484 4.547 2.556 0.456 1.137
8 10.020 31.283 21.116 1.663 2.153 0.932 25.163 3.222 1.581 5.477
9 5.816 14.804 128.072 0.523 0.324 0.477 3.049 7.791 4.079 7.002
10 170.725 576.767 108.361 41.599 20.253 35.412 126.698 71.079 21.762 64.582
11 21.423 50.595 4.360 0.327 1.566 64.621 5.650 1.258 0.626 3.556
12 6.380 28.316 3.740 0.442 0.736 0.470 3.406 7.859 0.894 3.591
13 124.665 33.359 14.712 0.321 0.975 2.005 3.981 4.769 2.006 1.973
14 20.165 49.948 17.658 0.595 0.548 29.350 6.782 4.873 2.921 6.394
15 78.106 41.681 13.753 0.585 0.259 0.765 7.013 9.426 2.180 3.769
16 11.067 444.712 365.351 99.366 8.856 28.654 10.589 13.621 9.589 19.485
17 6.704 81.895 14.266 0.972 0.519 0.644 8.057 18.071 5.515 13.163
18 15.550 277.643 26.564 0.788 0.225 1.230 26.800 64.538 2.637 80.711
19 10.099 18.815 9.352 2.051 1.089 6.102 2.678 4.064 2.373 2.057
20 8.492 138.708 46.708 3.680 1.132 1.698 165.600 7.926 2.972 5.237

Year Area 11 Area 12 Area 13 Area 14 Area 15 Area 16 Area 17 Area 18 Area 19
1 1.842 4.100 46.135 14.698 44.441 7.981 35.833 10.689 7.299
2 0.429 1.026 7.469 7.058 4.512 0.762 14.474 9.337 0.740
3 0.209 2.344 22.651 4.117 26.586 3.920 13.804 2.683 3.026
4 0.521 0.696 31.126 1.878 29.423 6.394 18.064 1.201 0.894
5 2.715 1.327 40.156 4.655 104.691 28.579 17.832 1.618 3.402
6 4.832 0.701 16.712 11.852 29.234 7.098 17.866 5.206 5.664
7 0.268 0.580 11.851 2.057 11.605 0.282 16.925 2.082 1.008
8 0.741 0.369 3.814 1.869 8.126 1.032 14.985 1.390 1.703
9 0.524 6.554 5.459 3.007 8.528 1.920 5.638 2.149 2.908
10 9.882 6.401 106.197 44.912 191.809 90.559 154.492 36.626 36.276
11 1.052 8.277 22.564 8.961 19.817 16.437 25.990 2.364 6.434
12 0.136 0.364 28.000 7.574 3.213 1.749 12.735 1.744 0.558
13 1.990 15.176 57.235 23.686 110.035 17.373 7.276 2.494 0.525
14 0.630 0.762 25.897 3.439 8.161 3.327 24.733 2.807 1.618
15 0.770 15.024 36.068 1.613 6.127 8.103 12.596 4.894 0.822
16 0.287 0.464 24.211 38.616 51.889 1.316 173.080 3.557 11.627
17 0.590 2.745 16.124 2.398 20.997 2.515 5.161 2.840 3.002
18 0.245 0.217 12.416 4.972 59.417 3.762 24.603 7.404 19.107
19 0.415 0.351 10.707 2.468 10.673 1.743 27.266 1.368 0.644
20 0.566 0.708 22.646 6.652 14.437 63.692 113.231 7.218 2.548

Table 5: Distributional parameters for �tted lognormal loss distributions

Parameter Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7 Area 8 Area 9 Area 10
µk 2.806 4.072 3.141 0.638 0.398 1.223 2.321 2.212 1.078 2.106
σk 1.216 1.052 1.211 1.569 1.300 1.599 1.198 0.988 1.145 1.253

Parameter Area 11 Area 12 Area 13 Area 14 Area 15 Area 16 Area 17 Area 18 Area 19
µk −0.323 0.382 3.020 1.749 3.041 1.550 3.070 1.244 0.938
σk 1.088 1.335 0.803 1.003 1.122 1.477 0.962 0.858 1.214
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As is to be expected, insurance losses in locally adjacent areas show a high degree of stochastic depen-
dence, which can also be seen from the correlation Tables 6 and 7. For a better readability, only two decimal
places are displayed.

Table 6: Empirical correlations between original losses in adjacent areas.

Parameter A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19
A1 1 0.46 0.03 0.16 0.47 0.20 0.35 0.49 0.41 0.24 0.78 0.64 0.91 0.63 0.85 0.66 0.30 0.67 0.56
A2 0.46 1 0.64 0.78 0.67 0.36 0.51 0.76 0.57 0.51 0.58 −0.04 0.59 0.84 0.68 0.58 0.87 0.77 0.90
A3 0.03 0.64 1 0.93 0.41 0.26 0.11 0.16 0.33 0.16 0.08 −0.09 0.13 0.64 0.25 0.10 0.74 0.14 0.35
A4 0.16 0.78 0.93 1 0.54 0.36 0.16 0.25 0.43 0.19 0.22 −0.10 0.30 0.79 0.36 0.19 0.84 0.32 0.49
A5 0.47 0.67 0.41 0.54 1 0.41 0.35 0.51 0.84 0.63 0.59 0.02 0.64 0.67 0.59 0.50 0.58 0.71 0.67
A6 0.20 0.36 0.26 0.36 0.41 1 0.07 0.11 0.28 0.19 0.28 0.14 0.31 0.42 0.24 0.27 0.39 0.27 0.40
A7 0.35 0.51 0.11 0.16 0.35 0.07 1 0.44 0.27 0.19 0.48 −0.07 0.46 0.35 0.45 0.91 0.64 0.61 0.49
A8 0.49 0.76 0.16 0.25 0.51 0.11 0.44 1 0.50 0.75 0.61 −0.03 0.54 0.47 0.71 0.53 0.40 0.75 0.90
A9 0.41 0.57 0.33 0.43 0.84 0.28 0.27 0.50 1 0.66 0.68 −0.01 0.52 0.60 0.50 0.41 0.46 0.65 0.63
A10 0.24 0.51 0.16 0.19 0.63 0.19 0.19 0.75 0.66 1 0.33 −0.12 0.27 0.28 0.43 0.24 0.23 0.45 0.65
A11 0.78 0.58 0.08 0.22 0.59 0.28 0.48 0.61 0.68 0.33 1 0.19 0.79 0.65 0.80 0.73 0.43 0.84 0.74
A12 0.64 −0.04 −0.09 −0.10 0.02 0.14 −0.07 −0.03 −0.01 −0.12 0.19 1 0.44 0.21 0.28 0.17 −0.12 0.13 0.03
A13 0.91 0.59 0.13 0.30 0.64 0.31 0.46 0.54 0.52 0.27 0.79 0.44 1 0.71 0.86 0.74 0.47 0.76 0.65
A14 0.63 0.84 0.64 0.79 0.67 0.42 0.35 0.47 0.60 0.28 0.65 0.21 0.71 1 0.74 0.54 0.79 0.68 0.72
A15 0.85 0.68 0.25 0.36 0.59 0.24 0.45 0.71 0.50 0.43 0.80 0.28 0.86 0.74 1 0.69 0.47 0.71 0.75
A16 0.66 0.58 0.10 0.19 0.50 0.27 0.91 0.53 0.41 0.24 0.73 0.17 0.74 0.54 0.69 1 0.63 0.77 0.64
A17 0.30 0.87 0.74 0.84 0.58 0.39 0.64 0.40 0.46 0.23 0.43 −0.12 0.47 0.79 0.47 0.63 1 0.59 0.64
A18 0.67 0.77 0.14 0.32 0.71 0.27 0.61 0.75 0.65 0.45 0.84 0.13 0.76 0.68 0.71 0.77 0.59 1 0.86
A19 0.56 0.90 0.35 0.49 0.67 0.40 0.49 0.90 0.63 0.65 0.74 0.03 0.65 0.72 0.75 0.64 0.64 0.86 1

Table 7: Empirical correlations between log losses in adjacent areas.

Parameter A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19
A1 1 0.27 0.30 0.16 0.17 0.45 0.28 0.32 0.32 0.29 0.67 0.51 0.76 0.34 0.67 0.74 0.18 0.21 0.29
A2 0.27 1 0.48 0.66 0.39 0.37 0.71 0.69 0.52 0.64 0.30 −0.02 0.45 0.66 0.58 0.45 0.73 0.74 0.78
A3 0.30 0.48 1 0.70 0.40 0.31 0.42 0.51 0.58 0.53 0.18 0.07 0.21 0.32 0.54 0.26 0.47 0.21 0.57
A4 0.16 0.66 0.70 1 0.77 0.47 0.46 0.47 0.59 0.49 0.18 −0.13 0.33 0.50 0.47 0.18 0.76 0.43 0.54
A5 0.17 0.39 0.40 0.77 1 0.59 0.30 0.20 0.49 0.39 0.28 0.08 0.35 0.56 0.44 0.16 0.55 0.36 0.41
A6 0.45 0.37 0.31 0.47 0.59 1 0.14 0.01 0.36 0.34 0.33 0.12 0.48 0.46 0.48 0.37 0.59 0.17 0.50
A7 0.28 0.71 0.42 0.46 0.30 0.14 1 0.52 0.27 0.40 0.45 −0.07 0.31 0.31 0.46 0.62 0.63 0.58 0.57
A8 0.32 0.69 0.51 0.47 0.20 0.01 0.52 1 0.64 0.81 0.27 −0.02 0.38 0.35 0.56 0.35 0.28 0.62 0.63
A9 0.32 0.52 0.58 0.59 0.49 0.36 0.27 0.64 1 0.78 0.40 0.19 0.27 0.50 0.44 0.30 0.33 0.57 0.61
A10 0.29 0.64 0.53 0.49 0.39 0.34 0.40 0.81 0.78 1 0.21 −0.02 0.21 0.37 0.52 0.30 0.31 0.53 0.81
A11 0.67 0.30 0.18 0.18 0.28 0.33 0.45 0.27 0.40 0.21 1 0.47 0.49 0.45 0.60 0.67 0.20 0.45 0.39
A12 0.51 −0.02 0.07 −0.13 0.08 0.12 −0.07 −0.02 0.19 −0.02 0.47 1 0.44 0.21 0.24 0.46 −0.23 0.25 0.05
A13 0.76 0.45 0.21 0.33 0.35 0.48 0.31 0.38 0.27 0.21 0.49 0.44 1 0.55 0.60 0.71 0.37 0.39 0.24
A14 0.34 0.66 0.32 0.50 0.56 0.46 0.31 0.35 0.50 0.37 0.45 0.21 0.55 1 0.59 0.43 0.57 0.58 0.53
A15 0.67 0.58 0.54 0.47 0.44 0.48 0.46 0.56 0.44 0.52 0.60 0.24 0.60 0.59 1 0.59 0.36 0.35 0.63
A16 0.74 0.45 0.26 0.18 0.16 0.37 0.62 0.35 0.30 0.30 0.67 0.46 0.71 0.43 0.59 1 0.38 0.43 0.39
A17 0.18 0.73 0.47 0.76 0.55 0.59 0.63 0.28 0.33 0.31 0.20 −0.23 0.37 0.57 0.36 0.38 1 0.52 0.56
A18 0.21 0.74 0.21 0.43 0.36 0.17 0.58 0.62 0.57 0.53 0.45 0.25 0.39 0.58 0.35 0.43 0.52 1 0.60
A19 0.29 0.78 0.57 0.54 0.41 0.50 0.57 0.63 0.61 0.81 0.39 0.05 0.24 0.53 0.63 0.39 0.56 0.60 1

The graph in Figure 15 shows estimated cdf’s on a basis of 100,000Monte Carlo simulations for the aggre-
gated loss using lognormal margins with the parameters from Table 5 with a Bernstein copula representingU
and aminimal correlation Gaussian copula representingV, for various values of p. For comparison purposes,
we have also added an estimated cdf for the aggregated loss for a Bernstein copula representingU and an up-
per Fréchet (or comonotonicity) copula representing V. Note that the Bernstein copula is here constructed
according to [5] on the basis of the ranks of the risk vectors (see also [28, Section 3]).

The plots in Figure 15 for the tail cdf’s correspond to a Bernstein copula U with a minimal correlation
Gaussian copulaV: p = 1 (F1(x)), p = 0.99 (F2(x)), p = 0.994 (F3(x)), as well as to a Bernstein copula Uwith
p = 0.994 but di�erent copulasV: upper Fréchet bound or comonotonicity copula (F4(x)) and independence
copula (F5(x)).

Table 8 shows the estimated risk measures VaRα for α = 0.005 (Solvency II standard) for the various
values of p and di�erent types of V.

Table 8: Survey over VaR-estimates under di�erent copula models with lognormal margins, in MMU.

p 0.99 0.994 0.994 0.994 1
V minimal correlation Gaussian minimal correlation Gaussian upper Fréchet independence —

VaRα 4, 647 5, 272 3, 976 5, 018 2, 229
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Figure 15: Plots of the estimated cdf’s Fi(x), i = 1, . . . , 5, in the tail.

As can clearly be seen, the patchwork construction with the minimal correlation Gaussian copula repre-
senting V with no tail dependence gives the largest VaR estimate here and is typically larger than the upper
Fréchet copula, which has a positive tail dependence. Note that the sum of individual VaR’s is given by 3,976
MMU, whichmeans that using the Bernstein copula alone would lead to a diversi�ed portfolio while all other
copula models do not.

Finally, it should be pointed out that the e�ects described here are independent of the particular copula
chosen for U, i.e. the magnitude of the estimated VaR’s under the patchwork construction would remain
roughly equal also under an elliptical, an Archimedean, a vine or an adapted Bernstein copula approach for
U ([28], cf. also the comments after Figure 3 in [10]).

4 Concluding remarks
The patchwork copula construction presented in this paper allows for a simple but yet e�ective and well-
de�nedway to generate unfavourableVaR scenarios, i.e. scenarioswith opposite diversi�cation e�ects in par-
ticular for applications in Solvency II. Such scenario considerations are prescribed by legislative guidelines
as, e.g., speci�ed in the Commission Delegated Regulation of the EU [12] (p. L12/6 (16), L12/9 (49), L12/12 (75)
or (77), just to mention some). Besides Solvency II, such unfavourable VaR scenario generations could also
be of interest in the Basel III framework (e.g., economic scenario generators) or in the reinsurance industry,
in particular w.r.t. extreme natural perils.

Although there is theoretically also a method to create worst VaR scenarios by means of the rearrange-
ment algorithm, the latter approach easily becomes numerically cumbersome in high-dimensional portfolios
as in our case study, especially, if the risk distributions are not identical (see [10, Section 2.2]). Hence a sub-
optimal but easy to implement alternative is of value, in particular, since it seems unlikely that the worst VaR
scenario would actually occur in real life portfolios.

The approach discussed in this paper seems, at a �rst glance, to be related to the recent paper [27]. The
essential di�erence is, however, that the latter paper is not based on an observation-free copula construction
for the tails as in the present paper. The algorithm proposed there leads only to stochastic approximations
of the underlying distributions by a marginal-wise backwards transformation of the simulated multivariate
distribution with the quantile functions of the originally estimated marginal cdf’s. This emphasizes the fact
that unfavourable VaR estimates cannot perhaps be characterized by the copula structure alone but that the
interplay between the dependence structure and the marginal distributions is also essential (see the discus-
sion in [17]). Such a kind of interplay could potentially also be considered in the present approach, allowing
non-constant negative pairwise correlations in the matrix Σd for the Gaussian copula in Lemma 5.
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Note that Value at Risk is not the only risk measure that is used for calculating capital requirements in
Europe. For instance, the Swiss Solvency Test uses the Expected Shortfall (ES) ESα(X) of risks X as the under-
lying risk measure (cf. [13]). In accordance with our terminology and under the assumption of a continuous
risk distribution, it is de�ned as

ESα(X) = E
(
X | X > VaRα(X)

)
, 0 < α < 1.

Unfortunately, it is impossible to generate true unfavourable ES scenarios since ES is a coherent (i.e.
subadditive) risk measure which in the worst case generates additive risk scenarios if the risks involved
follow a comonotone dependence structure (see, e.g., [21, Chapter 7.2]). Note, however, that it is su�cient for
the generation of additive ES scenarios to use a dependence structure as in Lemma 1 with the upper Fréchet
bound for V, which is a copula in any dimension.

Acknowledgements: We would like to thank the referees for several helpful comments that improved the
presentation of the paper essentially.
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Appendix: Proofs of Lemmata
Proof of Lemma 2. We have

FZ1i (x, β) = P
(
Qi
(
(1 − β)Ui

)
≤ x
)
= P
(
(1 − β)Ui ≤ Fi(x)

)
= P
(
Ui ≤

Fi(x)
1 − β

)
= Fi(x)
1 − β , 0 ≤ x ≤ Qi(1 − β),

and

FZ2i (x, β) = P
(
Qi
(
1 − β + βVi

)
≤ x
)
= P
(
1 − β + βVi ≤ Fi(x)

)
= P
(
Vi ≤

Fi(x) + β − 1
β

)
= Fi(x) + β − 1β , x ≥ Qi(1 − β), i = 1, 2.

Proof of Lemma 3. In the �nite interval case, we have, by the usual convolution formula,

h1(x) =
∫

0≤y≤M
0≤x−y≤M

f (x − y)g(y) dy =
∫

max(0,x−M)≤y≤min(x,M)

f (x − y)g(y) dy.

Now for 0 ≤ x ≤ M, we havemax(0, x −M) = 0,min(x,M) = x, from which the upper formula in brackets
for h1(x) follows. For M ≤ x ≤ 2M, we have max(0, x − M) = x − M, min(x,M) = M, from which the lower
formula in brackets for h1(x) follows.

The proof for the in�nite interval case is analogous, observing that for x ≥ 2M, we have

h2(x) =
∫

M≤y≤x
M≤x−y

f (x − y)g(y) dy =
∫

M≤y≤x−M

f (x − y)g(y) dy.

Further, under the conditions made, we have, in either case,

d
dx F * G(x)

∣∣∣∣
x=2M

= h1(2M) = h2(2M) =
∫ M

M
f (x − y)g(y) dy = 0,

as stated.
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Proof of Lemma 4. Let ξi and ζi be independent random variables with the cdf’s F(•, β) and F(•, β), respec-
tively. Then Iξi + (1 − I)

(
Q(1 − β) + ζi

)
is a stochastic representation of Xi, i = 1, . . . , d, where again I is a

binomial randomvariablewithP(I = 1) = 1−β andP(I = 0) = β, independent of (U,V) according to Lemma 2.
Hence

I
d∑
i=1

ξi + (1 − I)
d∑
i=1

(
Q(1 − β) + ζi

)
= I

d∑
i=1

ξi + (1 − I)
(
dQ(1 − β) +

d∑
i=1

ζi
)

is a stochastic representation of S. Note that the cdf of
∑d

i=1 ξi is F
d*(•, β) and that of

∑d
i=1 ζi is F

d*(•, β), from
which the assertion follows.

Proof of Lemma 5. The proof relies on the following two relations:

a)
d∑
k=2

1
k(k − 1) =

d − 1
d for all d ≥ 2;

b) i − 1i +
d−i∑
k=1

1
(i + k)(i + k − 1) =

d − 1
d for all d ≥ 2 and 1 ≤ i ≤ d.

Clearly a) follows easily by induction. Relation b) follows immediately from a) since

i − 1
i =

i∑
k=2

1
k(k − 1) and

d−i∑
k=1

1
(i + k)(i + k − 1) =

d∑
k=i+1

1
k(k − 1) .

To prove Lemma 5, we �rst show that TTtr = Id = TtrT. Let TTtr = [bij]i,j=1,...,d. For 1 ≤ i ≤ d, we obtain,
by relation b) above,

bii =
1
d + i − 1i +

d−i∑
k=1

1
(i + k)(i + k − 1) = 1.

For 1 ≤ i, j ≤ d with i ≠ j we get, with i ∨ j := max(i, j), following again relation b),

bij =
1
d −

1
i ∨ j +

d∑
k=i∨j+1

1
k(k − 1) =

1
d −

1
i ∨ j +

d−i∨j∑
k=1

1
(k + i ∨ j)(k + i ∨ j − 1)

= 1
d −

1
i ∨ j +

d − 1
d − i ∨ j − 1i ∨ j = 1 − 1 = 0.

This proves TTtr = Id. On the other hand, let TtrT = [cij]i,j=1,...,d. It is obvious that c11 = 1
d d = 1 and for

all 2 ≤ i ≤ d, cii = 1
i(i−1) (i − 1) +

i−1
i = 1. Next, for all 2 ≤ j ≤ d, we obtain

c1j =
1√
d

(
− 1√

j(j − 1)
(j − 1) +

√
j − 1
j

)
= 0,

and for all 2 ≤ i ≤ d, we get

ci1 =
1√
d

(
− 1√

i(i − 1)
(i − 1) +

√
i − 1
i

)
= 0.

Finally, for 2 ≤ i, j ≤ d with i ≠ j, we get

cij = −
1√

(i ∨ j)(i ∨ j − 1)

(
− 1√

(i ∨ j)(i ∨ j − 1)
(i ∨ j − 1) +

√
i ∨ j − 1
i ∨ j

)
= 0.

This proves TtrT = Id.
Now let λ1 = 1+(d−1)r, λi = 1− r, i = 2, . . . , d, and ∆t = diag(λ1 − t, . . . , λd − t). A standard computation

yields, for t ∈ R, T∆t = [sij]i,j=1,...,d, where

sij =



1+(d−1)r−t√
d

, j = 1,

− 1−r−t√
j(j−1)

, 1 ≤ i < j,√
j−1
j (1 − r − t), 1 < i = j,

0, otherwise.
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Let T∆tTtr = [dij]i,j=1,...,d. From relation a) above it follows that

d11 =
1 + (d − 1)r − t

d + (1 − r − t)
d∑
k=2

1
k(k − 1) =

1 + (d − 1)r − t
d + (1 − r − t) d − 1d = 1 − t,

and for 2 ≤ i ≤ d, relation b) gives

dii =
1 + (d − 1)r − t

d + (1 − r − t)
(
i − 1
i +

d−i∑
k=1

1
(i + k)(i + k − 1)

)
= 1 + (d − 1)r − t

d + (1 − r − t) d − 1d = 1 − t.

Next, for 2 ≤ i, j ≤ d with i ≠ j we obtain from relation b) above that

dij =
1 + (d − 1)r − t

d − 1 − r − t
i ∨ j + (1 − r − t)

(d−i∨j∑
k=1

1
(i ∨ j + k)(i ∨ j + k − 1)

)
= 1 + (d − 1)r − t

d − 1 − r − t
i ∨ j + (1 − r − t)

(
d − 1
d − i ∨ j − 1i ∨ j

)
= r.

This in turn means T∆tTtr = Σd − tId. Consequently, the characteristic polynomial for Σd is given by

φΣd (t) = det(Σd − tId) = det(T∆tTtr) = det(T) det(∆t) det(Ttr)

= det(T) det(∆t) det(T−1) = det(∆t) =
d∏
i=1

(λi − t).

Hence λi,1 ≤ i ≤ d, are the latent roots of Σd. Therefore, Σd is a correlationmatrix, i.e. positive semide�nite
i� λi ≥ 0 for all 1 ≤ i ≤ d, i.e. − 1

d−1 ≤ r ≤ 1. Thus Lemma 5 is proved.

Con�ict of interest statement: Authors state no con�ict of interest.
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