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Abstract: We present a constructive approach to Bernstein copulas with an admissible discrete
skeleton in arbitrary dimensions when the underlying marginal grid sizes are smaller than the
number of observations. This prevents an overfitting of the estimated dependence model and reduces
the simulation effort for Bernstein copulas a lot. In a case study, we compare different approaches of
Bernstein and Gaussian copulas regarding the estimation of risk measures in risk management.
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1. Introduction

Since the pioneering paper [1] by Serge Bernstein in 1912, Bernstein polynomials have been an
indispensable tool in calculus and approximation theory (see, e.g., [2]). Bernstein copulas, which can
be considered to be Bernstein polynomials for empirical and other copula functions, have a long
tradition in nonparametric modelling of dependence structures in arbitrary dimensions, in particular,
with applications in risk management, and have come into a deeper focus in the recent years. There is an
extensive list of research papers on this topic, for instance, [3–14]. In particular, the monographs [15,16]
have devoted separate chapters to the topic of Bernstein copulas.

A very important aspect of Bernstein copulas lies in Monte Carlo simulation techniques of
dependence structures, in particular, in higher dimensions. The structure of such procedures ranges
from very complex (see, e.g., [10]) to extremely simple (see, e.g., [5]), such that Monte Carlo simulations
could, for instance, be performed easily with ordinary spreadsheets, in particular, in applications
concerning quantitative risk management.

From a statistical point of view, the problem of a potential overfitting of the true underlying
dependence structure with Bernstein polynomials emerges naturally when the pertaining Bernstein
polynomial degree increases, i.e., with an increasing number of observations. This has been discussed
extensively, for instance, in [6] (Section 3.1), [7] (Section 4), [17] (Section 3.2.1) or [14] (Remark 4).
This leads to the fact that the Bernstein copula density becomes more wiggly the more empirical
observations are used in the analysis. In comparison with classical parametric dependence models such
as elliptically contoured or Archimedean copulas, this is probably a nondesirable property. In particular,
this problem has been tackled seemingly first in [10] by approximating the underlying discrete skeleton
for the Bernstein copula by a least-squares approach and recently in the Ph.D. thesis [18], where cluster
analytic methods were used.

In the present paper, we propose a simple but yet effective approach to reduce the complexity
of Bernstein copulas in a two-step approach, namely first an augmentation step in combination with
a second reduction step. The reduction step is also discussed in [12]; however, without a possible
application to a general complexity reduction of Bernstein copulas.
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2. Some Important Facts about Multivariate Bernstein Polynomials

Let f be an arbitrary bounded real-valued function on the unit cube Cd :“ r0, 1sd with dimension
d P N. Furthermore, let n1, . . ., nd be integers. The corresponding multivariate Bernstein polynomial is
defined by

Bn f px1, . . . , xdq :“
nd
ÿ

id“0

¨ ¨ ¨

n1
ÿ

i1“0

f
ˆ

i1
n1

, ¨ ¨ ¨ ,
id
nd

˙ d
ź

j“1

ˆ

nj

ij

˙

x
ij
j p1´ xjq

nj´ij , x “ px1, . . . , xdq P Cd, (1)

with n “ pn1, . . . , ndq (see, e.g., [2] (p. 51)). It is known that for minpn1, . . . , ndq Ñ 8 multivariate
Bernstein polynomials converge to f at any point of continuity and approximate f uniformly if f is
continuous on Cd.

Another important property of multivariate Bernstein polynomials, which is perhaps less known
in the mathematical community, is the fact that the multivariate Bernstein polynomial density given by

bn f px1, . . . , xdq :“
Bd

Bx1 ¨ ¨ ¨ Bxd
Bn f px1, . . . , xdq, x P Cd, (2)

can be written as a linear combination of product beta densities. For this purpose, consider univariate
beta densities

fbetapx; α, βq :“
xα´1p1´ xqβ´1

Bpα, βq
for 0 ă x ă 1, α, β ą 0, (3)

where Bpα, βq denotes the Euler beta function, i.e., Bpα, βq “
ΓpαqΓpβq
Γpα`βq

. We need the following definition
to proceed.

Definition 1. Let g be a real-valued bounded function on Rd. We call

∆gb
a :“

ÿ

pε1,...,εdqPt0,1ud

p´1q
řd

i“1 εi g
`

ε1a1 ` p1´ ε1qb1, . . . , εdad ` p1´ εdqbd
˘

ě 0 (4)

the ∆-difference of g over the interval pa, bs :“
ˆ d
Ś

i“1
pai, bis

˙

with a “ pa1, . . . , adq P Rd, b “ pb1, . . . , bdq P

Rd and ai ă bi, 1 ď i ď d. (We adopt here a notation similar to that in [19] (Definition 2.1), which is slightly
different from the notation in [20] (Definition 1.2.10).)

Proposition 1. With the above notation, the Bernstein polynomial density bn f can be represented as

bn f px1, . . . , xdq “

nd´1
ÿ

id“0

¨ ¨ ¨

n1´1
ÿ

i1“0

∆ f bi
ai

d
ź

j“1

fbetapxj; ij ` 1, nj ´ ijq (5)

with ai :“
´

i1
n1

, ¨ ¨ ¨ , id
nd

¯

and bi :“
´

i1`1
n1

, ¨ ¨ ¨ , id`1
nd

¯

.

Proof. This follows immediately from the arguments in the proof of Theorem 2.2. in [5]; compare also
the line of proofs in [21].

Example 1. We consider the polynomial f px, yq :“ 2xp1´ yq3 ´ 3p1´ xq3y4, 0 ď x, y ď 1, with n1 “ 2,
n2 “ 3. In this case, the two-dimensional Bernstein polynomial Bn f differs from f due to smaller polynomial
degrees. We have

Bn f px, yq “ 2x´
y
9
´

145
36

xy´
14
9

y2 ´
4
3

y3 `
97
18

xy2 ´
x2y
12

`
17
9

xy3 ´
7
6

x2y2 ´ x2y3 (6)



Mathematics 2020, 8, 2221 3 of 22

with
bn f px, yq “ ´

145
36

´
x
6
`

97
9

y`
17
3

y2 ´
14
3

xy´ 6xy2. (7)

Please note that here

∆ f bi
ai “ f

ˆ

i1 ` 1
n1

,
i2 ` 1

n2

˙

` f
ˆ

i1
n1

,
i2
n2

˙

´ f
ˆ

i1
n1

,
i2 ` 1

n2

˙

´ f
ˆ

i1 ` 1
n1

,
i2
n2

˙

, (8)

or, in tabular form, the values are given in Table 1.

Table 1. Values of ∆ f bi
ai for the polynomial f px, yq in Example 1.

i1 0 1 0 1 0 1
i2 0 0 1 1 2 2

∆ f bi
ai ´ 145

216 ´ 151
216

49
216 ´ 41

216
149
72

19
72

After a little computation it is easy to see that indeed here

bn f px, yq “
2
ÿ

i2“0

1
ÿ

i1“0

∆ f bi
ai

xi1p1´ xq1´i1

Bpi1 ` 1, 2´ i1q
yi2p1´ yq2´i2

Bpi2 ` 1, 3´ i2q
. (9)

The plots of f px, yq, Bn f px, yq and f px, yq ´ Bn f px, yq are shown in Figure 1.

(a) (b) (c)

Figure 1. Plots of the functions in Example 1. (a) Plot of f px, yq. (b) Plot of Bn f px, yq. (c) Plot of
f px, yq ´ Bn f px, yq.

A direct consequence of Proposition 1 concerns the monotonicity behavior of multivariate
Bernstein polynomials.

Definition 2. Let g be a real-valued function on Rd. We call g d-monotone iff ∆gb
a ě 0 for all a “ pa1, . . . , adq,

b “ pb1, . . . , bdq P Rd with ai ă bi, 1 ď i ď d.

It is obvious by the iterated mean value theorem that for a sufficiently smooth function g,
d-monotonicity is equivalent to

Bd

Bx1 ¨ ¨ ¨ Bxd
gpx1, . . . , xdq ě 0 for all px1, . . . , xdq P Rd. (10)

Please note that in the case that g is a d-dimensional cumulative distribution function of a

probability measure P on the d-dimensional Borel σ-field Bd, then ∆gb
a “ P

ˆ d
Ś

i“1
pai, bis

˙

.
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Proposition 2. Let f be a real-valued d-monotone function on Rd. Then the corresponding multivariate
Bernstein polynomial Bn f is also d-monotone. In particular, the Bernstein polynomial density bn f is a positive
linear combination of product beta densities.

Proof. By the arguments above and the notation as in Proposition 1, we have

bn f px1, . . . , xdq :“
Bd

Bx1 ¨ ¨ ¨ Bxd
Bn f px1, . . . , xdq “

nd´1
ÿ

id“0

¨ ¨ ¨

n1´1
ÿ

i1“0

∆ f bi
ai

d
ź

j“1

fbetapxj; ij ` 1, nj ´ ijq ě 0, (11)

which is a sufficient condition for Bn f to be d-monotone.

Please note that the polynomial f from Example 1 is not 2-monotone since ∆ f b
a “ ´0.00126 . . . ă 0

with a “ p0.2, 0.4q and b “ p0.27, 0.45q. However, the slightly modified polynomial gpx, yq “ f px, yq `

6xy is 2-monotone since
B2

BxBy
gpx, yq “ 6 ´ 6p1 ´ yq2 ` 36p1 ´ xq2y3 ě 0 with the unique global

minimum point px, yq “ p1, 1q and
B2

BxBy
gp1, 1q “ 0. With respect to the corresponding multivariate

Bernstein polynomial, we now obtain the values given in Table 2, which also explicitly shows that the
Bernstein polynomial Bng is 2-monotone.

Table 2. Values of ∆gbi
ai for the modified polynomial gpx, yq.

i1 0 1 0 1 0 1
i2 0 0 1 1 2 2

∆gbi
ai

71
216

65
216

265
216

175
216

221
72

91
72

3. From Bernstein Polynomials to Bernstein Copulas

Remark 1. Seemingly Proposition 2 can be usefully applied to arbitrary d-dimensional cumulative distribution
functions F concentrated on the unit cube Cd :“ r0, 1sd (continuous or not) such that the corresponding
multivariate Bernstein polynomial

BnFpx1, . . . , xdq “

nd
ÿ

id“0

¨ ¨ ¨

n1
ÿ

i1“0

F
ˆ

i1
n1

, ¨ ¨ ¨ ,
id
nd

˙ d
ź

j“1

ˆ

nj

ij

˙

x
ij
j p1´ xjq

nj´ij , x “ px1, . . . , xdq P Cd, (12)

is also a cumulative distribution function since BnF is non-negative and d-increasing with
BnFp0, . . . , 0q “ Fp0, . . . , 0q and BnFp1, . . . , 1q “ Fp1, . . . , 1q “ 1. In particular, the Bernstein polynomial
density bnF is always a (probabilistic) mixture of product beta densities, as explicitly noted in [5,12] for Bernstein
copulas. Note also that this observation was the motivation for the setup in [22].

Example 2. We consider a two-dimensional random vector X “ pX, Yqwith a discrete distribution concentrated
on tx, yu with x “ px1, x2q “ p0.2, 0.7q and y “ py1, y2q “ p0.3, 0.5q given by Table 3.

Table 3. Distribution of the vector X “ pX, Yq in Example 2.

PpX “ xi, Y “ yjq x1 “ 0.2 x2 “ 0.7

y1 “ 0.3 0.3 0.2
y2 “ 0.5 0.2 0.3

Let H denote the Heaviside unit step function, i.e.,

Hpxq “

#

0, x ă 0,

1, x ě 0.
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Then the corresponding cumulative distribution function F for the given discrete distribution is

Fpx, yq “
2
ÿ

j“1

2
ÿ

i“1

PpX “ xi, Y “ yjqHpx´ xiqHpy´ yjq, x, y P R. (13)

The graphs in Figures 2–4 show the corresponding cumulative distribution function F as well as
the corresponding Bernstein polynomials BnF and densities bnF for various choices of n according to
relations (11) and (12) above.

(a) (b) (c)

Figure 2. Plots of the functions in Example 2, n1 “ 3 and n2 “ 5. (a) Plot of Fpx, yq. (b) Plot of BnFpx, yq.
(c) Plot of bnFpx, yq.

(a) (b) (c)

Figure 3. Plots of the functions in Example 2, n1 “ 11 and n2 “ 7. (a) Plot of Fpx, yq. (b) Plot of
BnFpx, yq. (c) Plot of bnFpx, yq.

(a) (b) (c)

Figure 4. Plots of the functions in Example 2, n1 “ 50 and n2 “ 50. (a) Plot of Fpx, yq. (b) Plot of
BnFpx, yq. (c) Plot of bnFpx, yq.
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The graphs in Figures 2–4 clearly visualize the approximation effect of multivariate Bernstein
polynomials for discrete multivariate distributions if minpn1, . . . , ndq gets large. In particular,
the Bernstein polynomial density has spikes around the support points of the underlying
discrete distribution.

To simplify notation, we will use the following convention. Let d ą 1 be a natural number and
x “ px1, . . . , xdq P Rd be arbitrary. Then, for y P R, let

xÑkpyq :“

$

’

’

&

’

’

%

py, x2, . . . , xdq if k “ 1,

px1, . . . , xk´1, y, xk`1, . . . , xdq if 1 ă k ă d,

px1, . . . , xd´1, yq if k “ d,

(14)

denote the vector x, where the k-th component is replaced by y.

Proposition 3. Suppose that for d ą 1, there is a cumulative distribution function F : r0, 1sd Ñ r0, 1s
with Fp0, . . . , 0q “ 0 and Fp1, . . . , 1q “ 1 such that for given natural numbers n1, . . . , nd ą 1 we have

F
ˆ

1Ñk

ˆ

i
nj

˙˙

“
i

nj
for i P t0, 1, . . . , nju, j “ 1, . . . , d, k “ 1, . . . , d, where 1 “ p1, . . . , 1q P Rd. Then the

d-dimensional Bernstein polynomial BnF with n “ pn1, . . . , ndq associated with F is a copula.

Proof. By Remark 1, we know that BnF is also a cumulative distribution function with BnFp0, . . . , 0q “
Fp0, . . . , 0q “ 0 and BnFp1, . . . , 1q “ Fp1, . . . , 1q “ 1, and (note that 00 “ 1)

BnFp1Ñkxq “
nd
ÿ

id“0

¨ ¨ ¨

n1
ÿ

i1“0

F
ˆ

i1
n1

, ¨ ¨ ¨ ,
id
nd

˙ d
ź

j“1

ˆ

nj

ij

˙

x
ij
j p1´ xjq

nj´ij

“

nk
ÿ

i“0

ˆ

nk
i

˙

F
ˆ

1Ñk

ˆ

i
nk

˙˙

xip1´ xqnk´i “
1
nk

nk
ÿ

i“0

i
ˆ

nk
i

˙

xip1´ xqnk´i “
nkx
nk

“ x

(15)

for k “ 1, . . . , d and 0 ď x ď 1 (nkx is the expectation of the Binomial distribution with nk trials
and success probability x). Hence the marginal distributions induced by B are continuous uniform,
which means that B is indeed a copula.

Please note that Proposition 3 is already implicitly formulated in [5,10] (see also [15]
(Chapter 4.1.2)). We reformulate the corresponding statements there in an appropriate way.

Corollary 1. Let U “ pU1, . . . , Udq be a discrete random vector whose marginal component Ui follows a discrete
uniform distribution over Ti :“ t0, 1, . . . , ni ´ 1u with integers ni ą 1, i “ 1, . . . , d. Then the multivariate
Bernstein polynomial BnF derived from the cumulative distribution function F for the scaled random vector

V “

ˆ

U1 ` 1
n1

, . . . ,
Ud ` 1

nd

˙

given by Fpx1, . . . , xdq “ P
`

V1 ď x1, . . . , Vd ď xd
˘

, x “ px1, . . . , xdq P Cd, is

a copula. The corresponding Bernstein copula density bnF is given by

bnFpx1, . . . , xdq “

nd´1
ÿ

id“0

¨ ¨ ¨

n1´1
ÿ

i1“0

P
`

U “ pi1, . . . , idq
˘

d
ź

j“1

fbetapxj; ij ` 1, nj ´ ijq, px1, . . . , xdq P Cd. (16)

Proof. For ij P Tj, j “ 1, . . . , d, we have

F
ˆ

i1
n1

, . . . ,
id
nd

˙

“ P
ˆ

V1 ď
i1
n1

, . . . , Vd ď
id
nd

˙

“ P
`

U1 ă i1, . . . , Ud ă id
˘

,
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and hence

∆Fbi
ai “ P

ˆ

i1
n1
ă V1 ď

i1 ` 1
n1

, . . . ,
id
nd
ă Vd ď

id ` 1
nd

˙

“ P
`

U “ pi1, . . . , idq
˘

.

Remark 2. We call BnF the Bernstein copula induced by U. In coincidence with [10] we also call U the
discrete skeleton of the Bernstein copula BnF and the number n1 ˆ ¨ ¨ ¨ ˆ nd its grid size. If V is an arbitrary

discrete random vector over T :“
d
Ś

i“1
Ti, we call V an admissible discrete skeleton if the marginal distributions

are discrete uniform. So every admissible skeleton over T induces a corresponding Bernstein copula via the
multivariate Bernstein polynomial of its rescaled cumulative distribution function. The corresponding Bernstein
copula density is a mixture of product beta kernels with weights given by the individual probabilities representing
the admissible skeleton.

4. Empirical Bernstein Copulas

Bernstein copulas can be easily constructed from independent samples X1, . . ., Xn, n P N,
of d-dimensional random vectors with the same intrinsic dependence structure and the same marginal
distributions. For simplicity, we assume here that the marginal distributions are continuous in order
to avoid ties in the observations. The simplest way to construct an empirical Bernstein copula is on
the basis of Deheuvel’s empirical copula in the form of a cumulative distribution function (see [20]),
which can be represented by an admissible discrete skeleton derived from the individual ranks rij,
i “ 1, . . . , d, j “ 1, . . . , n, of the observation vectors xj “ px1j, . . . , xdjq, j “ 1, . . . , n, given by the
order statistics xi,ri1 ă xi,ri2 ă . . . ă xi,rin , i.e., rij “ k iff xij is the k-largest value of the i-th observed
component. Here the discrete skeleton U is given by a random vector over T :“ t0, 1, . . . , n´ 1ud with
a discrete uniform distribution over the n support points s1, . . ., sn, where sj “ pr1j ´ 1, . . . , rdj ´ 1q,
j “ 1, . . . , n. Since the empirical copula converges in distribution to the true underlying copula
as n Ñ 8, it follows that the corresponding empirical Bernstein copula does so likewise (cf. [15]
(Chapter 4.1.2)). This provides—in the light of relation (16)—in particular, a simple way to generate
samples from an empirical Bernstein copula by Monte Carlo methods in two steps:

• Step 1: Select an index N randomly and uniformly among 1, . . ., n.
• Step 2: Generate d independent beta distributed random variables V1, . . ., Vd (also independent of

N), where Vi follows a beta distribution with parameters riN and n` 1´ riN , i “ 1, . . . , d.

Then V :“ pV1, . . . , Vdq is a sample point from the empirical Bernstein copula.
This was also observed in [12], but was known earlier (see, e.g., [5]). In what follows, we will

discuss the data set presented in [10] (Section 3) in more detail.

Example 3. Table 4 contains the ranks rij for observed insurance data from windstorm (i “ 1) and flooding
(i “ 2) losses in central Europe for 34 consecutive years discussed in [10].

Table 4. Ranks rij for observed insurance data from windstorm (i “ 1) and flooding (i “ 2) losses
in Example 3.

izj 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
2 12 5 31 7 24 18 17 3 2 19 10 9 21 15 14 4 6

izj 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

1 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
2 34 1 23 11 29 33 13 8 20 32 28 22 16 26 25 30 27
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The graphs in Figure 5 show some plots for the empirical Bernstein copula.

(a) (b) (c)

Figure 5. Plots for the empirical Bernstein copula in Example 3. (a) Support points of scaled skeleton.
(b) Empirical Bernstein copula density contour plot. (c) Simulation of 5000 empirical Bernstein
copula pairs.

It is clearly to be seen from the shape of the contour lines in Figure 5b that the empirical Bernstein
copula density is quite bumpy here, e.g., in comparison with the Gaussian copula density fitted to the
data set above (see Figure 6).

(a) (b) (c)

Figure 6. Plots for the Gaussian copula in Example 3. (a) Support points of scaled skeleton.
(b) Gaussian copula density contour plot. (c) Simulation of 5000 Gaussian copula pairs.

From a practical point of view, it might therefore be desirable to adapt the empirical Bernstein

copula to a smaller support set T˚ :“
d
Ś

i“1
T˚i Ă T :“

d
Ś

i“1
Ti for the underlying discrete skeleton. This is

the central idea in [10]. However, the disadvantage of the method proposed in that paper is that the
number of support points of U˚ gets dramatically larger and is typically of exponential order with
increasing grid sizes. This is due to the fact that the number of support points is usually in the range
of #pT˚q “

śd
i“1 ni because by the specific method of least squares used there, most support points

of T˚ will get a positive weight. Therefore, we propose a simpler way how to find a smaller discrete
approximating skeleton U˚ with an arbitrary given grid size in Section 5.

5. Adaptive Bernstein Copula Estimation

We start with the individual ranks rij of the observation vectors xj “ px1j, . . . , xdjq, j “ 1, . . . , n.
Let U denote the canonical admissible discrete skeleton as described in Section 4, derived from the
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empirical copula. Our aim is to find a good approximating admissible discrete skeleton U˚ with a
given grid size n1 ˆ ¨ ¨ ¨ ˆ nd, where the ni are typically smaller than n. We proceed in two steps:

• Step 1: Augmentation

Select an integer M such that all ni, i “ 1, . . . , d, are divisors of M, for instance, their least common
multiple. We construct pseudo-ranks r`ij in the following way:

r`ij :“ r
i,
P

j
M

T

ˆR

j
M

V

M` 1´ j
˙

, i “ 1, . . . , d, j “ 1, . . . , Mn. (17)

Here rxs :“ mintm P Z | x ď mu, x P R, stands for “rounding up”. Let U` “ pU`1 , . . . , U`d q be the
uniformly discretly distributed random vector over t0, 1, . . . , Mn´ 1ud with support points s1,
. . ., sMn, where sj “ pr`1j ´ 1, . . . , r`dj ´ 1q, j “ 1, . . . , nM. Please note that the probability mass is

1
Mn for each support point, and that U` is an admissible discrete skeleton.

• Step 2: Reduction

Construct the final ranks r˚ij in the following way:

r˚ij :“
R r`ij ni

nM

V

, i “ 1, . . . , d, j “ 1, . . . , Mn. (18)

It follows from the above definition that there will be replicates in the final ranks and that r˚ij
takes values in the set T˚i “ t0, 1, . . . , ni ´ 1u. A point s “ ps1, . . . , sdq will be a support point of
the final admissible skeleton U˚ if there exist final ranks such that s “ pr1,j1 , . . . , rd,jdq for some
j1, . . . , jd P t1, . . . , Mnu. The probability mass attached to s is given by the number K

Mn , where K is
the number of rank combinations pr1,j1 , . . . , rd,jdq that lead to the same s. This also enables very
simple Monte Carlo realizations of the corresponding Bernstein copula as described in Section 4
by first selecting an index N randomly and uniformly among 1, . . ., Mn and then by proceeding
as in Step 2 there with all of the r˚ij.

Please note that the above augmentation step creates permutations of the set t1, . . . , Mnu
in each component so that the pseudo-ranks r`ij actually lead to an admissible discrete skeleton
(cf. [5] (Section 4)). The mathematical correctness of the reduction step follows from the proof of
Proposition 2.5 in [12].

In the augmentation step, M-wise partial permutations would not change the result but would
create a more “random” augmentation of the original ranks.

Example 4. Consider Table 5 with ranks rij and probabilities ppr1, r2q for n “ 5.

Table 5. Ranks rij and probabilities ppr1, r2q in Example 4.

jzi 1 2 ppr1, r2q

1 1 2 0.2
2 2 4 0.2
3 3 1 0.2
4 4 2 0.2
5 5 5 0.2

We want to create approximate final ranks with n1 “ 3 and n2 “ 4. Both numbers are not a divisor
of n, so we choose M “ 3 ¨ 4 “ 12. We show a part of the resulting pseudo-ranks r`ij and probabilities

ppr`1 , r`2 q in Table 6.



Mathematics 2020, 8, 2221 10 of 22

Table 6. Resulting pseudo-ranks r`
ij and probabilities ppr`

1 , r`
2 q in Example 4.

jzi 1 2 ppr`
1 , r`

2 q

1 12 36 0.016̄
2 11 35 0.016̄
3 10 34 0.016̄
...

...
...

...
13 24 48 0.016̄
14 23 47 0.016̄
15 22 46 0.016̄
...

...
...

...
25 36 12 0.016̄
26 35 11 0.016̄
27 34 10 0.016̄
...

...
...

...
58 51 51 0.016̄
59 50 50 0.016̄
60 49 49 0.016̄

For the final ranks r˚ij and probabilities ppr˚1 , r˚2 q, we obtain Table 7.

Table 7. Final ranks r˚
ij and probabilities ppr˚

1 , r˚
2 q in Example 4.

j z i 1 2 ppr˚
1 , r˚

2 q

1 1 2 0.1
2 1 3 0.23̄
3 2 1 0.25
4 2 2 0.016̄
5 2 3 0.016̄
6 2 4 0.05
7 3 2 0.13̄
8 3 4 0.2

From
ř4

j“1 ppi, jq “ 0.3̄, i “ 1, 2, 3, and
ř3

i“1 ppi, jq “ 0.25, j “ 1, 2, 3, 4, we see that the induced
skeleton is indeed admissible.

The graphs in Figure 7 show the corresponding copula densities cUpx1, x2q and cU˚px1, x2q induced
by U and U˚. Seemingly the shape of both densities is similar, reflecting the structure of the original
ranks quite well. However, the density cU˚ is less wiggly than the density cU, as intended.

(a) (b)

Figure 7. Plots of the copula densities in Example 4. (a) Copula density cUpx1, x2q. (b) Copula density
cU˚px1, x2q.
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Note also that a reduction of complexity for copulas in the sense discussed here is also an essential
topic in [23] (Section 3) (see, in particular, Figure 2 there). However, the underlying problem of a
consistent reduction of complexity is not really discussed there.

6. Applications to Risk Management

In this section, we first want to investigate the data set of Example 3 in more detail. It is the basis
data set in [10]. In particular, we want to discuss the effect of different adaptive Bernstein copula
estimations on the estimation of risk measures such as Value at Risk, which is, for instance, the basis
for Solvency II.

In [10], the number n “ 34 of the original observations is first reduced to n1 “ n2 “ 10 by a
least squares technique. The resulting optimal discrete skeleton with probabilities pij, i P T˚1 , j P T˚2 ,
is presented in Table 8 with T˚1 “ T˚2 “ t0, 1, . . . , 9u. We have highlighted the non-zero entries in
Tables 8 and 9 in order to illustrate the effect of a reduction in complexity by an appropriate application
of adaptive Bernstein copulas.

Table 8. Probabilities pij in the resulting optimal discrete skeleton in Example 3.

j z i 0 1 2 3 4 5 6 7 8 9
9 0.0032 0.0000 0.0022 0.0000 0.0032 0.0266 0.0320 0.0274 0.0028 0.0028
8 0.0318 0.0000 0.0014 0.0000 0.0024 0.0000 0.0312 0.0000 0.0020 0.0314
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0204 0.0251 0.0545
6 0.0032 0.0275 0.0022 0.0000 0.0032 0.0265 0.0026 0.0000 0.0322 0.0028
5 0.0003 0.0246 0.0287 0.0215 0.0003 0.0000 0.0000 0.0246 0.0000 0.0000
4 0.0034 0.0278 0.0024 0.0246 0.0034 0.0000 0.0029 0.0000 0.0324 0.0030
3 0.0266 0.0000 0.0000 0.0000 0.0266 0.0206 0.0261 0.0000 0.0000 0.0000
2 0.0034 0.0000 0.0025 0.0540 0.0034 0.0000 0.0029 0.0277 0.0031 0.0031
1 0.0252 0.0201 0.0000 0.0000 0.0546 0.0000 0.0000 0.0000 0.0000 0.0000
0 0.0029 0.0000 0.0607 0.0000 0.0029 0.0263 0.0023 0.0000 0.0025 0.0025

An application of the adaptive strategy described in Section 5 gives alternatively Table 9, which is
less complex. Here we have chosen M “ 5. Seemingly the number of support points for the adaptive
probabilities p˚ij are much less than before.

Table 9. Probabilities p˚
ij after application of the adaptive strategy in Example 3.

j z i 0 1 2 3 4 5 6 7 8 9
9 0.0118 0.0000 0.0000 0.0000 0.0000 0.0294 0.0294 0.0294 0.0000 0.0000
8 0.0176 0.0000 0.0000 0.0000 0.0000 0.0000 0.0294 0.0000 0.0235 0.0294
7 0.0000 0.0059 0.0000 0.0000 0.0000 0.0000 0.0000 0.0059 0.0176 0.0706
6 0.0000 0.0235 0.0000 0.0176 0.0000 0.0294 0.0000 0.0000 0.0294 0.0000
5 0.0000 0.0294 0.0294 0.0118 0.0000 0.0000 0.0000 0.0294 0.0000 0.0000
4 0.0000 0.0235 0.0059 0.0176 0.0235 0.0000 0.0000 0.0000 0.0294 0.0000
3 0.0294 0.0000 0.0000 0.0000 0.0176 0.0059 0.0412 0.0059 0.0000 0.0000
2 0.0000 0.0059 0.0059 0.0529 0.0000 0.0059 0.0000 0.0294 0.0000 0.0000
1 0.0412 0.0118 0.0000 0.0000 0.0471 0.0000 0.0000 0.0000 0.0000 0.0000
0 0.0000 0.0000 0.0588 0.0000 0.0118 0.0294 0.0000 0.0000 0.0000 0.0000

The graphs in Figure 8 show contour plots for the corresponding Bernstein copula densities.
Here c1 denotes the Bernstein copula density derived from Table 8, c2 denotes the Bernstein copula
density derived from Table 9. In the first case we have chosen M “ 5, in the second case M “ 2.
Seemingly the differences are only marginal. However, in comparison with Figure 5b, the smoothing
effect of the adaptive procedure is clearly visible.
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The graphs in Figure 9 show contour plots for the adaptive Bernstein copula densities c3 and c4

with the choices n1 “ n2 “ 5 and n1 “ n2 “ 4, respectively.

(a) (b)

Figure 8. Contour plots for the Bernstein copula densities in Example 3. (a) Bernstein copula density
c1px1, x2q. (b) Bernstein copula density c2px1, x2q.

(a) (b)

Figure 9. Contour plots for the adaptive Bernstein copula densities in Example 3. (a) Adaptive Bernstein
copula density c3px1, x2q. (b) Adaptive Bernstein copula density c4px1, x2q.

In the next step, we compare estimates for the risk measure Value at Risk VaRα with the risk level
α “ 0.5%—corresponding to a return period of 200 years—on the basis of a Monte Carlo study with
1,000,000 repetitions each for the aggregated risk of windstorm and flooding losses. We consider the
full Bernstein copula of Example 3 with n1 “ n2 “ 34 as well as the adaptive Bernstein copulas with
n1 “ n2 “ 10, n1 “ n2 “ 5 and n1 “ n2 “ 4. For the sake of completeness, we also add estimates from
the Gaussian copula, the independence as well as the co- and countermonotonicity copulas (see [15]
(p. 11) for definitions).

The graphs in Figure 10 show the support points of the underlying adaptive scaled discrete
skeletons as well as 5000 simulated pairs of the adapted Bernstein copulas.

Table 10 provides estimated values of the risk measures from the Monte Carlo simulations, which are
given in Mio. monetary units. For the marginal distributions, the assumptions in [10] are used.

Table 10. Estimated values of VaR0.005 for different grid types in Example 3.

Grid Type 34ˆ 34 10ˆ 10 5ˆ 5 4ˆ 4 Gaussian Independence Comonotonic Countermonotonic

VaR0.005 1348 1334 1356 1369 1386 1349 1500 1327
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Plots related to the adaptive Bernstein copulas in Example 3. (a) Support points of the
adaptive scaled discrete skeleton, n1 “ n2 “ 10. (b) Simulation of 5000 adapted Bernstein copula pairs,
n1 “ n2 “ 10. (c) Support points of the adaptive scaled discrete skeleton, n1 “ n2 “ 5. (d) Simulation
of 5000 adapted Bernstein copula pairs, n1 “ n2 “ 5. (e) Support points of the adaptive scaled discrete
skeleton, n1 “ n2 “ 5. (f) Simulation of 5000 adapted Bernstein copula pairs, n1 “ n2 “ 5.

Seemingly the comonotonicity copula provides the largest VaR0.005-estimate due to an extreme
tail dependence, whereas the countermonotonicity copula provides the smallest VaR0.005-estimate.
Surprisingly, the VaR0.005-estimates for the adaptive Bernstein copulas do not differ very much from
each other (at most 2.5%) and are almost identical to the estimate from the independence copula here.
Please note that the VaR0.005-estimate for the Gaussian copula is slightly larger.
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However, significant differences are visible if we look at the densities of the aggregated risk.
The graphs in Figure 11 show empirical histograms for these densities under the models considered
above, from 100,000 simulations each. Please note that the histogram for the full Bernstein copula has
two peaks, whereas the other histograms show a more smooth behavior.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11. Empirical histograms for the densities of the aggregated risk in Example 3. (a) Bernstein
copula, grid type 34 ˆ 34. (b) Bernstein copula, grid type 10 ˆ 10. (c) Bernstein copula, grid
type 5ˆ 5. (d) Bernstein copula, grid type 4ˆ 4. (e) Gaussian copula. (f) Independence copula.
(g) Comonotonicity copula. (h) Countermonotonicity copula.
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Example 5. Finally, we discuss a high-dimensional data set, which is also analyzed in [24]. It represents
economically adjusted windstorm losses in 19 adjacent areas in Central Europe over a time period of 20 years.
In Tables 11 and 12, the losses are given in Mio. monetary units.

Table 11. Insurance losses in Example 5, part I.

Year Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7 Area 8 Area 9 Area 10

1 23.664 154.664 40.569 14.504 10.468 7.464 22.202 17.682 12.395 18.551
2 1.080 59.545 3.297 1.344 1.859 0.477 6.107 7.196 1.436 3.720
3 21.731 31.049 55.973 5.816 14.869 20.771 3.580 14.509 17.175 87.307
4 28.990 31.052 30.328 4.709 0.717 3.530 6.032 6.512 0.682 3.115
5 53.616 62.027 57.639 1.804 2.073 4.361 46.018 22.612 1.581 11.179
6 29.950 41.722 12.964 1.127 1.063 4.873 6.571 11.966 15.676 24.263
7 3.474 14.429 10.869 0.945 2.198 1.484 4.547 2.556 0.456 1.137
8 10.020 31.283 21.116 1.663 2.153 0.932 25.163 3.222 1.581 5.477
9 5.816 14.804 128.072 0.523 0.324 0.477 3.049 7.791 4.079 7.002
10 170.725 576.767 108.361 41.599 20.253 35.412 126.698 71.079 21.762 64.582
11 21.423 50.595 4.360 0.327 1.566 64.621 5.650 1.258 0.626 3.556
12 6.380 28.316 3.740 0.442 0.736 0.470 3.406 7.859 0.894 3.591
13 124.665 33.359 14.712 0.321 0.975 2.005 3.981 4.769 2.006 1.973
14 20.165 49.948 17.658 0.595 0.548 29.350 6.782 4.873 2.921 6.394
15 78.106 41.681 13.753 0.585 0.259 0.765 7.013 9.426 2.180 3.769
16 11.067 444.712 365.351 99.366 8.856 28.654 10.589 13.621 9.589 19.485
17 6.704 81.895 14.266 0.972 0.519 0.644 8.057 18.071 5.515 13.163
18 15.550 277.643 26.564 0.788 0.225 1.230 26.800 64.538 2.637 80.711
19 10.099 18.815 9.352 2.051 1.089 6.102 2.678 4.064 2.373 2.057
20 8.492 138.708 46.708 3.680 1.132 1.698 165.600 7.926 2.972 5.237

Table 12. Insurance losses in Example 5, part II.

Year Area 11 Area 12 Area 13 Area 14 Area 15 Area 16 Area 17 Area 18 Area 19

1 1.842 4.100 46.135 14.698 44.441 7.981 35.833 10.689 7.299
2 0.429 1.026 7.469 7.058 4.512 0.762 14.474 9.337 0.740
3 0.209 2.344 22.651 4.117 26.586 3.920 13.804 2.683 3.026
4 0.521 0.696 31.126 1.878 29.423 6.394 18.064 1.201 0.894
5 2.715 1.327 40.156 4.655 104.691 28.579 17.832 1.618 3.402
6 4.832 0.701 16.712 11.852 29.234 7.098 17.866 5.206 5.664
7 0.268 0.580 11.851 2.057 11.605 0.282 16.925 2.082 1.008
8 0.741 0.369 3.814 1.869 8.126 1.032 14.985 1.390 1.703
9 0.524 6.554 5.459 3.007 8.528 1.920 5.638 2.149 2.908

10 9.882 6.401 106.197 44.912 191.809 90.559 154.492 36.626 36.276
11 1.052 8.277 22.564 8.961 19.817 16.437 25.990 2.364 6.434
12 0.136 0.364 28.000 7.574 3.213 1.749 12.735 1.744 0.558
13 1.990 15.176 57.235 23.686 110.035 17.373 7.276 2.494 0.525
14 0.630 0.762 25.897 3.439 8.161 3.327 24.733 2.807 1.618
15 0.770 15.024 36.068 1.613 6.127 8.103 12.596 4.894 0.822
16 0.287 0.464 24.211 38.616 51.889 1.316 173.080 3.557 11.627
17 0.590 2.745 16.124 2.398 20.997 2.515 5.161 2.840 3.002
18 0.245 0.217 12.416 4.972 59.417 3.762 24.603 7.404 19.107
19 0.415 0.351 10.707 2.468 10.673 1.743 27.266 1.368 0.644
20 0.566 0.708 22.646 6.652 14.437 63.692 113.231 7.218 2.548

A statistical analysis of the data shows a good fit to lognormal LN pµ, σq-distributions for the
losses per Area k, k “ 1, . . . , 19. Thus, the parameters µk and σk for Area k can be estimated from the
log data by calculating means and standard deviations (see Tables 13 and 14).

As expected, insurance losses in locally adjacent areas show a high degree of stochastic dependence,
which can also be seen from the correlation Tables 15 and 16. In Table 15, correlations above 0.9
are highlighted.
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Table 13. Values of the parameters µk and σk estimated from the log data in Example 5, part I.

Parameter Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7 Area 8 Area 9 Area 10

µk 2.8063 4.0717 3.1407 0.6375 0.3984 1.2227 2.3210 2.2123 1.0783 2.1055
σk 1.2161 1.0521 1.2110 1.5685 1.2998 1.5987 1.1980 0.9882 1.1445 1.2531

Table 14. Values of the parameters µk and σk estimated from the log data in Example 5, part II.

Parameter Area 11 Area 12 Area 13 Area 14 Area 15 Area 16 Area 17 Area 18 Area 19

µk ´0.3231 0.3815 3.0198 1.7488 3.0409 1.5501 3.0700 1.2444 0.9378
σk 1.0881 1.3353 0.8027 1.0033 1.1221 1.4765 0.9622 0.8577 1.2141

Table 15. Correlations between original losses in adjacent areas in Example 5.

Area A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19
A1 1 0.46 0.03 0.16 0.47 0.20 0.35 0.49 0.41 0.24 0.78 0.64 0.91 0.63 0.85 0.66 0.30 0.67 0.56
A2 0.46 1 0.64 0.78 0.67 0.36 0.51 0.76 0.57 0.51 0.58 ´0.04 0.59 0.84 0.68 0.58 0.87 0.77 0.90
A3 0.03 0.64 1 0.93 0.41 0.26 0.11 0.16 0.33 0.16 0.08 ´0.09 0.13 0.64 0.25 0.10 0.74 0.14 0.35
A4 0.16 0.78 0.93 1 0.54 0.36 0.16 0.25 0.43 0.19 0.22 ´0.10 0.30 0.79 0.36 0.19 0.84 0.32 0.49
A5 0.47 0.67 0.41 0.54 1 0.41 0.35 0.51 0.84 0.63 0.59 0.02 0.64 0.67 0.59 0.50 0.58 0.71 0.67
A6 0.20 0.36 0.26 0.36 0.41 1 0.07 0.11 0.28 0.19 0.28 0.14 0.31 0.42 0.24 0.27 0.39 0.27 0.40
A7 0.35 0.51 0.11 0.16 0.35 0.07 1 0.44 0.27 0.19 0.48 ´0.07 0.46 0.35 0.45 0.91 0.64 0.61 0.49
A8 0.49 0.76 0.16 0.25 0.51 0.11 0.44 1 0.50 0.75 0.61 ´0.03 0.54 0.47 0.71 0.53 0.40 0.75 0.90
A9 0.41 0.57 0.33 0.43 0.84 0.28 0.27 0.50 1 0.66 0.68 ´0.01 0.52 0.60 0.50 0.41 0.46 0.65 0.63

A10 0.24 0.51 0.16 0.19 0.63 0.19 0.19 0.75 0.66 1 0.33 ´0.12 0.27 0.28 0.43 0.24 0.23 0.45 0.65
A11 0.78 0.58 0.08 0.22 0.59 0.28 0.48 0.61 0.68 0.33 1 0.19 0.79 0.65 0.80 0.73 0.43 0.84 0.74
A12 0.64 ´0.04 ´0.09 ´0.10 0.02 0.14 ´0.07 ´0.03 ´0.01 ´0.12 0.19 1 0.44 0.21 0.28 0.17 ´0.12 0.13 0.03
A13 0.91 0.59 0.13 0.30 0.64 0.31 0.46 0.54 0.52 0.27 0.79 0.44 1 0.71 0.86 0.74 0.47 0.76 0.65
A14 0.63 0.84 0.64 0.79 0.67 0.42 0.35 0.47 0.60 0.28 0.65 0.21 0.71 1 0.74 0.54 0.79 0.68 0.72
A15 0.85 0.68 0.25 0.36 0.59 0.24 0.45 0.71 0.50 0.43 0.80 0.28 0.86 0.74 1 0.69 0.47 0.71 0.75
A16 0.66 0.58 0.10 0.19 0.50 0.27 0.91 0.53 0.41 0.24 0.73 0.17 0.74 0.54 0.69 1 0.63 0.77 0.64
A17 0.30 0.87 0.74 0.84 0.58 0.39 0.64 0.40 0.46 0.23 0.43 ´0.12 0.47 0.79 0.47 0.63 1 0.59 0.64
A18 0.67 0.77 0.14 0.32 0.71 0.27 0.61 0.75 0.65 0.45 0.84 0.13 0.76 0.68 0.71 0.77 0.59 1 0.86
A19 0.56 0.90 0.35 0.49 0.67 0.40 0.49 0.90 0.63 0.65 0.74 0.03 0.65 0.72 0.75 0.64 0.64 0.86 1

Table 16. Correlations between log losses in adjacent areas in Example 5.

Area A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19

A1 1 0.27 0.30 0.16 0.17 0.45 0.28 0.32 0.32 0.29 0.67 0.51 0.76 0.34 0.67 0.74 0.18 0.21 0.29
A2 0.27 1 0.48 0.66 0.39 0.37 0.71 0.69 0.52 0.64 0.30 ´0.02 0.45 0.66 0.58 0.45 0.73 0.74 0.78
A3 0.30 0.48 1 0.70 0.40 0.31 0.42 0.51 0.58 0.53 0.18 0.07 0.21 0.32 0.54 0.26 0.47 0.21 0.57
A4 0.16 0.66 0.70 1 0.77 0.47 0.46 0.47 0.59 0.49 0.18 ´0.13 0.33 0.50 0.47 0.18 0.76 0.43 0.54
A5 0.17 0.39 0.40 0.77 1 0.59 0.30 0.20 0.49 0.39 0.28 0.08 0.35 0.56 0.44 0.16 0.55 0.36 0.41
A6 0.45 0.37 0.31 0.47 0.59 1 0.14 0.01 0.36 0.34 0.33 0.12 0.48 0.46 0.48 0.37 0.59 0.17 0.50
A7 0.28 0.71 0.42 0.46 0.30 0.14 1 0.52 0.27 0.40 0.45 ´0.07 0.31 0.31 0.46 0.62 0.63 0.58 0.57
A8 0.32 0.69 0.51 0.47 0.20 0.01 0.52 1 0.64 0.81 0.27 ´0.02 0.38 0.35 0.56 0.35 0.28 0.62 0.63
A9 0.32 0.52 0.58 0.59 0.49 0.36 0.27 0.64 1 0.78 0.40 0.19 0.27 0.50 0.44 0.30 0.33 0.57 0.61

A10 0.29 0.64 0.53 0.49 0.39 0.34 0.40 0.81 0.78 1 0.21 ´0.02 0.21 0.37 0.52 0.30 0.31 0.53 0.81
A11 0.67 0.30 0.18 0.18 0.28 0.33 0.45 0.27 0.40 0.21 1 0.47 0.49 0.45 0.60 0.67 0.20 0.45 0.39
A12 0.51 ´0.02 0.07 ´0.13 0.08 0.12 ´0.07 ´0.02 0.19 ´0.02 0.47 1 0.44 0.21 0.24 0.46 ´0.23 0.25 0.05
A13 0.76 0.45 0.21 0.33 0.35 0.48 0.31 0.38 0.27 0.21 0.49 0.44 1 0.55 0.60 0.71 0.37 0.39 0.24
A14 0.34 0.66 0.32 0.50 0.56 0.46 0.31 0.35 0.50 0.37 0.45 0.21 0.55 1 0.59 0.43 0.57 0.58 0.53
A15 0.67 0.58 0.54 0.47 0.44 0.48 0.46 0.56 0.44 0.52 0.60 0.24 0.60 0.59 1 0.59 0.36 0.35 0.63
A16 0.74 0.45 0.26 0.18 0.16 0.37 0.62 0.35 0.30 0.30 0.67 0.46 0.71 0.43 0.59 1 0.38 0.43 0.39
A17 0.18 0.73 0.47 0.76 0.55 0.59 0.63 0.28 0.33 0.31 0.20 ´0.23 0.37 0.57 0.36 0.38 1 0.52 0.56
A18 0.21 0.74 0.21 0.43 0.36 0.17 0.58 0.62 0.57 0.53 0.45 0.25 0.39 0.58 0.35 0.43 0.52 1 0.60
A19 0.29 0.78 0.57 0.54 0.41 0.50 0.57 0.63 0.61 0.81 0.39 0.05 0.24 0.53 0.63 0.39 0.56 0.60 1

The following results have been achieved by Monte Carlo studies of 1,000,000 simulations each,
based on various choices of the grid constants ni ” m for fixed numbers m. We first show scatter plots
of each 5000 simulated adaptive Bernstein copula points for selected area combinations with high
correlations (Area 1 vs. Area 13, Area 3 vs. Area 4, Area 7 vs. Area 16) and a low correlation (Area 3 vs.
Area 18).

For comparison purposes, we start with m “ 100, which corresponds to an extreme overfitting
of the given data (see Figure 12). The scatter plots in Figure 13 correspond to the choice m “ 20,
which represents the ordinary Bernstein copula approach. The scatter plots in Figure 14 correspond
to the choice m “ 17, which represents a slightly adapted Bernstein copula approach. The scatter
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plots in Figure 15 correspond to the choice m “ 13, which represents a moderately adapted Bernstein
copula approach. The final scatter plots in Figure 16 correspond to the choice m “ 7, which represents
a strongly adapted Bernstein copula approach.

As can clearly be seen, the choice of m influences significantly the shape of the adapted Bernstein
copula. With decreasing magnitude of m, we see a more uniform distribution of adapted Bernstein
copula points, as expected. Table 17 shows VaR0.005-estimates depending on the choice of m.

Table 17. VaR0.005-estimates for different values of m in Example 5.

m 100 20 17 13 7

VaR0.005 2842 2247 2204 2105 1878

In contrast to the analysis of Example 3 (cf. Table 10), we see here that the choice of grid constants
has a major influence on the estimated risk measure. The overfitted VaR0.005 for m “ 100 is more than
50% higher than the VaR0.005 for m “ 7.

(a) (b)

(c) (d)

Figure 12. Simulation of 5000 adaptive Bernstein copula points in Example 5, m “ 100. (a) Area 1 vs.
Area 13. (b) Area 3 vs. Area 4. (c) Area 7 vs. Area 16. (d) Area 3 vs. Area 18.
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(a) (b)

(c) (d)

Figure 13. Simulation of 5000 adaptive Bernstein copula points in Example 5, m “ 20. (a) Area 1 vs.
Area 13. (b) Area 3 vs. Area 4. (c) Area 7 vs. Area 16. (d) Area 3 vs. Area 18.

(a) (b)

Figure 14. Cont.
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(c) (d)
Figure 14. Simulation of 5000 adaptive Bernstein copula points in Example 5, m “ 17. (a) Area 1 vs.
Area 13. (b) Area 3 vs. Area 4. (c) Area 7 vs. Area 16. (d) Area 3 vs. Area 18.

(a) (b)

(c) (d)

Figure 15. Simulation of 5000 adaptive Bernstein copula points in Example 5, m “ 13. (a) Area 1 vs.
Area 13. (b) Area 3 vs. Area 4. (c) Area 7 vs. Area 16. (d) Area 3 vs. Area 18.



Mathematics 2020, 8, 2221 20 of 22

(a) (b)

(c) (d)

Figure 16. Simulation of 5000 adaptive Bernstein copula points in Example 5, m “ 7. (a) Area 1 vs.
Area 13. (b) Area 3 vs. Area 4. (c) Area 7 vs. Area 16. (d) Area 3 vs. Area 18.

7. Conclusions

Adaptive Bernstein copulas are an interesting tool for smoothing or, if desired, also sharpening
the empirical dependence structure, in particular, in risk management applications when the number
of observations and dimensions is moderate to large. The possibility of a smoothing of the dependence
structure prevents in particular a kind of overfitting to copula models. In particular, the choice of
the grid constants in the reduction procedure is arbitrary, the selected grid constants need not to
be divisors of the number of observations. The method presented here also enables Monte Carlo
studies for the comparison of different estimates of risk measures or the shape of the aggregate risk
distribution. If the various estimates for the risk measure do not differ much for several adaptive
strategies, this could make a sensitivity analysis, for instance, under Solvency II more profound.
In other cases, when significant differences in the estimation of risk measures become apparent under
various adaptive strategies, one should be cautious with a mere statistical risk assessment. Anyway,
a kind of a worst case analysis derived from different approaches could be helpful here.

The method of reducing (or, if desired, sharpening) the complexity in the rank structures
of the data might also be applied to partition-of-unity copulas (see [24–26]). With such copulas,
tail dependence can be introduced to the dependence models, which cannot be obtained by Bernstein
copulas alone due to the boundedness of the corresponding densities.
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The authors wish to make the following corrections to this paper [1]:

1. On Page 9, relation (17) is given by

r`
ij :“ r

i,
P

j
M

T

ˆR

j
M

V

M ` 1 ´ j
˙

, i “ 1, . . . , d, j “ 1, . . . , Mn. (17)

This should read

r`
ij :“ r

i,
P

j
M

TM `

ˆR

j
M

V

´ 1
˙

M ` 1 ´ j, i “ 1, . . . , d, j “ 1, . . . , Mn. (17)

2. On Page 9, Table 5 is given by

Table 5. Ranks rij and probabilities ppr1, r2q in Example 4.

jzi 1 2 ppr1, r2q

1 1 2 0.2
2 2 4 0.2
3 3 1 0.2
4 4 2 0.2
5 5 5 0.2

This should read

Table 5. Ranks rij and probabilities ppr1, r2q in Example 4.

jzi 1 2 ppr1, r2q

1 1 3 0.2
2 2 4 0.2
3 3 1 0.2
4 4 2 0.2
5 5 5 0.2

The authors would like to apologize for any inconvenience caused to the readers by
these changes, and to thank B.Sc. Lennard Foraita for pointing out the error in relation (17).

The authors apologize for any inconvenience caused and state that the scientific
conclusions are unaffected. The original article has been updated.
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