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Abstract In this paper we discuss a natural extension of infinite discrete partition-of-unity copulas
which were recently introduced in the literature to continuous partition of copulas with possible
applications in risk management and other fields. We present a general simple algorithm to generate
such copulas on the basis of the empirical copula from high-dimensional data sets. In particular, our
constructions also allow for an implementation of positive tail dependence which sometimes is a
desirable property of copula modelling, in particular for internal models under Solvency II.
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1 Introduction

General discrete infinite partition-of-unity copulas have been introduced recently in a series of papers by
Pfeifer et al. ([6], [7]). Such copula constructions comprise, in particular, Bernstein copulas and allow,
among other advantages, for simple Monte Carlo studies in risk management on the basis of observed
data without specific fitting procedures to parametric copula models. In particular, various kinds of tail
dependence can be implemented into the copula construction if this seems to be appropriate for
estimates of the risk measure for a portfolio of risks under consideration. The present paper completes
our previous approaches by considering continuous infinite partition-of-unity copulas which have not
yet been investigated before. We conclude the paper with a new study of a high dimensional data set
from the insurance branch where we compare classical and partition-of-unity copulas with and without
tail dependence.

2 Continuous partition-of-unity copulas

Assume that ¢, (s,u) for k=1,---,d € N represent Lebesgue densities of distributions over R with a
parameter u € (0,1), i.e.

(1) ¢, (s;u)>0 and f(pk(s,u)ds:lforue(o,l),

and let
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Q) a(s)= f 0, (s,u)du €(0,00), A, (s) ::]ak(w)dw for s €R.

Then by normalizing the ¢, (s,u) w.r.t. u € (0,1), we obtain new densities

3 fi(su)= 20 ue(0,1) for seR.

. (s) ’

Theorem 1. Let p(sl,---,s d) denote the density of an arbitrary absolutely continuous d-dimensional

random vector S =(S,,-+-,S,) over R’ with marginal densities o, (+) for S,. Then

o0

4) c(u)::jmfp(sl,--~,sd)ﬁﬁ((sk,uk)dsl~~-dsd, u:(ul,--~,ud)€(0,1)d

defines the density of a d-variate copula, which is called continuous partition-of-unity copula (CPU-
copula for short).

The proof of Theorem 1 is completely analogous to the proofs of the corresponding theorems in Pfeifer
et al. ([6], [7]) and is therefore omitted.

Note that relation (4) also remains valid if the distribution induced by p is singular, i.e. if P is a

probability measure with marginal distributions that possess the densities «,---,«,, without having a
density w.r.t. the d-dimensional Lebesgue measure. In this case, c(u) is a singular mixture of product

densities given by
d d
(5) c(u)::fok(-,uk)dP, u=(u,u,)€(0,1)".
k=1

For instance, if P corresponds to the upper Fréchet bound and all ¢, are identical —hence also all f, are

identical, say to f — we have

6) c(u)= ja(s)ﬁ f(s,u)ds, w=(u,,u,)e(0,1)".

We call this situation the case of diagonal dominance.

Note that it is extremely easy to perform a Monte Carlo simulation for a CPU-copula. We describe the
procedure in the following steps.

Step 1: Let (Ul,---,U d) be a vector of random variables with a given copula C as joint distribution
function, which we call copula driver for our construction. Let Q,(u):= 4, '(u), 0<u <1, k=1,---,d
denote the quantile function pertaining to «. Define S, :=Q, (U,) for k=1,---,d. Then (S,,---,S,)

possesses the joint (possibly degenerated) distribution P with the desired marginal distributions (in fact,

C here is the copula pertaining to P).



Step 2: Let (sl,-n,sd) be a realization of (Sl,--~,Sd) according to Step 1. Let further v,,---,v, be
independent realizations of the distributions with marginal densities f,(s,,*) for k=1,---,d. Then
(v,-++,v,) is a realization of a random vector (V,,--,7,) whose distribution is given by the CPU-copula

with the density ¢ as given by (4) or (5).

A particularly interesting choice of a data-driven C is a copula that is derived from the empirical copula
in the sense of Deheuvels [2]. Such an approach was discussed in Pfeifer et. al. [7]. In particular, the
following type of a driver is of importance, which is constructed as a patchwork copula with a local

Gaussian copula. Suppose that n independent observations (zl,---,zn) of a multivariate random vector
7= (Zl,---,Z d) with an absolutely continuous distribution are given. Without loss of generality, we can

identify the pertaining empirical copula with the empirical rank vectors (rl,n-,r) where

¥, i=1--,n, k=1,---,d is the rank of z, among z,,---,z,,. Let C° for i=1,---,n denote a d-
dimensional Gaussian copula with variance-covariance matrix »,, and Y,,---,Y, be independent
random vectors with joint distribution CZ.G, i=1,---,n. Let further J denote a random variable which is

uniformly distributed over the set {l,m,n}, independent of the Y,,---,Y . Then the random vector
1 ) ) ~ .. e

W:=—(Y, +r, —1) with 1=(1,---,1) (d times) possesses a patchwork copula C as joint distribution,
n

which is concentrated around the relative ranks of the data. C can be considered as a kind of natural

extension of the empirical copula to a true copula, which is close to the original dependence structure of

the data. For the choice of Y. = diag(l,---,1), which corresponds to the independent case, we obtain a
1 1

rook copula (cf. Cottin and Pfeifer [1]). For the choice of 3, =|: "-. :|, we obtain the upper Fréchet
1 - 1

I -1

bound as a driver. In two dimensions, >, = [ : 1] gives the lower Fréchet bound as a driver.

We call the resulting copula drivers UF and LF copula drivers, resp.

3 Particular cases

Firstly, we introduce what we call the Gamma copula model. To start with, denote L(u):=—In(u),

L (U) Sak—lus
[(a,)

a,,---,a, >0. Hence the ¢, (+,u) are densities of Gamma distributions with parameters a, and 1/ L(u)

O<u<l1, and define ¢, (s,u):= O<u<l,s>0, k=1,---,d with given parameters

with the notation of Klugman et al. [3], A.3.2.1. Substituting x=L(u) or u=e ", i.e. du =—e " dx,

we get



(7) ak(S) f@k(s u)du —f—vsakfle—(]ﬁ-s)x dx

I'(a,)
Sak71 oo xak Sak 1
=a R S 7 ey e — N | |
k (1+s)ak+l ‘[F(ak—i—l)\ ) k (1+S)(Ik+l

Note that the «, are the densities of inverse Pareto distributions with parameters a, and 1 (in the

notation of Klugman et al. [3], A.2.3.2). With

p(s,u) _ (1+s)""
o (s) (e +1)

®)  filsu)= L* (wyw

we obtain from (4) the density of a Gamma copula:

) cf(u):_f [ plsie- Sd)ka(sk,uk)dS] sy, 0 <y, yu, <1

A =
with the f, given in (8). Here p is the density of an absolutely continuous multivariate distribution
with marginal densities «,, k=1,---,d,and a::(al,---,ad) denotes the vector of parameters. A
corresponding modification for the singular case discussed above is obvious.

Note that in the singular case of two-dimensional diagonal dominance, we get, with a = (a, a),

a—1

as

( a+l

(1+S)a+1 2
T(a+1)

10) )= f (9 (s:10)] (s,v) ds —j L@y L () ds

= ((_;IZS;;((;I_T_(:))) js”l 1+ M wv)' ds, 0<u,v<I.

For integer values of a, this can be simplified to

()= {ln( W 0<uv <1

i

{In@w)In(m)}* &1 [a . 1] (a+i—

{— ln(uv)}za+1 i=0 —-D!

00 a+l 1) % a+l 1) %
Proof. We have fsafl(l-l—s)““(uv)s dS:Z[a: ]f Tt (uv)* dS—Z[a+ ]fs“l”‘(uv)s ds.

0 k=0 0 ol K 0

The final result follows from the observation

[o¢]

T o 1 1 B T(m+1)
s"Zds= | s"e ” ds = m“ Mo ds = e ldt = —— 7
[ [ ym+1 fy ym+1 f (_ ln Z)m+1

0 0

for every m > 0, z €(0,1) with the substitution y=—Inz. ®



Note also that the f,(s,*) = #i(5:%) are densities of exponentially transformed Gamma distributions. To
o, (s

be more precise, let X, be a Gamma distributed random variable with parameter a, +1 and 1/ (s, +1).

The corresponding density is thus given by

a, +1
(1+s)" L (s

> X > 0,
[(a, +1)

(12)  fy, (0=

and the random variable U, :=¢ "* possesses the density f,(s,,). This follows from the observation

that £, (u):=P(U, <u)= P(X, > —In(u)) =1-F; (—In(u)), 0 <u <1, hence

d d Sy, (—In(u))
(13)  fy, )= - Fy () =— (1= Fy (= In) | ==
_ (1+Sk)ak+l a S
_—F(ak—l—l) LY(wyu™ = f(s,,u), 0<u<l,

A Monte Carlo simulation for a random vector (¥,,---,V,) with a general Gamma copula density c,

1ay,

(singular or not) is straightforward since here O, (u) = " O<u<l, k=1,---,d.

1/a, 2
—Uu k

Secondly, we introduce what we call the Power copula model. Here we define

s 8,1
B, [—] , s<u,
u
(14) o, (s,u) =1 1—s )" O<u,s<l, k=1---,d
ﬂk ] 5 s>u,
1—
0, otherwise,

with given parameters (3,,---, 3, > 2.1t is straightforward to see that

(15) ak(s):fgok(s,u)du:L[l—SJk1—(1—5)3”], 0<s<1

ﬂk_z

and

(l—s)‘gk — s + 0,5 —1
ﬁk_z

(16) Ak(s):]ak(t)dt: ,0<s<l.

With



gy
-2
mk )[l—u] s
| P
S,u Bt
A7) fi(su)=200 | (gk_2>[8]
o, (s) u
1 S’f]‘ 1 (1 S)ﬂl‘il , u>s,
0, otherwise,

we obtain the density of a Power copula:

1

d
(18) c;’(u)::f fp(sl,---,sd)Hﬁ(sk,uk)dsl---dsd,0<u1,---,ud<1

1
0 0 k=1
where the f, are given in (17). Here p again is the density of an absolutely continuous multivariate
distribution with marginal densities «,, kK =1,---,d. A corresponding modification for the singular case

discussed above is obvious.

The following graphs show the densities f, (s,u) for different values of ([, for s = %, k=1...9.

fk(s,u)
fk(s,u)
u u u
Fig. 1: p=3 Fig.2: =9 Fig.3: 5 =22

Note that in the case of two-dimensional diagonal dominance, we do not obtain a closed form
representation of the corresponding copula density. However, a Monte Carlo simulation of the Power

copula in arbitrary dimensions is easy since an elementary integration shows that there holds

0, 5 <0,
(1 — S)ﬂkfl [(1 _ u)Zﬂ"ﬁ _1]
S l_sﬁkfl_(l_s)ﬁkfl > u<s,
(19)  F(s,u)= f £ (t,u)dt = S
0 I—(1—=5)*" —s""u
l_sﬂ,(fl _(I—S)‘S’(71 , S<u S 1,
1, s>1,

with the corresponding quantile functions Q, (s,*) = F, '(s,+) given by
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(8, -2)

1—s)*"
d=) U< F(s,f,.5),

l_l(1~9)3‘l —I—u(l—sﬁk*l _(I_S)ﬁkfl)

20) Oy (s,u):= 0<u<l,

3, —1
S%A

1/(8,-2)
ll(ls)ﬂ‘1 —u(l—sﬂk_] (ls)ﬂ‘l)l

u>F(s,5,.,5),

where

B
Gl <s<1.

(21) Fk(s,ﬂk,s)— ST (1o S)»fkl’ 0<s<

For the simulation of a random variable following the distribution with c¢df 4,, a simple tabular

inversion method is appropriate.

4 Tail dependence

The Gamma copula shows an upper tail dependence that coincides precisely with that of the negative

binomial copula ¢, a particular discrete partition-of-unity copula, see Pfeifer et al. ([6],[7]):

NB (1 A=) +1
(22) ¢, v):=(a —|—1)(( uuv)Zafl) ;[ . ][al ](uv) u,v €(0,1).

Fig. 1 to Fig. 4 show the ratios of negative binomial and Gamma copula densities, for various values of

a, which also suggest that these copula types are tail-equivalent. In fact, since y =14+0O(h) for

h | 0, we see by a comparison of (11) and (22) that

% (u.v) (““)Z[ ][a‘ﬂ] HZI[HI][ —i’] -

. asmg l i
(23) lulilllc ) (2a)! [ 2a ]

v—1 ~a,sing
al(a—1)! a—1

(cf. Stanley [8], Example 1.1.17, p. 12).
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The main difference between both copulas obviously lies in the lower south-west corner of the unit
square.

In what follows we consider the usual upper and lower tails dependence coefticients as described e.g. in
McNeil et al. [4], chapter 7.2.4. For the proof of Theorem 2, the following result will be needed.

[2 ]
_|_4"’
m

Proof. In Stanley [9], 5.53, p.144 the following relation can be found:

m k—1
Lemma. For m € N, there holds Z[m +k ] ! !

kT Amtl
par ANV

m—1 m+]_1 1 .
(24) Z[ ; ]FZZ '

Jj=0



which directly implies

m (m+j—1] 1 » 1 (2m—1 » 1 (2m 1
25 § —=2""+ =24 -
( ) [ ] ] 2] 2m [ 2m+l m 2m+1

j=0 m

[2 ]
4.
m

Theorem 2. The upper tail dependence coefficient \,(a) of the diagonal dominant Gamma copula is

identical to that of a diagonal dominant negative binomial copula ¢"*, given by

bl a k 2
ffcising(u,v)du dv . 1_6*22%
(26) A\, (a):=lim——* =q || —&2—| 4z
=1 -1t z

(a — 00).

_q 1 (2a { 1
4“ a NTTa

a—1 .k
Proof. Let F,(x) ::l—e_xz:%, x>0 denote the distribution function of the standard Gamma

k=0
distribution with shape parameter a € N. It holds

1 1 a—1 a+1
14 5)
27 J ()= o (u,v)dudv=a R G o) lnu Inv) -u’-v'dudvds
( ) a() [[ a,smg( ) [ PZ(a+1) ff )
2
:cszvH(l—I—s)”’+1 m-ws dw| ds.
g ' T'(a+1)

Now by the substitution —Inw=x or w=e " with dw= —e " dx we get the expression

—In¢ —Inz

( hl W) — f —(1+s)x dx — 1 — f ( S)(H—l X e—(l+s)x dx
- T(a+ 1) ['(a+ 1) (I4+5)" < I'(a+1)
1
W o ((1+9)-(=1n?))
and hence

0 afl

J()=a f T F2, ((145)-(=In))ds

Substituting again (1+s)-(—In#) =z, we obtain

28)  J.()=(-Inf)-a f ﬂ F2.(2)dz.

—Int

This implies
S0 —Ing i (z+lnt)  TEL(2)
(29) A (@)=lim" = = alim lim f F2 (2)dz=a f s

_ 11— +1
4 4 1 4 —Int 0

which proves the first equality above. For the remainder, we proceed by induction on a.
9



The case a =1 is evident because of

2
R (2) (1=e) e 1 1(2
30 2 dr=— + =—=1=— |
(30) [ z’ X 2 2 411
0
2a—2
For a > 2, assume that the equality (a—l)fF (Z)d :1—%[ . . ] holds. Since
a_

a—1 _k a 2 a 2 a
2 == —e ¢ Z— —Z— —z — 2 Z— -z J— Z_ -z
fzﬂ(z)—{[l e Zk!] e } Fa(z>+[a!e J 2, ()5 e

k=0
2a a a a—1 _k
2 z 2z z —z z -2z z
:F;(z)—f—(a')ze —256 +2?€ kl’
. . . k=0 .
we obtain
P F (z T F(z 17 27 27 ol Z*
af—““z( )dz:a f “g )dz—l— 5 fzz"fzefzz dz—= [ z e dz —l——fz“*zefzz Z dz|.
y Z v Z (ah)™ 4 al+ al+l o k!

An easy computation shows that

| 2a—-1 o |
(Za 2) f 2 22a72672z dZ . (2a 2)

Z2a 2 722d —

2a—1 - 2qa-1 °

‘[ 2 5 (2a—2)! 2

jz“ e’ dz=(a— 2)'f L e (a—2)! and, likewise,
o (a—2)!

j’zazezza 1 Z: ijzzﬂrk 20727 j, _Z(Cl—f—k 2)'.

0 k=0 k' k' 0 k=0 k'2a+k !

Substituting this in the expression above, we get, with the Lemma above,

T FL(2) a 1 (2a—-2 (2a—2)! 2(a—2)! 1 EH(a+k-2)!
af +z]2 = | a al(a—112>" (a—1)! +(a—1)v2 Je12e k2
0 . . . . k=0 .
a [, 1 (2a-2) 1 (2a—2) 2 1 1(2a—2) |
= T a1 + a—1 - + a—2 ~a +4
a—1| 4 a=1)| 2a4"\a=1) a=1 (a—1)2%2| a—1
_ . 2a-11 (2a=2) 12
 2a 4 Ya-1)  4\a)

i.e. the statement is also true for a +1. This proves the assertion. B
Fig. 8 to Fig. 11 show some symmetric Gamma copula densities ¢} «ing (> V) for different values of a.

10



Fig. 8: ¢} ., a=1 Fig.9: ¢} .., a=3

,sing ? ,sing ?

a=9

Fig. 10: c. . ,a=8 Fig. 11: ¢!

a,sing? a,sing ?

In contrast, the Power copula does not show a tail dependence, no matter what the parameters are.

Theorem 3. The upper and lower tail dependence coefficients )\, (3) and A, (5) of the diagonal

dominant Power copula are zero for all 3> 2.

Proof. Due to symmetry, it suffices to prove the theorem for ), (3) alone. Like in the proof of theorem

2, (see relation (25)) we have

2
11 o
G1) AU(ﬁ).zlthll:O%I@(s,u)du ds=.£g?[K(s,t)ds
1 2
with K (s,/) = —— f o(s,u)du| where
Toas)(A-n)d T

11



-1
s )

/52

, 61
g (I-ys)

P S A— t’

(S

(1—/”2), s<t,
0<s,t <.

| __B
(32) [go(s,u)du |

It is easy to see that K(s,#) as a function of s attains its maximum at s =¢ with

2(1_ -2\ 2(1_ B-2)\?
(33) K(t,1)= s t,,(l : ) < B im _t (1 )
B=2 PO (1= == )= " B2 = (1=t == )11

B (B-2° _B(B-2)

T 3-2 54—l 31

for >3 from where we get

(34) l}glfK(s,t)dsSlEr}f%ds:O.

A simple analysis shows that for 2 < 3 <3, K(t,¢) also is bounded, by the constant 2, so that the limit
relation (32) is valid for all 5> 2. It remains to show that linlq K(s,t)ds = 0. For this purpose, we use
t—
0

the elementary estimate

1

35 : — <
( ) I_S;i—l _(I_S)ﬂfl — 2 1

-max[l,L] for 0 <s <1.
s 1—s

We thus obtain, for ¢ > ',

1/2 t

t /8 1 (1 _ tﬁ*Z )2 1/2 i t Sz[;_Q
36 K(s,t)ds= | K(s,t)ds+ | K(s,t)ds < . — 2073 ds + d
(36) f (s.0)ds f (s.0ds + [ K(s.0)ds < 5= — tzw(l_%fs s [i—ds

1/2 2 1/2

2073

ﬁ 1 (1 — t/ffz >2 | . o
_5—2' ] 'tz(ﬁfz)(l—t) 22[371(ﬁ—1)_t ln7 )
2‘_‘4?‘§
20"

The final result now follows by the observation
(=)
(37) lir?Tln(l —H=g'(H=0

for the function g(¢) = (1 — t‘H)z In1—12), 0<t<l. W

12



Fig. 12 and Fig. 13 show the Power copula densities cg (u,v) in the diagonal dominant case for different

values of [3.

Fig. 12: ¢ (u,v) Fig. 13: ¢! (u,v)

5 Case Study A

Firstly, we extend the example data set given in Cottin and Pfeifer [1] because it was also used as a data
basis in several former papers on partition-of-unity-copulas (Pfeifer et al. [6], [7]). 1, and r, denote the

correspondig rank vectors which are the basis for the empirical copula and different copula drivers, as
described in section 2 above.

no. |risk X, [risk X, | r, | I,
1 0.468 0966 | 4| 9
21 9951 2.679 | 20 | 20
3|1 0.866 0897 | 8| 4
41 6.731 2249 119 | 19
5 1.421 0.956 | 13| 8
6| 2.040 1.141 | 17 | 15
71 2967 1.707 | 18 | 18
8 1.200 1.008 | 11 | 10
9 0426 1.065 | 3|12

10 | 1.946 1.162 | 15| 16
11| 0676 | 0918 ] 5| 6
12| 1.184 1.336 | 10 | 17
13| 0960 | 0933 | 9| 7
14| 1.972 1.077 | 16 | 13
15| 1.549 1.041 | 14 | 11
16| 0819 ] 0899 | 6] 5
171 0.063 | 0710 1] 1
18 | 1.280 1.118 | 12 | 14
19| 0824 | 0894 | 7| 3
20 0227 ] 0837 ] 2] 2

Tab. 1: the data from Cottin and Pfeifer

Fig. 14 to Fig. 19 show some simulated examples for a selection of copula drivers based on the

multivariate normal distribution, with different choices of the correlation parameter p € [— 1, 1] .
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Fig. 20 to Fig. 27 show some Monte Carlo realizations for the Gamma copula on the basis of the data set

together with the empirical copula (relative rank vectors: circular points).

00 01 02 03 04 05 06 07 08 09 10 00 a1 02 03 04 05 06 07 08 09 1.0

with rook copula driver, @, =a, =7 with rook copula driver, a, =a, =15
Fig. 20 Fig. 21
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with UF copula driver, a, =a, =7 with UF copula driver, a, = a, =15

Fig. 22 Fig. 23

x2

with LF copula driver, @, =a, =7 with LF copula driver, a, =a, =15

Fig. 24 Fig. 25

For the Power copula, the following graphs show the results of a corresponding Monte Carlo study.

o
=S
o
o
o

o
w
o
=
o
o

08 07 08 08 1.0

with rook copula driver, 8, =3, =8 with rook copula driver, 8, =3, =12

Fig. 26 Fig. 27
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with UF copula driver, 3, =3, =8 with UF copula driver, 3, =3, =12
Fig. 28 Fig. 29

with LF copula driver, 3, =, =8 with LF copula driver, 3, =3, =12
Fig. 30 Fig. 31

A comparison of Fig. 22 and Fig. 23 with Fig. 28 and Fig. 29 indicates also visually that the Power
copula possesses no tail dependence.

6 Case Study B

In order to show the powerfulness of continuous PUC approaches in higher dimensions we conclude the
applied section with a discussion of the 19-dimensional data set presented in Neumann et al. [5], listed
in Tab. 6 and Tab. 7, containing insurance losses from a non-life portfolio of natural perils in 19 areas in
central Europe over a time period of 20 years. The monetary unit is 1 million €.

For simplicity, we will consider only the Gamma copula in this section.
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Year

Area 1

Area 2

Area 3

Area 4

Area 5

Area 6

Area 7

Area 8

Area 9

Area 10

23.664

154.664

40.569

14.504

10.468

7.464

22.202

17.682

12.395

18.551

1.080

59.545

3.297

1.344

1.859

0.477

6.107

7.196

1.436

3.720

21.731

31.049

55.973

5.816

14.869

20.771

3.580

14.509

17.175

87.307

28.99

31.052

30.328

4.709

0.717

3.530

6.032

6.512

0.682

3.115

53.616

62.027

57.639

1.804

2.073

4.361

46.018

22.612

1.581

11.179

29.95

41.722

12.964

1.127

1.063

4.873

6.571

11.966

15.676

24.263

3.474

14.429

10.869

0.945

2.198

1.484

4.547

2.556

0.456

1.137

10.02

31.283

21.116

1.663

2.153

0.932

25.163

3.222

1.581

5.477

O 0| Q| | | K| W] | —

5.816

14.804

128.072

0.523

0.324

0.477

3.049

7.791

4.079

7.002

—_
[==]

170.725

576.767

108.361

41.599

20.253

35412

126.698

71.079

21.762

64.582

[
—_—

21.423

50.595

4.360

0.327

1.566

64.621

5.650

1.258

0.626

3.556

—_
[\

6.38

28.316

3.740

0.442

0.736

0.470

3.406

7.859

0.894

3.591

—_—
w

124.665

33.359

14.712

0.321

0.975

2.005

3.981

4.769

2.006

1.973

_.
n

20.165

49.948

17.658

0.595

0.548

29.35

6.782

4.873

2.921

6.394

—_—
(V)]

78.106

41.681

13.753

0.585

0.259

0.765

7.013

9.426

2.18

3.769

—_
=)}

11.067

444.712

365.351

99.366

8.856

28.654

10.589

13.621

9.589

19.485

—_
|

6.704

81.895

14.266

0.972

0.519

0.644

8.057

18.071

5.515

13.163

—_—
oo

15.55

277.643

26.564

0.788

0.225

1.230

26.800

64.538

2.637

80.711

—_
N}

10.099

18.815

9.352

2.051

1.089

6.102

2.678

4.064

2.373

2.057

[\
(=]

8.492

138.708

46.708

3.68

1.132

1.698

165.6

7.926

2.972

5.237

Tab. 2: loss data, part one

Year | Areall

Area 12

Area 13

Area 14

Area 15

Area 16

Area 17

Area 18

Area 19

1.842

4.100

46.135

14.698

44 441

7.981 | 35.833

10.689

7.299

0.429

1.026

7.469

7.058

4.512

0.762 | 14.474

9.337

0.740

0.209

2.344

22.651

4.117

26.586

3.920 | 13.804

2.683

3.026

0.521

0.696

31.126

1.878

29.423

6.394 | 18.064

1.201

0.894

2.715

1.327

40.156

4.655

104.691

28.579

17.832

1.618

3.402

4.832

0.701

16.712

11.852

29.234

7.098 | 17.866

5.206

5.664

0.268

0.580

11.851

2.057

11.605

0.282 | 16.925

2.082

1.008

0.741

0.369

3.814

1.869

8.126

1.032 | 14.985

1.390

1.703

O| 0| | | | K| W] | —

0.524

6.554

5.459

3.007

8.528

1.920

5.638

2.149

2.908

—_
[

9.882

6.401

106.197

44912

191.809

90.559

154.492

36.626

36.276

—
—_—

1.052

8.277

22.564

8.961

19.817 | 1

6.437 | 25.990

2.364

6.434

—
N

0.136

0.364

28.000

7.574

3.213

1.749 | 12.735

1.744

0.558

—_
W

1.990

15.176

57.235

23.686

110.035 | 1

7.373

7.276

2.494

0.525

[
N

0.630

0.762

25.897

3.439

8.161

3327 | 24.733

2.807

1.618

—
()]

0.770

15.024

36.068

1.613

6.127

8.103 | 12.596

4.894

0.822

—_
[o)

0.287

0.464

24211

38.616

51.889

1.316 | 173.080

3.557

11.627

—_
2

0.590

2.745

16.124

2.398

20.997

2.515

5.161

2.840

3.002

—_
e}

0.245

0.217

12.416

4.972

59.417

3.762 | 24.603

7.404

19.107

—_
O

0.415

0.351

10.707

2.468

10.673

1.743 | 27.266

1.368

0.644

N
(e

0.566

0.708

22.646

6.652

14437 | 6

3.692 | 113.231

7.218

2.548

Tab.3: loss data, part two
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As is to be expected, insurance losses in locally adjacent areas show a high degree of stochastic
dependence, which can also be seen from the following empirical correlation tables (Tab. 10 and Tab.
11). For a better readability, only two decimal places are displayed. Correlation coefficients above 90%
are highlighted.

Al A2 A3 A4 A5 A6 A7 A8 A9 A10 | All Al12 | A13 | Al4 | Al5 | Al6 Al7 | AI8 | A19

Al 1 0.46 0.03 0.16 | 047 | 0.20 | 0.35 0.49 | 0.41 0.24 | 0.78 0.64 | 091 | 0.63 | 0.85 | 0.66 0.30 | 0.67 | 0.56
A2 | 0.46 1 0.64 | 0.78 | 0.67 | 0.36 0.51 0.76 | 0.57 | 0.51 | 0.58 | -0.04 | 0.59 | 0.84 | 0.68 | 0.58 0.87 | 0.77 | 0.90
A3 | 0.03 0.64 1 093 | 041 | 0.26 0.11 0.16 | 0.33 0.16 | 0.08 | -0.09 | 0.13 | 0.64 | 0.25 | 0.10 | 0.74 | 0.14 | 0.35
A4 | 0.16 0.78 0.93 11054 | 036 0.16 0.25 0.43 0.19 | 0.22 | -0.10 | 0.30 | 0.79 | 0.36 | 0.19 0.84 | 0.32 | 0.49
A5 | 047 0.67 0.41 0.54 1| 041 0.35 0.51 0.84 | 063 ] 059 | 0.02 | 0.64 | 0.67 | 0.59 | 0.50 | 0.58 | 0.71 | 0.67
A6 | 0.20 0.36 0.26 036 | 0.41 1 0.07 0.11 0.28 0.19 | 0.28 0.14 | 031 | 042 | 0.24 | 0.27 0.39 | 0.27 | 0.40
A7 | 035 0.51 0.11 0.16 | 0.35 | 0.07 1 044 | 027 | 0.19 | 0.48 | -0.07 | 0.46 | 0.35 | 045 | 091 0.64 | 0.61 | 0.49
A8 | 0.49 0.76 0.16 0.25 | 0.51 | 0.11 0.44 1 0.50 | 0.75 ] 0.61 | -0.03 | 0.54 | 0.47 | 0.71 | 0.53 0.40 | 0.75 | 0.90
A9 | 041 0.57 0.33 043 | 0.84 | 0.28 0.27 0.50 1 0.66 | 0.68 | -0.01 | 0.52 | 0.60 | 0.50 | 0.41 0.46 | 0.65 | 0.63
A10 | 0.24 0.51 0.16 0.19 | 0.63 | 0.19 0.19 0.75 0.66 1 1033 ]-012 | 027 | 028 | 043 | 024 | 0.23 | 045 | 0.65
All | 0.78 0.58 0.08 022 | 0.59 | 0.28 0.48 0.61 0.68 0.33 1 0.19 | 0.79 | 0.65 | 0.80 | 0.73 043 | 0.84 | 0.74
Al2 | 0.64 | -0.04 | -0.09 | -0.10 | 0.02 | 0.14 | -0.07 | -0.03 | -0.01 | -0.12 | 0.19 1 1044 021 ) 028 | 017 | -0.12 | 0.13 | 0.03
Al3 | 091 0.59 0.13 0.30 | 0.64 | 0.31 0.46 054 | 052 | 027 | 0.79 | 0.44 110711086 | 074 | 047 | 0.76 | 0.65
Al4 | 0.63 0.84 0.64 | 0.79 | 0.67 | 0.42 0.35 0.47 0.60 | 0.28 | 0.65 021 | 0.71 110741054 | 079 ] 0.68 | 0.72
Al5 | 0.85 0.68 0.25 036 | 059 | 0.24 | 045 0.71 050 | 0.43 | 0.80 | 0.28 | 0.86 | 0.74 1| 0.69 0.47 | 0.71 | 0.75
Al6 | 0.66 0.58 0.10 | 0.19 | 0.50 | 0.27 0.91 0.53 0.41 0.24 | 0.73 0.17 | 0.74 | 0.54 | 0.69 1 0.63 | 0.77 | 0.64
Al17 | 0.30 0.87 0.74 | 0.84 | 0.58 | 0.39 064 | 040 | 046 | 023 | 043 [ -0.12 | 047 | 0.79 | 047 | 0.63 1059 | 0.64
Al18 | 0.67 0.77 0.14 | 032 | 0.71 | 0.27 0.61 0.75 0.65 045 | 0.84 | 0.13 | 0.76 | 0.68 | 0.71 | 0.77 0.59 1| 0.86
Al19 | 0.56 0.90 0.35 0.49 | 0.67 | 0.40 | 0.49 0.90 | 0.63 0.65 | 074 | 0.03 | 0.65 | 0.72 | 0.75 | 0.64 | 0.64 | 0.86 1

Tab 4: empirical correlations between original losses in adjacent areas

For a comparison of copula models, we have used classical approaches with a Gaussian and a #-copula
(with two degrees of freedom for modelling a high degree of tail dependence), as well as with a Gamma
copula for different choices of the copula drivers (rook and UF) with a, =10 for k=1,---,19. The
graphs displayed in Fig. 32 to Fig. 47 show a selection of the 171 possible pairwise two-dimensional
projections of corresponding Monte Carlo simulations U, where the highest pairwise correlations have
been observed, together with the empirical copulas (relative rank vectors: circular points). The

parameter matrices for the Gaussian and #-copulas were calculated from the empirical correlations of log
data.

0 0,1 0,2 0,3 04 05 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 04 05 0,6 0,7 0,8 0,9 1

Fig. 32 Fig. 33

Gaussian copula
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Fig. 35

.34

Fig

Gaussian copula

.37

Fig

ig. 36

F

ith two degrees of freedom

copula w

t-
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Fig. 38 Fig. 39

t-copula with two degrees of freedom

u13

Fig. 40 Fig. 41

Gamma copula with the rook copula driver
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U4

Fig. 42 Fig. 43

Gamma copula with the rook copula driver

u13

Fig. 44 Fig. 45

Gamma copula with the upper Fréchet copula driver
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U4

U3 u7

Fig. 46 Fig. 47

Gamma copula with the upper Fréchet copula driver

Obviously, the Gamma copula approach follows the particular asymmetries in the data much better than
the Gaussian or t-copula constructions. Also, the upper tail dependence seems stronger under the
Gamma copula than under the #-copula for certain two-dimensional projections.

As an application to risk management, we estimate several values of the risk measure

19
VaR (S)=0O,(1—u) for different values of u, for the aggregate risk S = Z X,, where X, represents

k=1
the insurance losses in Area k. The marginal distributions of the losses were modelled as lognormal,
which is in coincidence with the Lilliefors test for the log losses. The analysis is based on 100,000
simulations each. For a direct comparison, note that the Gaussian copula and the Gamma copula with the
rook copula driver do not show a tail dependence, whereas the 7-copula and the Gamma copula with the
upper Fréchet copula driver possess a distinct upper tail dependence. We show the results in Tab. 5.

copula type | Gaussian copula | rook Gamma copula | z-copula UF Gamma copula
VaR,,(S) 828.149 1,687.750 785.207 1,530.999
VaR, 5 (S) 1,123.028 2,097.296 | 1,126.537 1,980.437
VaR,,,(S) 2,013.425 2,865.834 | 2,345.636 3,271.872
VaR  05(S) 2,528.785 3,283.720 | 3,127.850 3,950.194

Tab. 5: VaR estimates

Note that the VaR,.(S) is the basis for the Solvency Capital Requirement (SCR) under Solvency II,

which is more than 50% higher estimated with the UF Gamma copula than with the Gaussian copula,
and that even the rook Gamma copula with no tail dependence produces a higher estimate than the

t-copula which has a tail dependence.
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7 Final Remarks

We close this paper by the remark that the continuous and discrete finite or infinite partition-of-unity
copula approach is absolutely flexible, i.e. it is even possible to choose dimension-wise different
distribution families (binomial, negative binomial, Poisson, Gamma, etc.) for the copula estimation and
also different copula drivers which can be any reasonable simple patchwork copula based on the
observations. Further, it is possible to choose copula drivers which allow for an implementation of tail
dependence, even if this feature can in general not be concluded from a finite data set. However, in the
light of Solvency II, it might be desirable to compare VaR estimates for aggregate losses with and
without a tail dependent copula, and under competing dependence models.

Another advantage is the easy implementation of the simulation algorithm even in ordinary spreadsheet
software for arbitrary large dimensions. We have worked in practice with 114-dimensional data sets

from the insurance sector without any problems.
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