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Abstract
Multivariate multiple test procedures have received growing attention recently. This

is due to the fact that data generated by modern applications typically are high-

dimensional, but possess pronounced dependencies due to the technical mechanisms

involved in the experiments. Hence, it is possible and often necessary to exploit these

dependencies in order to achieve reasonable power. In the present paper, we express

dependency structures in the most general manner, namely, by means of copula func-

tions. One class of nonparametric copula estimators is constituted by Bernstein cop-

ulae. We extend previous statistical results regarding bivariate Bernstein copulae to

the multivariate case and study their impact on multiple tests. In particular, we utilize

them to derive asymptotic confidence regions for the family-wise error rate (FWER)

of multiple test procedures that are empirically calibrated by making use of Bernstein

copulae approximations of the dependency structure among the test statistics. This

extends a similar approach by Stange et al. (2015) in the parametric case. A simula-

tion study quantifies the gain in FWER level exhaustion and, consequently, power that

can be achieved by exploiting the dependencies, in comparison with common thresh-

old calibrations like the Bonferroni or Šidák corrections. Finally, we demonstrate an

application of the proposed methodology to real-life data from insurance.
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1 INTRODUCTION

Copula-based modeling of dependency structures has become a standard tool in applied multivariate statistics and quantitative
risk management; see, for example, Nelsen (2006), Joe (2014), Härdle and Okhrin (2010), Embrechts, Lindskog, and McNeil
(2003), and Chapter 5 of McNeil, Frey, and Embrechts (2005). The estimation of an unknown copula is key to a variety of
modern multivariate statistical methods. In particular, applications of copulae to the calibration and the analysis of multiple
tests have been considered by Dickhaus and Gierl (2013), Bodnar and Dickhaus (2014), Stange, Bodnar, and Dickhaus (2015),
Cerqueti, Costantini, and Lupi (2012), Schmidt, Faldum, Witt, and Gerß (2014), and Schmidt, Faldum, and Gerß (2015); see also
Sections 2.2.4 and 4.4 of Dickhaus (2014). Specifically, the copula-based construction of multiple testing procedures developed
by Dickhaus and Gierl (2013) and Stange et al. (2015) under parametric assumptions regarding the type of dependencies among
test statistics considerably extends previous approaches as in Hothorn, Bretz, and Westfall (2008) that are confined to asymptotic
Gaussianity and, consequently, linear dependencies.

In the case of a parametric copula, generic estimation techniques like the (generalized) method of moments or maximum
likelihood estimation are established notions; cf. Section 3.2 of Stange et al. (2015) and references therein. The empirical copula
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as well as its asymptotic properties as a nonparametric estimator have been studied, among others, by Rüschendorf (1976),
Deheuvels (1979), Stute (1984), and, more recently, by Bücher and Dette (2010), and Bouzebda and Zari (2013), to mention
only a few references. However, similarly as multivariate histogram estimators, the empirical copula in dimension 𝑚 has some
undesirable properties. For example, it is discontinuous, and it typically assigns zero mass to large subsets of [0, 1]𝑚, even if the
sample size 𝑛 is large, due to the concentration of measures phenomenon. One way to tackle these issues consists of smoothing
of the empirical copula. In particular, Sancetta and Satchell (2004) proposed smoothing by Bernstein polynomials, leading
to so-called Bernstein copulae. Approximation theory for Bernstein copulae has been derived by Cottin and Pfeifer (2014),
and asymptotic statistical properties of Bernstein copula estimators in the bivariate case (𝑚 = 2) have been proven by Janssen,
Swanepoel, and Veraverbeke (2012) and Belalia (2016). Functional central limit theorems for empirical copula processes have
been established by Segers (2012). Applications of Bernstein copulae to modeling dependencies in non-life insurance have been
considered by Diers, Eling, and Marek (2012).

In the present work, we contribute to theory and applications of Bernstein copulae in the case of a general dimension𝑚 ≥ 2. In
Section 2, we extend the asymptotic theory regarding the Bernstein copula estimator by proving its rate of convergence in infinity
norm as well as its asymptotic normality in function space, for arbitrary𝑚. Also, we provide some justifications for the proposed
smoothing approach. Section 3 is then devoted to applications of Bernstein copulae for multiple testing procedures with control
of the family-wise error rate (FWER), avoiding restrictive parametric dependency assumptions. The application of the central
limit theorem derived in Section 2 allows for a precise quantification of the uncertainty about the realized FWER in the case
that the copula of test statistics is preestimated prior to calibrating the significance thresholds of the multiple testing procedure.
This extends the results of Stange et al. (2015) to the case of nonparametric copula preestimation. Section 4 demonstrates by
means of a simulation study that the latter preestimation approach leads to a better exhaustion of the FWER level and thus
enhances the power of the multiple testing procedure compared with traditional approaches that only take univariate marginal
distributions of test statistics into account. Finally, we apply the proposed multiple testing methodology to real-life data from
insurance (Section 5), and we conclude with a discussion in Section 6. Lengthy proofs and some auxiliary results are deferred
to Section 7.

2 OSCILLATION BEHAVIOR OF EMPIRICAL BERNSTEIN COPULAE

In this section, asymptotic properties of Bernstein copulas are studied. The main properties of the Bernstein estimator are consis-
tency (Theorem 2.1) and asymptotic normality (Theorem 2.4). Some auxiliary lemmas can be found in Section 7. Nonetheless,
the argumentation in this section is illustrated in some mathematical detail. More practically oriented readers might find Sec-
tion 2.2 and the following sections more valuable. In Section 3, the methodology how to use this estimator in multiple testing
is discussed and examples are given. The consistency of the realized FWER can be derived directly from the consistency of the
Bernstein estimator. The asymptotic normality of the realized FWER follows indirectly from the asymptotic normality of the
Bernstein estimator via Lemma 7.2.

Let 𝐗 = (𝑋1,… , 𝑋𝑚)⊤ be a random vector taking values in the probability space ( , , 𝑃 ), where  ⊆ ℝ𝑚,  is a 𝜎-field
over  , and 𝑃 denotes the (joint) distribution of 𝐗. The univariate marginal cumulative distribution functions (cdfs) of 𝐗 we
denote by 𝐹𝑗 , 𝑗 = 1,… , 𝑚, whereas 𝐶𝑿 stands for the copula related to the distribution 𝑃 .

Assume that 𝐗1,… ,𝐗𝑛 are stochastically independent and identically distributed (i.i.d.) random vectors with 𝐗1 ∼ 𝑃 .
Then, the marginal empirical cumulative distribution function (ecdf) 𝐹𝑗,𝑛 of (𝑋1,𝑗 ,… , 𝑋𝑛,𝑗)⊤ is given by 𝐹𝑗,𝑛(𝑥𝑗) ∶=
1
𝑛

∑𝑛
𝑖=1 𝟙(−∞,𝑥𝑗 ](𝑋𝑖,𝑗), 1 ≤ 𝑗 ≤ 𝑚, and the joint ecdf is defined as �̂�𝑛(𝐱) ∶=

1
𝑛

∑𝑛
𝑖=1 𝟙(−∞,𝐱](𝐗𝑖). The symbol 𝟙 denotes the

indicator function of set  and (−∞, 𝐱] = (−∞, 𝑥1] × ... × (−∞, 𝑥𝑚]. We will use an analogous bold-face notation for vectors
throughout the remainder. Finally, the empirical copula �̂�𝑿,𝑛 pertaining to 𝐗1,… ,𝐗𝑛 is given by

�̂�𝑿,𝑛 (𝐮) = �̂�𝑛

(
�̂�←
𝑛 (𝐮)

)
,𝐮 ∈ [𝟎, 𝟏],

with �̂�←
𝑛 (𝐮) = (𝐹←

1,𝑛(𝑢1), ..., 𝐹
←
𝑚,𝑛(𝑢𝑚))

⊤. In this,𝐹←
𝑗,𝑛 denotes the generalized inverse of the marginal ecdf in coordinate 1 ≤ 𝑗 ≤ 𝑚.

2.1 Theoretical analysis
Denote the space of bounded functions on [𝟎, 𝟏], equipped with the supremum norm, by (𝓁∞([𝟎, 𝟏]), ‖ ⋅ ‖∞), and the space of
continuous (and bounded) functions defined on [𝟎, 𝟏] by (𝐶([𝟎, 𝟏]), ‖ ⋅ ‖∞), where ‖ ⋅ ‖∞ again denotes the supremum norm.
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The Bernstein copula estimation is based on the Bernstein polynomial approximation, which for a fixed copula 𝐶𝑿 is given by
the operator 𝐵𝐊 ∶ (𝓁∞([𝟎, 𝟏]), ‖ ⋅ ‖∞) → (𝐶([𝟎, 𝟏]), ‖ ⋅ ‖∞) defined by

𝐵𝐊 (𝑓 ) (𝐮) ∶=
𝐊∑
𝐤=𝟎

𝑓 (𝐤∕𝐊)
𝑚∏
𝑗=1

𝑃𝑘𝑗 ,𝐾𝑗 (𝑢𝑗)

evaluated at the function 𝑓 = 𝐶𝑿 , where
∑𝐊

𝐤=𝟎 ∶=
∑𝐾1
𝑘1=0

⋯
∑𝐾𝑚
𝑘𝑚=0

, 𝐤∕𝐊 ∶=
(
𝑘1
𝐾1
,… ,

𝑘𝑚
𝐾𝑚

)⊤
,

𝑃𝑘,𝐾 (𝑢) ∶=
(
𝐾

𝑘

)
𝑢𝑘 (1 − 𝑢)𝐾−𝑘 ,

and 𝐾1,… , 𝐾𝑚 are given positive integers. The empirical Bernstein copula estimator for 𝐶𝑿 is then given by 𝐵𝐊(�̂�𝑿,𝑛).
It is well known that continuous functions can be approximated using Bernstein polynomials. There are results on the conver-

gence rate for continuous functions with bounded variation as well (see Chêng (1983)). For the special case of copula functions
it has been proved in Corollary 3.1 of Cottin and Pfeifer (2014) that any copula function can be approximated uniformly using
Bernstein polynomials.

Theorem 2.1 establishes the consistency rate of the empirical Bernstein copula estimator for any copula function 𝐶𝑿 . This
result is known for the bivariate case (see Theorem 1 in Janssen et al. (2012)).

Theorem 2.1 (Chung–Smirnov consistency rate). Let 𝑚 be fixed. Assume that
∑𝑚
𝑗=1𝐾

−1∕2
𝑗 = 𝑂(𝑛−1∕2(log log 𝑛)1∕2). Then

‖‖‖𝐵𝐊
(
�̂�𝑿,𝑛

)
− 𝐶𝑿

‖‖‖∞ = 𝑂
(
𝑛−1∕2 (log log 𝑛)1∕2

)
almost surely,

where ‖𝑔‖∞ ∶= sup𝐮∈[𝟎,𝟏] |𝑔(𝐮)| for 𝑔 ∶ [𝟎, 𝟏] ←→ ℝ.

Proof. The proof can be done analogously to the proof of the bivariate case considered in Janssen et al. (2012). By the triangle
inequality we split the convergence of the empirical Bernstein copula estimator into an inner and outer convergence. It holds
that ‖‖‖𝐵𝐊

(
�̂�𝑿,𝑛

)
− 𝐶𝑿

‖‖‖∞ ≤
‖‖‖𝐵𝐊

(
�̂�𝑿,𝑛

)
− 𝐵𝐊

(
𝐶𝑿

)‖‖‖∞ + ‖‖‖𝐵𝐊
(
𝐶𝑿

)
− 𝐶𝑿

‖‖‖∞ . (2.1)

For the outer convergence, we get from Lemma 7.1 and our assumption that‖‖‖𝐵𝐊
(
𝐶𝑿

)
− 𝐶𝑿

‖‖‖∞ = 𝑂
(
𝑛−1∕2 (log log 𝑛)1∕2

)
.

The argumentation for the inner convergence is more complicated. For the first summand in (2.1), we get

‖‖‖𝐵𝐊
(
�̂�𝑿,𝑛

)
− 𝐵𝐊

(
𝐶𝑿

)‖‖‖∞ ≤ sup
𝐮∈[𝟎,𝟏]

𝐊∑
𝐤=𝟎

|||�̂�𝑿,𝑛 (𝐤∕𝐊) − 𝐶𝑿 (𝐤∕𝐊)||| 𝑚∏
𝑗=1

𝑃𝑘𝑗 ,𝐾𝑗
(
𝑢𝑗
)
≤

≤ max
𝐤∈{𝟎,…,𝐊}

|||�̂�𝑿,𝑛 (𝐤∕𝐊) − 𝐶𝑿 (𝐤∕𝐊)||| ,
where {𝟎,… ,𝐊} ∶= {0, ..., 𝐾1} ×… × {0,… , 𝐾𝑚}. Let 𝐹𝑗,𝑛 denote the marginal ecdf of 𝑈𝑖,𝑗 ∶= 𝐹𝑗(𝑋𝑖,𝑗) for 𝑗 = 1,… , 𝑚 and
𝑖 = 1,… , 𝑛 and let �̃�𝑛 stand for the ecdf of 𝐔1,… ,𝐔𝑛. Application of the identity (see, e.g. Section 3 of Swanepoel, 1986)
𝐹←
𝑗,𝑛(𝑢𝑗) = 𝐹𝑗(𝐹

←
𝑗,𝑛(𝑢𝑗)) leads to �̂�𝑿,𝑛(𝐤∕𝐊) = �̃�𝑛(�̃�←

𝑛 (𝐤∕𝐊)) and

‖‖‖𝐵𝐊
(
�̂�𝑿,𝑛

)
− 𝐵𝐊

(
𝐶𝑿

)‖‖‖∞ ≤ max
𝐤∈{𝟎,…,𝐊}

|||�̃�𝑛

(
�̃�←
𝑛 (𝐤∕𝐊)

)
− 𝐶𝑿 (𝐤∕𝐊)||| ≤

≤ max
𝐤∈{𝟎,…,𝐊}

|||�̃�𝑛

(
�̃�←
𝑛 (𝐤∕𝐊)

)
− 𝐶𝑿

(
�̃�←
𝑛 (𝐤∕𝐊)

)|||+ (2.2)

+
𝑚∑
𝑗=1

max
𝑘𝑗∈

{
0,…,𝐾𝑗

} |||||𝐹←
𝑗,𝑛

(
𝑘𝑗

𝐾𝑗

)
−
𝑘𝑗

𝐾𝑗

||||| . (2.3)
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From Theorem 2 of Kiefer (1961) we get that the summand in (2.2) is of order 𝑂(𝑛−1∕2(log log 𝑛)1∕2) as well as that each
summand in (2.3) is of order 𝑂(𝑛−1∕2(log log 𝑛)1∕2). This completes the proof. □

Remark 2.2. If 𝑚 is not fixed, then the convergence rate in the last step of previous proof changes to 𝑂(𝑚𝑛−1∕2(log log 𝑛)1∕2).
Hence, we get almost surely ‖‖‖𝐵𝐊

(
�̂�𝑿,𝑛

)
− 𝐶𝑿

‖‖‖∞ = 𝑂
(
𝑚𝑛−1∕2 (log log 𝑛)1∕2

)
.

The next theorem is taken from Whitt (2002) and will be useful in order to show asymptotic normality of the Bernstein copula
estimator.

Theorem 2.3 (Generalized Continuous Mapping Theorem). Let 𝑔 and 𝑔𝑛, 𝑛 ≥ 1, be measurable functions mapping (𝑆, 𝑑)
into (𝑆′, 𝑑′). Let the range (𝑆′, 𝑑′) be separable. Let 𝐸 be the set of 𝑥 in 𝑆 such that 𝑔𝑛(𝑥𝑛) → 𝑔(𝑥) fails for some sequence

{𝑥𝑛 ∶ 𝑛 ≥ 1} with 𝑥𝑛 → 𝑥 in 𝑆. If 𝑋𝑛
𝑑
→ 𝑋, 𝑛 → ∞, in (𝑆, 𝑑) (

𝑑
→ denotes the convergence in distribution) and ℙ[𝑋 ∈ 𝐸] = 0,

then 𝑔𝑛(𝑋𝑛)
𝑑
→ 𝑔(𝑋), 𝑛 → ∞, in (𝑆′, 𝑑′).

Further, we need a result for the convergence of the empirical copula process ℂ𝑛 ∶= 𝑛1∕2(�̂�𝑿,𝑛 − 𝐶𝑿). Let 𝐮 → 𝛾(𝐮) be a 𝐶𝑿-
Brownian bridge, that is, a zero mean Gaussian process with (almost surely) continuous paths and covariance function given
by

Cov (𝛾 (𝐮) , 𝛾 (𝐯)) = 𝐶𝑿 (𝐮 ∧ 𝐯) − 𝐶𝑿 (𝐮)𝐶𝑿 (𝐯)

for all 𝐮, 𝐯 ∈ [𝟎, 𝟏]. Denote 𝛾𝑗(𝑢𝑗) ∶= 𝛾(1,… , 1, 𝑢𝑗 , 1,… , 1). Then under some assumptions the process ℂ(𝐮) ∶= 𝛾(𝐮) −∑𝑚
𝑗=1 𝜕𝑗𝐶𝑿(𝐮)𝛾𝑗(𝑢𝑗) is the weak limit of the empirical copula process ℂ𝑛 in (𝓁∞([𝟎, 𝟏]), ‖ ⋅ ‖∞) as shown in Proposition 3.1

of Segers (2012). With these two arguments we can prove a functional central limit theorem for the empirical Bernstein copula
estimator.

Theorem 2.4 (Asymptotic normality). Let 𝑚 be fixed. Assume that the first order partial derivatives of 𝐶𝑿 exist and are
continuous. If 𝑲 = 𝐾(𝑛) is such that 𝑛1∕2

∑𝑚
𝑗=1𝐾

−1∕2
𝑗 → 0, 𝑛 → ∞, then it holds that

𝑛1∕2 ⋅
(
𝐵𝐊

(
�̂�𝑿,𝑛

)
− 𝐶𝑿

) 𝑑
←→ ℂ as 𝑛 → ∞

in (𝐶([𝟎, 𝟏]), ‖ ⋅ ‖∞).

Remark 2.5. The assumption of the existence and continuity of the first order partial derivatives on the boundaries can be
weakened (cf. Condition 2.1 of Segers, 2012).

Proof. We split the empirical Bernstein copula process 𝑛1∕2 ⋅ (𝐵𝐊(�̂�𝑿,𝑛) − 𝐶𝑿) into two parts. We get

𝑛1∕2 ⋅
(
𝐵𝐊

(
�̂�𝑿,𝑛

)
− 𝐶𝑿

)
= 𝐵𝐊

(
𝑛1∕2

(
�̂�𝑿,𝑛 − 𝐶𝑿

))
+ 𝑛1∕2

(
𝐵𝐊

(
𝐶𝑿

)
− 𝐶𝑿

)
=

= 𝐵𝐊
(
ℂ𝑛
)
+ 𝑛1∕2

(
𝐵𝐊

(
𝐶𝑿

)
− 𝐶𝑿

)
.

The second summand converges uniformly to zero because of Lemma 7.1 and our assumptions. The first summand is the empir-
ical copula process ℂ𝑛 transformed by a family of operators 𝐵𝐊, where 𝐊 = 𝐊(𝑛).

We will use the Generalized Continuous Mapping Theorem 2.3. Let (𝑆, 𝑑) ∶= (𝓁∞([𝟎, 𝟏]), ‖ ⋅ ‖∞) and (𝑆′, 𝑑′) ∶=
(𝐶([𝟎, 𝟏]), ‖ ⋅ ‖∞). Then (𝑆′, 𝑑′) is a separable space, since the set of polynomials on [𝟎, 𝟏] with rational coefficients is a count-
able dense subset of 𝑆′. Further, let 𝑔𝑛 ∶ 𝑆 → 𝑆′ be defined by 𝑔𝑛 ∶= 𝐵𝐊(𝑛) and 𝑔 ∶ 𝑆 → 𝑆′ be the identity function on 𝑆′

and arbitrary on 𝑆∖𝑆′. Notice that it does not matter, how 𝑔 is defined on 𝑆∖𝑆′, since we are interested in 𝑔(ℂ) and with-
out loss of generality (w.l.o.g.) ℂ takes values in 𝑆′ (cf. Section 3 of Segers, 2012). Let 𝐸 be the set of 𝑓 in 𝑆 such that
𝑔𝑛(𝑓𝑛) → 𝑔(𝑓 ) fails for some sequence {𝑓𝑛 ∶ 𝑛 ≥ 1} with 𝑓𝑛 → 𝑓 in 𝑆. Then 𝐸 ⊆ 𝑆∖𝑆′, since we can choose 𝑓𝑛 ∶= 𝑓 for
𝑓 ∈ 𝑆′ and get uniform convergence by Bernstein's theorem (or by using Corollary 3.1 of Cottin and Pfeifer, 2014). Hence,
ℙ[ℂ ∈ 𝐸] ≤ ℙ[ℂ ∈ 𝑆∖𝑆′] = 0.

The last thing we need to check is the weak convergence of the empirical copula process ℂ𝑛 to ℂ in (𝓁∞([𝟎, 𝟏]), ‖ ⋅ ‖∞). As
already mentioned, Segers (2012) has shown this convergence under assumptions only regarding the first-order partial derivatives
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F I G U R E 1 Comparison of the Bernstein copula and the empirical copula in the setting of Model 1 (left) and Model 2 (right) of Omelka et al.
(2009) w.r.t. the supremum norm (Kolmogorov–Smirnov distance)

of 𝐶𝑿 . Therefore, the proof is complete by using Proposition 3.1 of Segers (2012) and the generalized continuous mapping
theorem. □

This result extends the pointwise central limit theorems of Janssen et al. (2012) and Belalia (2016) and works under weaker
assumptions as well.

2.2 The effect of smoothing
This section is meant to be an addition to the simulation study of Omelka, Gijbels, and Veraverbeke (2009). Conducting such
an extensive study ourselves would go beyond the scope of this paper. Nevertheless, it is an important question how precise the
Bernstein estimator is compared to other copula estimators, and this should be discussed at least to some extent.

There exists a wide variety of methods to estimate copula functions nonparametrically. Usually, the empirical copula or
some sort of smoothing method is used. The Bernstein estimator studied in Section 2.1 is only one specific smoothing method
among many others. Further examples comprise kernel (density) estimators (see Gijbels & Mielniczuk, 1990), and beta density
estimators (see Chen, 1999). It is beyond the scope of the present work to compare all these competing approaches in detail.
Generally speaking, the empirical copula is robust and universal, but it is not a copula in the strict sense, because it lacks
continuity and does not have uniform margins. The Bernstein copula is a differentiable estimator, but converges rather slowly
and cannot capture extreme tail dependencies (cf. Sancetta and Satchell, 2004). Recently, families of nonparametric copula
estimators capable of modeling (positive) tail dependence have been studied by Pfeifer, Mändle, and Ragulina (2017). Kernel
methods suffer from a boundary bias, although several modifications like the mirror approach by Schuster (1985) exist to address
this problem. Beta density estimators avoid the boundary bias, but the choice of their smoothing parameter is not trivial.

Let us briefly provide some numerical justifications for smoothing of the empirical copula. In Section 3 of Omelka et al.
(2009) some kernel methods have been compared in simulations under two prototypical models (Model 1 and Model 2). In
Model 1, the data follow a Frank copula with parameter corresponding to Kendall's 𝜏 = 0.25. In Model 2, a Clayton copula
corresponding to Kendall's 𝜏 = 0.75 is used.

We have applied our proposed Bernstein estimator to these models as well. Figure 1 displays the results of a simulation
study under these two models. The box plots demonstrate that the estimation accuracy (measured in terms of the Kolmogorov–
Smirnov distance) can be improved by smoothing. Here, we only considered smoothing by means of Bernstein polynomials,
but the simulation results for various kernel methods presented by Omelka et al. (2009) are very similar. Hence, in practice it
may not be most important which smoothing method to choose, while it is recommendable to smooth at all. For a more detailed
overview on copula estimation methods, see Charpentier, Fermanian, and Scaillet (2007).

3 CALIBRATION OF MULTIVARIATE MULTIPLE TEST PROCEDURES

In this section, we assume that we have uncertainty about the distribution of 𝐗. We thus consider a statistical model of the form
( , , (𝑃𝝑,𝐶𝑿 ∶ 𝝑 ∈ Θ, 𝐶𝑿 ∈ )). The probability measure 𝑃𝝑,𝐶𝑿 is indexed by two parameters. The parameter 𝐶𝑿 denotes
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the copula of 𝐗, and 𝝑 is a vector of marginal parameters that refer to 𝐹1,… , 𝐹𝑚. The model for the i.i.d. sample 𝐗1,… ,𝐗𝑛
consequently reads as (𝑛,⊗𝑛, (ℙ𝝑,𝐶𝑿

∶ 𝝑 ∈ Θ, 𝐶𝑿 ∈ )), where ℙ𝝑,𝐶𝑿
= 𝑃⊗𝑛

𝝑,𝐶𝑿
.

Based on this model, we consider multiple test problems of the form (𝑛,⊗𝑛, (ℙ𝝑,𝐶𝑿
∶ 𝝑 ∈ Θ, 𝐶𝑿 ∈ ),), where  =

{𝐻1,… ,𝐻𝑚} with ∅ ≠ 𝐻𝑗 ⊂ Θ for all 1 ≤ 𝑗 ≤ 𝑚 denotes a family of 𝑚 null hypotheses regarding the parameter 𝝑. The copula
𝐶𝑿 is not the primary target of statistical inference, but a nuisance parameter in the sense that it does not depend on 𝝑. This is
a common setup in multiple test theory. We will mainly consider a semi-parametric situation, where Θ is of finite dimension,
while  is a function space.

Remark 3.1. The assumption that the number of tests equals the dimension of 𝐗 is only made for notational convenience. The
case that these two quantities differ can be treated with obvious modifications.

A multiple test for a given set of hypotheses  is a measurable mapping 𝝋 = (𝜑1,… , 𝜑𝑚) ∶ (𝑛,⊗𝑛) → {0, 1}𝑚, where
𝜑𝑗(𝐱1,… , 𝐱𝑛) = 1 for given data 𝐱1,… , 𝐱𝑛 means rejection of the 𝑗-th null hypothesis 𝐻𝑗 in favor of the alternative 𝐾𝑗 =
Θ ⧵𝐻𝑗 , 1 ≤ 𝑗 ≤ 𝑚. We restrict our attention to multiple tests 𝝋 which are such that the hypotheses are rejected if the respective
test statistics are large enough for given data, that is, larger than their corresponding critical values. Notationally, this mean that

𝜑𝑗 = 𝟙(𝑐𝑗 ,∞)(𝑇𝑗), 1 ≤ 𝑗 ≤ 𝑚, (3.1)

where 𝐓 = (𝑇1,… , 𝑇𝑚)⊤ ∶ 𝑛 → ℝ𝑚 denotes a vector of real-valued test statistics that tend to larger values under alternatives,
and 𝐜 = (𝑐1,… , 𝑐𝑚)⊤ are the critical values. In many problems of practical interest, 𝑇𝑗 will only use the marginal data (𝑥𝑖,𝑗)1≤𝑖≤𝑛,
for every 1 ≤ 𝑗 ≤ 𝑚. For example, this typically holds true if 𝜗𝑗 only corresponds to 𝐹𝑗 , and 𝐻𝑗 only concerns 𝜗𝑗 , for every
1 ≤ 𝑗 ≤ 𝑚.

For the calibration of 𝐜, we aim at controlling the FWER in the strong sense. Strictly speaking, our procedure will only control
the FWER under the global null hypothesis in the first place. However, strong control follows directly under Assumption 3.2
(a). For sufficient conditions of this assumption see Lemma 3.3.

For given 𝝑 ∈ Θ and 𝐶𝑿 ∈ , the FWER is defined as the probability for at least one false rejection (type I error) of 𝝋 under
ℙ𝝑,𝐶𝑿

, that is,

FWER𝝑,𝐶𝑿
(𝝋) = ℙ𝝑,𝐶𝑿

( ⋃
𝑗∈𝐼0(𝝑)

{
𝜑𝑗 = 1

})
,

where 𝐼0(𝝑) = {1 ≤ 𝑗 ≤ 𝑚 ∶ 𝝑 ∈ 𝐻𝑗} denotes the index set of true null hypotheses under 𝝑. The multiple test𝝋 is said to control
the FWER at level 𝛼 ∈ [0, 1], if

sup
𝝑∈Θ,𝐶𝑿∈

FWER𝝑,𝐶𝑿
(𝝋) ≤ 𝛼.

Notice that, although the trueness of the null hypotheses is determined by 𝝑 alone, the FWER depends on 𝝑 and 𝐶𝑿 , because
the dependency structure in the data typically influences the distribution of 𝝋 when regarded as a statistic with values in {0, 1}𝑚.

Throughout the remainder, we assume that the following set of conditions is fulfilled.

Assumption 3.2.

(a) Letting 𝐻0 =
⋂𝑚
𝑗=1𝐻𝑗 denote the global null hypothesis of , there exists a least favorable configuration (LFC) 𝝑∗ ∈ 𝐻0

such that

∀𝐶𝑿 ∈  ∶ ∀𝝑 ∈ Θ ∶ FWER𝝑,𝐶𝑿
(𝝋) ≤ FWER𝝑∗,𝐶𝑿

(𝝋).

If this assumption is fulfilled, then weak FWER control implies strong FWER control. Notice that this assumption can be
weakened by considering closed test procedures, where our proposed methodology is applied to every nonempty intersection
hypothesis in ; cf. Remark 1 of Stange, Dickhaus, Navarro, and Schunk (2016) for details. However, in such a setting, the
computation time for the multiple test can increase very fast with the number of hypotheses.

(b) The vector of marginal cdfs of 𝐓 = (𝑇1,… , 𝑇𝑚)⊤ depends on 𝝑 only, and is (at least asymptotically as 𝑛→ ∞) known under
any LFC 𝝑∗. We denote the vector of marginal cdfs of 𝐓 = (𝑇1,… , 𝑇𝑚)⊤ under such an LFC 𝝑∗ by 𝐆 = (𝐺1,… , 𝐺𝑚)⊤.
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(c) Letting 𝐶𝑻 ∶= 𝐶𝑻 ,𝝑∗ denote the copula of 𝐓 under 𝝑∗ from part (b), there exists a continuously differentiable function
ℎ ∶ [0, 1] → [0, 1] such that 𝐶𝑻 (𝑢,… , 𝑢) = ℎ(𝐶𝑿(𝑢,… , 𝑢)) for all 𝑢 ∈ [0, 1], where 𝐶𝑿 is the copula of 𝐗. The function ℎ
may be unknown. Notice that, if 𝑇𝑗 only uses the data (𝑥𝑖,𝑗)1≤𝑖≤𝑛, for every 1 ≤ 𝑗 ≤ 𝑚, then the copula of 𝐓 is independent of
𝝑∗. The existence of ℎ is guaranteed whenever plateaus of 𝑢 → 𝐶𝑿(𝑢,… , 𝑢) occur on the same subset of [0,1] as plateaus of
𝑢 → 𝐶𝑻 (𝑢,… , 𝑢). In particular, ℎ exists if 𝑢 → 𝐶𝑿(𝑢,… , 𝑢) is strictly increasing. The more crucial part of the assumption
is that ℎ needs to be continuously differentiable.

The following lemma is useful in order to verify assumption (a).

Lemma 3.3. Let 𝐻𝑗 ∶ {𝝑 ∈ Θ|𝜗𝑗 ∈ Θ𝑗 ⊆ ℝ}, 1 ≤ 𝑗 ≤ 𝑚, such that the global null hypothesis 𝐻0 is not empty and let the
marginal distributions of the data in coordinate 𝑗 depend on 𝜗𝑗 only. Further, assume that every test statistic 𝑇𝑗 only uses the
data (𝑥𝑖,𝑗)1≤𝑖≤𝑛. Then for all 𝝑 ∈ Θ and any multiple test 𝝋 which is as in (3.1), we can construct a parameter value 𝝑∗ ∈ 𝐻0
with

FWER𝝑,𝐶𝑿
(𝝋) ≤ FWER𝝑∗,𝐶𝑿

(𝝋) .

In particular, this implies that the LFC is located in 𝐻0.

Proof. Let w.l.o.g. 𝐼0(𝝑) = {1,… , 𝑚0}. Choose 𝝑∗ ∈ 𝐻0 ≠ ∅ with 𝜗∗𝑗 = 𝜗𝑗 for 𝑗 ∈ 𝐼0(𝝑). Then it holds that

ℙ𝝑,𝐶𝑿

[ ⋃
𝑗∈𝐼0(𝝑)

{
𝑇𝑗 > 𝑐𝑗

}]
= ℙ𝝑∗,𝐶𝑿

[ ⋃
𝑗∈𝐼0(𝝑)

{
𝑇𝑗 > 𝑐𝑗

}]
,

since it is assumed that the test statistics 𝑇𝑗 , 𝑗 ∈ 𝐼0(𝝑), only utilize the data from that coordinate 𝑗. Hence,

FWER𝝑,𝐶𝑿
(𝝋) = ℙ𝝑,𝐶𝑿

[ ⋃
𝑗∈𝐼0(𝝑)

{
𝑇𝑗 > 𝑐𝑗

}]
=

= ℙ𝝑∗,𝐶𝑿

[ ⋃
𝑗∈𝐼0(𝝑)

{
𝑇𝑗 > 𝑐𝑗

}]
≤

≤ ℙ𝝑∗,𝐶𝑿

[
𝑚⋃
𝑗=1

{
𝑇𝑗 > 𝑐𝑗

}]
=

= FWER𝝑∗,𝐶𝑿
(𝝋) . □

More generally, the previous lemma holds if the test statistics satisfy the so-called subset pivotality condition (see Westfall
and Young, 1993; and Dickhaus and Stange, 2013). Before we start to explain the proposed method for the calibration of 𝐜, let
us illustrate prototypical example applications of our general setup.

Example 3.4.

(a) Let Θ = ℝ𝑚 and assume that 𝜗𝑗 ∈ ℝ is the expected value of 𝑋𝑗 for every 1 ≤ 𝑗 ≤ 𝑚. The 𝑗-th null hypothesis may be
the one-sided null hypothesis 𝐻𝑗 = {𝜗𝑗 ≤ 0} with corresponding alternative 𝐾𝑗 = {𝜗𝑗 > 0}. Assume that the variance
of the marginal distribution of each 𝑋𝑗 is known and w.l.o.g. equal to one. A suitable test statistic 𝑇𝑗 is then given by

𝑇𝑗(𝐗1,… ,𝐗𝑛) =
∑𝑛
𝑖=1𝑋𝑖,𝑗∕

√
𝑛. From Lemma 3.3 it follows that the LFC lies in 𝐻0. Since the test statistics tend to get

larger with increasing values of 𝝑, the LFC 𝝑∗ equals 𝟎. Under 𝝑∗, we have that 𝐺𝑗 = Φ (the cdf of the standard normal law
on ℝ) is the cdf of the (asymptotic) null distribution of 𝑇𝑗 for every 1 ≤ 𝑗 ≤ 𝑚. If the considered copula family  consists
of multivariate stable copulae (meaning that the observables follow a multivariate stable distribution), then the copula 𝐶𝑻

is of the same type as 𝐶𝑿, hence all parts of Assumption 3.2 are fulfilled.

(b) Let = [0,∞)𝑚 and assume that the stochastic representations𝑋𝑗
𝑑
= 𝜗𝑗𝑍𝑗 with 𝜗𝑗 > 0 hold true for all 1 ≤ 𝑗 ≤ 𝑚, where𝑍𝑗

is a random variable taking values in [0,1]. The parameter of interest in this problem is 𝝑 = (𝜗1,… , 𝜗𝑚)⊤ ∈ Θ = (0,∞)𝑚.
For each coordinate 𝑗, we consider the pair of hypotheses 𝐻𝑗 ∶ {𝜗𝑗 ≤ 𝜗∗𝑗 } versus 𝐾𝑗 ∶ {𝜗𝑗 > 𝜗∗𝑗 }, where the LFC 𝝑∗ =
(𝜗∗1,… , 𝜗∗𝑚)

⊤ ∈ (0,∞)𝑚 (same argumentation as in (a)) is identical to the hypothesized upper bounds for the supports (or
right end-points of the distributions) of the 𝑋𝑗 's. This has applications in the context of stress testing in actuarial science
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and financial mathematics (cf., e.g., Longin, 2000). Suitable test statistics are given by the component-wise maxima of the
observables, that is, 𝑇𝑗(𝐗1,… ,𝐗𝑛) = max1≤𝑖≤𝑛 𝑋𝑖,𝑗∕𝜗∗𝑗 , 1 ≤ 𝑗 ≤ 𝑚. Assuming that the tail behavior of each 𝑋𝑗 is known
such that the marginal (limiting) extreme value distribution of 𝑇𝑗 under 𝝑∗ can be derived and letting  consist of max-stable
copulae, all parts of Assumption 3.2 are fulfilled here, too.

Let us remark here that these two examples have been treated under the restrictive assumption of one-parametric copula
families  by Stange et al. (2015). The following lemma is taken from Dickhaus and Gierl (2013) and connects FWER𝝑,𝐶𝑿

(𝝋)
with 𝐶𝑻 .

Lemma 3.5. Let Assumption 3.2 be fulfilled. Then we have that

FWER𝝑,𝐶𝑿
(𝝋) ≤ 1 − 𝐶𝑻

(
1 − 𝛼(1)

𝑙𝑜𝑐
,… , 1 − 𝛼(𝑚)

𝑙𝑜𝑐

)
,

where 𝛼(𝑗)
𝑙𝑜𝑐

= 1 − 𝐺𝑗(𝑐𝑗(𝛼)) denotes a local significance level for the 𝑗-th marginal test problem. In practice, it is convenient to
carry out the multiple testing procedure in terms of 𝑝-values 𝑝𝑗 = 1 − 𝐺𝑗(𝑇𝑗) such that 𝜑𝑗 = 𝟙[0,𝛼(𝑗)

𝑙𝑜𝑐
)(𝑝𝑗).

Proof. The assertion follows from Assumption 3.2 (a) and Sklar's Theorem, since it holds that

FWER𝝑,𝐶𝑿
(𝝋) ≤ FWER𝝑∗,𝐶𝑿

(𝝋) =

= 1 − 𝐶𝑻

(
𝐺1
(
𝑐1 (𝛼)

)
,… , 𝐺𝑚

(
𝑐𝑚 (𝛼)

))
=

= 1 − 𝐶𝑻

(
1 − 𝛼(1)

𝑙𝑜𝑐
,… , 1 − 𝛼(𝑚)

𝑙𝑜𝑐

)
. □

Lemma 3.5 shows that the problem of calibrating the local significance levels corresponding to 𝒄(𝛼) is equivalent to the
problem of estimating the contour line of 𝐶𝑻 at contour level 1 − 𝛼. Any point on that contour line defines a valid set of local
significance levels. Thus, one may weight the 𝑚 hypotheses for importance by choosing particular points on the contour line. If
all 𝑚 hypotheses are equally important it is natural to choose equal local levels 𝛼(𝑗)

𝑙𝑜𝑐
≡ 𝛼𝑙𝑜𝑐 for all 1 ≤ 𝑗 ≤ 𝑚. This amounts to

finding the point of intersection of the contour line of 𝐶𝑻 at contour level 1 − 𝛼 and the “main diagonal” in the 𝑚-dimensional
unit hypercube. Assumption 3.2 (c) is tailored toward this strategy and should be modified accordingly if a different weighting
scheme is used.

Recall that we assume that 𝐶𝑿 and, consequently, 𝐶𝑻 are unknown. Based on our investigations in Section 2 and making use
of Assumption 3.2 (c), we thus propose to calibrate 𝝋 empirically. If ℎ is known, this can be done by solving the equation

ℎ
(
𝐵𝐊

(
�̂�𝑿,𝑛

) (
1 − 𝛼𝑙𝑜𝑐,… , 1 − 𝛼𝑙𝑜𝑐

))
= 1 − 𝛼 (3.2)

for 𝛼𝑙𝑜𝑐 . Note that this assumption is formulated for equally important hypotheses and has to be modified for different situations.
If for a given 𝛼 the solution of (3.2) is not unique, one should choose the smallest set of local significance levels such that (3.2)
holds. We denote the solution of (3.2) by �̂�𝑙𝑜𝑐,𝑛. This leads to the representation

�̂�𝑙𝑜𝑐,𝑛 = 1 − 𝐵𝐊
(
�̂�𝑿,𝑛

)← (
ℎ← (1 − 𝛼)

)
,

where 𝐵𝐊(�̂�𝑿,𝑛)← is the quantile of 𝑢 → 𝐵𝐊(�̂�𝑿,𝑛)(𝑢,… , 𝑢). Since 𝐵𝐊(�̂�𝑿,𝑛) depends on the data, �̂�𝑙𝑜𝑐,𝑛 is a random variable
and

F̂WER𝝑∗,𝐶𝑿
(𝝋) = 1 − 𝐶𝑻

(
1 − �̂�𝑙𝑜𝑐,𝑛,… , 1 − �̂�𝑙𝑜𝑐,𝑛

)
is a random variable, too, which is distributed around the target FWER level 𝛼. The following theorem is the main result of this
section and quantifies the uncertainty about the realized FWER if the empirical calibration of 𝝋 is performed via (3.2).

Theorem 3.6. Let Assumption 3.2 be fulfilled. Then F̂WER𝝑∗,𝐶𝑿
has the following properties.

a) Consistency:

∀𝐶𝑿 ∈  ∶ F̂WER𝝑∗,𝐶𝑿
(𝝋) → 𝛼 almost surely as 𝑛→ ∞.
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b) Asymptotic Normality:

∀𝐶𝑿 ∈  ∶
√
𝑛
(

F̂WER𝝑∗,𝐶𝑿
(𝝋) − 𝛼

) 𝑑
→  (0, 𝜎2𝛼) as 𝑛→ ∞,

where

𝜎2𝛼 =
𝜎2
(
𝐶𝑻 (1 − 𝛼) ,… , 𝐶𝑻 (1 − 𝛼)

)(
𝐶 ′
𝑿

(
𝐶𝑻 (1 − 𝛼)

))2 ⋅
(
𝐶 ′
𝑻

(
𝐶𝑻 (1 − 𝛼)

))2
,

𝜎2(𝐮) ∶= 𝕍 [ℂ(𝐮)], and 𝐶 ′
𝑿

, 𝐶 ′
𝑻

denotes the first derivative of the univariate functions 𝑢 → 𝐶𝑿(𝑢,… , 𝑢), 𝑢 → 𝐶𝑻 (𝑢,… , 𝑢),
respectively.

c) Asymptotic Confidence Region:

∀𝛿 ∈ (0, 1) ∶ ∀𝐶𝑿 ∈  ∶ lim
𝑛→∞

ℙ𝝑∗,𝐶𝑿

⎛⎜⎜⎝
√
𝑛

F̂WER𝝑∗,𝐶𝑿
(𝝋) − 𝛼

�̂�𝑛
≤ 𝑧1−𝛿

⎞⎟⎟⎠ = 1 − 𝛿 ,

where �̂�2𝑛 ∶ 𝑛 → (0,∞) is a consistent estimator of the asymptotic variance 𝜎2𝛼 . In this, 𝑧𝛽 = Φ−1(𝛽) denotes the 𝛽-quantile
of the standard normal distribution on ℝ.

Proof.

a) Let 𝐶𝑿 ∈  be arbitrary, but fixed. Since ℎ is continuously differentiable, ℎ is also Lipschitz-continuous with Lipschitz
constant 𝐿 > 0. Therefore, with Theorem 2.1 we get|||F̂WER𝝑∗,𝐶𝑿

(𝝋) − 𝛼||| =
= |||1 − 𝛼 − 𝐶𝑻

(
1 − �̂�𝑙𝑜𝑐,𝑛,… , 1 − �̂�𝑙𝑜𝑐,𝑛

)|||
= |||ℎ (𝐵𝐊

(
�̂�𝑿,𝑛

) (
1 − �̂�𝑙𝑜𝑐,𝑛,… , 1 − �̂�𝑙𝑜𝑐,𝑛

))
− ℎ

(
𝐶𝑿

(
1 − �̂�𝑙𝑜𝑐,𝑛,… , 1 − �̂�𝑙𝑜𝑐,𝑛

))||| ≤
≤
‖‖‖ℎ (𝐵𝐊

(
�̂�𝑿,𝑛

))
− ℎ

(
𝐶𝑿

)‖‖‖∞ ≤

≤ 𝐿 ⋅ ‖‖‖𝐵𝐊
(
�̂�𝑿,𝑛

)
− 𝐶𝑿

‖‖‖∞ =

= 𝑂
(
𝑛−1∕2 (log log 𝑛)1∕2

)
almost surely.

b) Letting 𝑝 ∶= ℎ←(1 − 𝛼), Lemma 7.2 yields that√
𝑛
(
1 − �̂�𝑙𝑜𝑐,𝑛 − 𝐶←

𝑿
(𝑝)
)
=
√
𝑛
(
𝐵𝐊

(
�̂�𝑿,𝑛

)← (𝑝) − 𝐶←
𝑿
(𝑝)
)

𝑑
←→ 

⎛⎜⎜⎝0,
𝜎2
(
𝐶←
𝑿
(𝑝) ,… , 𝐶←

𝑿
(𝑝)
)(

𝐶 ′
𝑿

(
𝐶←
𝑿
(𝑝)
))2 ⎞⎟⎟⎠ .

Therefore, applying the Delta Method to 𝑢 → 𝐶𝑻 (𝑢,… , 𝑢), we have that√
𝑛
(

F̂WER𝝑∗,𝐶𝑿
(𝝋) − 𝛼

)
=

= −
√
𝑛
(
𝐶𝑻

(
1 − �̂�𝑙𝑜𝑐,𝑛,… , 1 − �̂�𝑙𝑜𝑐,𝑛

)
− (1 − 𝛼)

)
=

= −
√
𝑛
(
𝐶𝑻

(
1 − �̂�𝑙𝑜𝑐,𝑛,… , 1 − �̂�𝑙𝑜𝑐,𝑛

)
− 𝐶𝑻

(
𝐶←
𝑿
(𝑝) ,… , 𝐶←

𝑿
(𝑝)
))

𝑑
←→ 

⎛⎜⎜⎝0,
𝜎2
(
𝐶←
𝑿
(𝑝) ,… , 𝐶←

𝑿
(𝑝)
)(

𝐶 ′
𝑿

(
𝐶←
𝑿
(𝑝)
))2 ⋅

(
𝐶 ′
𝑻

(
𝐶←
𝑿
(𝑝)
))2⎞⎟⎟⎠ .
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The result follows from the definition of 𝑝.

c) Since �̂�𝑛 → 𝜎𝛼 almost surely and particularly, in probability for 𝑛 → ∞, the assertion follows directly from part b) using
Slutsky's Theorem. □

If the function ℎ is unknown, one may approximate the value of �̂�𝑙𝑜𝑐,𝑛 with high precision by a Monte Carlo simulation for a
given number𝑀 of Monte Carlo repetitions. To this end, generate𝑀 × 𝑛 pseudo-random vectors that follow the estimated (joint)
distribution of 𝐗 under 𝝑∗, by combining𝐵𝐊(�̂�𝑿,𝑛) and the marginal cdfs 𝐹1,… , 𝐹𝑚 of𝑋1,… , 𝑋𝑚 under the global hypothesis.
From these, calculate a pseudo-sample 𝐓1,… ,𝐓𝑀 from the distribution of 𝐓 under 𝝑∗. Then, 𝐆(𝐓1),… ,𝐆(𝐓𝑀 ) constitutes
a pseudo-random sample from the estimator of 𝐶𝑻 , and the empirical equi-coordinate (1 − 𝛼)-quantile of this pseudo-sample
approximates �̂�𝑙𝑜𝑐,𝑛. Since the number 𝑀 of pseudo-random vectors to be generated is in principle unlimited, Theorem 3.6
continues to hold true if this strategy is pursued. We will make use of this approach in the more involved examples studied in
Section 4 and Section 5.

4 SIMULATION STUDY

In this section, we report the results of a simulation study regarding the FWER and the power of multiple tests that are empirically
calibrated as proposed in Section 3. Assume w.l.o.g. that 𝐼0(𝝑) ∶= {1, ..., 𝑚0} and let 𝑚1 ∶= 𝑚 − 𝑚0. The empirical FWER is
given by the relative frequency over the 𝐿 simulation runs of the occurrence of at least one false rejection, i.e.,

F̂WER𝜗,𝐶𝑿 (𝝋) ∶= 𝐿−1
𝐿∑

𝓁=1
𝟙⋃𝑚0

𝑗=1

{
𝜑(𝓁)𝑗 =1

} (𝐱(𝓁)1 ,… , 𝐱(𝓁)𝑛
)
.

Likewise, the empirical power is defined as the average proportion of true rejections, that is,

p̂ower (𝝋) ∶= 𝐿−1
𝐿∑

𝓁=1

(
𝑚−1
1

𝑚∑
𝑗=𝑚0+1

𝟙{
𝜑(𝓁)𝑗 =1

} (𝐱(𝓁)1 ,… , 𝐱(𝓁)𝑛
))

,

where (𝐱(𝓁)1 ,… , 𝐱(𝓁)𝑛 ) ∈ 𝑛 denotes the pseudo-sample in the 𝓁-th simulation run.
The setting is as follows. We simulate from various one-parametric copula models (namely, Frank, Clayton, Gumbel, Student's

𝑡 with four degrees of freedom, and the product copula) with parameters corresponding to weak (Kendall's 𝜏 ≈ 0.25) and strong
dependence (Kendall's 𝜏 ≈ 0.75), respectively. In the case of 𝑡4-copulas we restrict our attention to the case of equi-correlation,
and the parameter is the equi-correlation coefficient. For convenience (and without loss of generality), the data are marginally
normally distributed with all marginal variances equal to one. In the inference procedures, however, we assume these variances
to be unknown, leading to Studentized test statistics. For each 1 ≤ 𝑗 ≤ 𝑚, we let 𝜗𝑗 be the mean in coordinate 𝑗. In all simulation
settings, 𝜗𝑗 is set to 0.4 under alternatives. The null hypotheses are given by 𝐻𝑗 ∶ {𝜗𝑗 = 𝜗∗𝑗 = 0}, with two-sided alternatives.
Hence, marginal two-sided 𝑡-tests are performed with multiplicity corrected local significance level. Our Bernstein procedure is
compared with the widely used Bonferroni and Šidák methods.

Notice that Assumption 3.2 is fulfilled. From Lemma 3.3 we get that the LFC is indeed 𝝑∗ = (0,… , 0)⊤. Further, the marginal
distribution functions of the test statistics are known (even for finite 𝑛) and the function ℎ exists, since 𝑢 → 𝐶𝑿(𝑢,… , 𝑢) is strictly
increasing for the choices of 𝐶𝑿 in this simulation study. However, the function ℎ is unknown in contrast to the examples in
Section 3.

The calculation of the Bernstein copula has been performed as in Example 4.2 of Cottin and Pfeifer (2014), which uses𝐾𝑗 ∶=
𝑛 for all 𝑗 ∈ {1,… , 𝑚}. This choice fulfills the assumption of Theorem 2.1. In order to meet the assumptions of Theorem 2.4
it would be necessary to choose 𝐾𝑗 of slightly larger magnitude. Notice, however, that we consider small sample sizes 𝑛 ∈
{20, 100} in our simulations, such that asymptotic considerations do not apply here. Instead, some preliminary simulations
indicated that the choice𝐾𝑗 ≡ 𝑛 is appropriate. The choice of 𝑛was motivated by the purpose to demonstrate how accurately the
Bernstein estimator performs in a small sample scenario. For instance, the real data example that we will present in Section 5
has a sample size of 𝑛 = 20. With the simulations presented here, we can thus evaluate the appropriateness of the application of
the proposed methodology in this real data example.

Since the function ℎ is assumed unknown here, we calibrate the proposed multiple test with the following algorithm that was
outlined at the end of Section 3.
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Algorithm 4.1.

1. Choose a number 𝑀 of Monte Carlo repetitions.
2. For each 𝑏 = 1,… ,𝑀 draw a sample 𝐔#𝑏

1 ,… ,𝐔#𝑏
𝑛 of 𝐵𝐊(�̂�𝑿,𝑛) and calculate

𝑋#𝑏
𝑖,𝑗 = �̂�𝑗 ⋅Φ

−1
𝑗

(
𝑈#𝑏
𝑖,𝑗

)
+ 𝜗∗𝑗 , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚,

where �̂�𝑗 is the sample standard deviation of 𝑋1,𝑗 ,… , 𝑋𝑛,𝑗 .
3. For all 1 ≤ 𝑗 ≤ 𝑚, compute

𝑇 #𝑏
𝑗 = 𝑇𝑗

(
𝐗#𝑏
1 ,… ,𝐗#𝑏

𝑛

)
=
||||||
√
𝑛 ⋅

1
𝑛

∑𝑛
𝑖=1𝑋

#𝑏
𝑖,𝑗 − 𝜗

∗
𝑗

�̂�#𝑏𝑗

||||||
and obtain the pseudo-sample

𝑉 #𝑏
𝑗 = 2𝐹𝑡𝑛−1

(
𝑇 #𝑏
𝑗

)
− 1

from the copula of 𝐓.
4. Finally, calibrate �̂�𝑙𝑜𝑐,𝑛 = (�̂�(1)

𝑙𝑜𝑐,𝑛
,… , �̂�(𝑚)

𝑙𝑜𝑐,𝑛
)⊤ by solving

#
{
𝑏
|||𝑉 #𝑏
𝑗 ≤ 1 − �̂�(𝑗)

𝑙𝑜𝑐,𝑛
for all 1 ≤ 𝑗 ≤ 𝑚

}
= ⌈(1 − 𝛼)𝑀⌉ . (4.1)

Notice that in (4.1), we implicitly weight the hypotheses. This means that the weights corresponding to the obtained �̂�𝑙𝑜𝑐,𝑛
depend on the simulation data, for convenience of implementation. In comparison, the classical Bonferroni and Šidák corrected
local significance levels are given by

𝛼(𝑗)
𝑙𝑜𝑐

= 𝛼

𝑚
and 𝛼(𝑗)

𝑙𝑜𝑐
= 1 − (1 − 𝛼)1∕𝑚 , 1 ≤ 𝑗 ≤ 𝑚,

respectively.
The results are displayed in Table 1 (weak dependence with Kendall's 𝜏 ≈ 0.25) and Table 2 (strong dependence with Kendall's

𝜏 ≈ 0.75). They reveal that in this simulation study the Bernstein method performs best in the case that 𝑀 is large and the
proportion of true null hypotheses 𝜋0 is not too large, that is, in these cases its empirical FWER is closer to 𝛼 and its empirical
power is higher than those of the generic calibrations. Under strong dependence the power of the Bernstein method increases
even further. On the other hand, if all hypotheses are true then the empirical FWER for the Bernstein method can be above
𝛼 = 5% and 𝑀 needs to be large in order to improve the empirical FWER. Surprisingly, the sample size 𝑛 does not have a clear
positive impact in this simulation study.

5 APPLICATION

In this section, we analyze insurance claim data from 𝑚 = 19 adjacent geographical regions (see Table 5). For every region
𝑗 ∈ {1,… , 19} these claims have, for confidentiality reasons, been adjusted to a neutral monetary scale. The claim amounts and
types have been aggregated to full years, such that temporal dependencies are considered negligible. However, strong nonlinear
spatial dependencies are likely to be present in the data. Hence, we treat each of the 𝑛 = 20 rows in Table 5 as an independent
repetition 𝐗𝑖 = 𝐱𝑖 of an 𝑚-dimensional random vector 𝐗 = (𝑋1,… , 𝑋𝑚)⊤, where 1 ≤ 𝑖 ≤ 20 is the time index in years and
𝑚 = 19 refers to the regions.

An important quantity for regulators and risk managers is the region-specific value-at-risk (VaR). The VaR at level 𝑝 for
region 𝑗 is defined as the 𝑝-quantile of the (marginal) distribution of 𝑋𝑗 , that is,

VaR𝑗 (𝑝) ∶= 𝐹←
𝑋𝑗

(𝑝) .

In insurance mathematics, typically considered values of 𝑝 are close to one. Here, we chose 𝑝 = 0.995. Our goal is to derive
multiplicity-corrected confidence intervals for 𝜗𝑗 = VaR𝑗(0.995), 1 ≤ 𝑗 ≤ 𝑚 = 19, that are compatible with (i.e., dual to) the
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T A B L E 1 Comparison of empirical FWER and power regarding Bonferroni, Šidák, and Bernstein corrections under various weak dependency
structures with 𝑚 = 20, 𝜋0 = 𝑚0∕𝑚 ∈ {0.5, 1}, 𝛼 = 0.05, 𝐿 = 1,000, 𝑀 ∈ {200, 1,000}, and 𝑛 ∈ {20, 100}

FWER Power
Family 𝝅𝟎 𝑴 𝒏 Bonferroni Šidák Bernstein Bonferroni Šidák Bernstein
Frank (2) 0.5 200 20 1.8% 1.8% 6.1% 7.5% 7.7% 14.7%

100 1.6% 1.8% 6.9% 81.4% 81.7% 86.1%

1000 20 2.6% 2.6% 4.2% 7.8% 8.0% 10.6%

100 2.6% 2.6% 4.0% 82.0% 82.2% 84.6%

1 200 20 5.2% 5.2% 14.6%

100 3.0% 3.1% 13.1%

1,000 20 5.5% 5.5% 7.8%

100 4.6% 4.9% 6.6%

Gumbel (2) 0.5 200 20 2.5% 2.5% 6.4% 8.4% 8.6% 19.4%

100 1.3% 1.5% 6.0% 80.5% 80.7% 89.9%

1,000 20 1.3% 1.3% 3.8% 7.1% 7.2% 12.7%

100 2.1% 2.2% 4.8% 80.6% 80.9% 88.1%

1 200 20 1.9% 1.9% 9.8%

100 2.6% 2.6% 10.0%

1,000 20 2.7% 2.7% 5.3%

100 2.2% 2.2% 6.4%

Clayton (1) 0.5 200 20 2.2% 2.2% 7.0% 7.0% 7.1% 14.3%

100 2.1% 2.1% 6.0% 81.3% 81.5% 88.0%

1,000 20 2.4% 2.4% 4.3% 7.0% 7.1% 9.6%

100 1.8% 1.8% 3.9% 81.3% 81.5% 86.4%

1 200 20 3.3% 3.4% 12.6%

100 4.6% 4.6% 14.7%

1,000 20 3.5% 3.7% 5.6%

100 3.6% 3.7% 7.4%

𝑡4(0.4) 0.5 200 20 2.8% 2.8% 7.6% 6.7% 6.8% 13.4%

100 2.0% 2.1% 8.0% 81.7% 82.0% 87.4%

1,000 20 2.3% 2.3% 3.6% 7.3% 7.5% 10.2%

100 2.9% 3.0% 4.0% 81.3% 81.5% 85.0%

1 200 20 5.1% 5.1% 15.0%

100 4.1% 4.1% 12.8%

1,000 20 4.4% 4.5% 7.6%

100 3.3% 3.3% 6.9%

Independence 0.5 200 20 2.5% 2.6% 8.2% 7.4% 7.6% 13.5%

100 3.4% 3.4% 7.6% 81.8% 81.9% 86.0%

1,000 20 2.9% 2.9% 3.9% 7.0% 7.2% 8.8%

100 2.1% 2.2% 3.6% 81.4% 81.6% 82.8%

1 200 20 5.3% 5.3% 14.3%

100 5.7% 5.8% 15.5%

1000 20 4.0% 4.1% 6.9%

100 4.2% 4.2% 7.6%
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T A B L E 2 Comparison of empirical FWER and power regarding Bonferroni, Šidák, and Bernstein corrections under various strong dependency
structures with 𝑚 = 20, 𝜋0 = 𝑚0∕𝑚 ∈ {0.5, 1}, 𝛼 = 0.05, 𝐿 = 1,000, 𝑀 ∈ {200, 1,000}, and 𝑛 ∈ {20, 100}

FWER Power
Family 𝝅𝟎 𝑴 𝒏 Bonferroni Šidák Bernstein Bonferroni Šidák Bernstein
Frank (14) 0.5 200 20 0.8% 0.8% 6.8% 8.1% 8.2% 22.5%

100 0.6% 0.6% 7.0% 81.7% 81.9% 94.4%

1,000 20 1.0% 1.0% 3.2% 7.9% 8.0% 18.3%

100 0.9% 0.9% 4.1% 81.2% 81.4% 92.3%

1 200 20 0.9% 1.0% 7.5%

100 1.0% 1.0% 8.8%

1,000 20 1.4% 1.4% 5.2%

100 1.1% 1.1% 5.3%

Gumbel (4) 0.5 200 20 1.5% 1.6% 7.1% 7.7% 7.8% 23.3%

100 0.6% 0.6% 6.2% 81.6% 81.8% 94.9%

1,000 20 0.5% 0.5% 2.2% 7.6% 7.7% 18.1%

100 1.1% 1.1% 4.3% 80.9% 81.1% 93.6%

1 200 20 1.3% 1.3% 6.2%

100 0.9% 0.9% 7.9%

1,000 20 1.5% 1.5% 4.1%

100 1.4% 1.4% 6.3%

Clayton (6) 0.5 200 20 0.9% 0.9% 4.8% 7.2% 7.3% 22.0%

100 1.2% 1.3% 7.6% 81.3% 81.5% 94.9%

1,000 20 0.8% 0.8% 3.5% 7.0% 7.1% 15.9%

100 0.9% 0.9% 4.2% 80.8% 81.0% 93.0%

1 200 20 1.3% 1.5% 5.9%

100 1.3% 1.3% 8.7%

1,000 20 1.4% 1.4% 4.1%

100 1.0% 1.0% 5.0%

𝑡4(0.9) 0.5 200 20 1.6% 1.6% 6.9% 8.3% 8.4% 22.2%

100 0.7% 0.8% 6.8% 80.9% 81.1% 94.3%

1,000 20 1.0% 1.0% 2.3% 7.4% 7.6% 16.1%

100 1.0% 1.0% 4.8% 81.4% 81.5% 93.0%

1 200 20 1.8% 1.8% 7.8%

100 0.9% 1.0% 9.1%

1,000 20 1.5% 1.6% 4.1%

100 1.4% 1.4% 5.7%

Bonferroni, Šidák, and Bernstein copula-based correction methods discussed before. To this end, let auxiliary point hypothe-
ses be defined as 𝐻𝜗∗𝑗

∶ {𝜗𝑗 = 𝜗∗𝑗 } for fixed 𝜗∗𝑗 > 0. According to the Extended Correspondence Theorem (see Section 1.3 of

Dickhaus, 2014), the set of all values 𝜗∗𝑗 for which 𝐻𝜗∗𝑗
is retained by a multiple test at FWER level 𝛼 (leading to a local signif-

icance level 𝛼(𝑗)
𝑙𝑜𝑐

in coordinate 𝑗) constitutes a confidence region at simultaneous confidence level 1 − 𝛼 for 𝜗𝑗 , 1 ≤ 𝑗 ≤ 𝑚. We
set 𝛼 = 5%.

Our model assumptions are analogous to those from the examples in the previous sections. It can be shown (cf. our
argumentation in Example 3.4 (a)) that Assumption 3.2 (a) and (b) are fulfilled. On the other hand, it is difficult to check
Assumption 3.2 (c) in many applications. For example, in the simulation study reported in Section 4 we used the fact that the
data were simulated under some suitable copula families.

In quantitative risk management, it is common practice to model the excess distribution of 𝑋𝑗 over some given threshold 𝑢𝑗
by a generalized Pareto distribution (GPD) (cf., e.g., Section 7.2.2 of McNeil et al., 2005).
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Definition 5.1 (Definition 7.16 of McNeil et al. (2005)). For shape parameter 𝜉 ∈ ℝ and scale parameter 𝛽 > 0, the cdf of the
GPD is given by

𝐺𝜉,𝛽 (𝑥) =
{
1 − (1 + 𝜉𝑥∕𝛽)−1∕𝜉 , 𝜉 ≠ 0,
1 − exp(−𝑥∕𝛽), 𝜉 = 0,

where 𝑥 ≥ 0 if 𝜉 ≥ 0 and 0 ≤ 𝑥 ≤ −𝛽∕𝜉 if 𝜉 < 0.

In the remainder, we make the following assumption.

Assumption 5.2. For every 1 ≤ 𝑗 ≤ 𝑚 = 19 there exists a threshold 𝑢𝑗 and parameter values 𝜉𝑗 and 𝛽𝑗 such that

ℙ
[
𝑋𝑗 − 𝑢𝑗 ≤ 𝑥

|||𝑋𝑗 > 𝑢𝑗 ] ≈ 𝐺𝜉𝑗 ,𝛽𝑗 (𝑥)
for all 𝑥 ≥ 0.

Under Assumption 5.2, an approximation of the VaR at level 𝑝 for region 𝑗 is given by

VaR𝜉𝑗 ,𝛽𝑗 (𝑝) ≈ 𝑢𝑗 +
𝛽𝑗

𝜉𝑗

⎛⎜⎜⎝
(

1 − 𝑝
1 − 𝐹𝑋𝑗

(
𝑢𝑗
))−𝜉𝑗

− 1
⎞⎟⎟⎠ =∶ 𝑞𝑗

(
𝜉𝑗 , 𝛽𝑗

)
,

provided that 𝑝 ≥ 𝐹𝑋𝑗 (𝑢𝑗). For ease of notation, we let 𝜗𝑗 = 𝑞𝑗(𝜉𝑗 , 𝛽𝑗) in the sequel.
For computational convenience, we carried out the test for 𝐻𝜗∗𝑗

as a confidence-region test in the sense of Aitchison (1964)

based on the family (
𝐻𝜉∗𝑗 ,𝛽

∗
𝑗
∶
{
𝜉𝑗 = 𝜉∗𝑗 , 𝛽𝑗 = 𝛽

∗
𝑗

} |||𝛽∗𝑗 > 0, 𝜉∗𝑗 ∈ ℝ
)

(5.1)

of point hypotheses. Namely, the test procedure works as follows.

Algorithm 5.3.

1. Test each 𝐻𝜉∗𝑗 ,𝛽
∗
𝑗

by an arbitrary level 𝛼(𝑗)
𝑙𝑜𝑐

test, where 𝛼(𝑗)
𝑙𝑜𝑐

denotes a multiplicity-corrected significance level based on the
Bonferroni, Šidák, or Bernstein copula calibration, respectively.

2. Let a confidence region 𝐶𝜉𝑗 ,𝛽𝑗 (𝐱1,… , 𝐱𝑛) at confidence level 1 − 𝛼(𝑗)
𝑙𝑜𝑐

for (𝜉𝑗 , 𝛽𝑗) be defined as the set of all parameter values
(𝜉∗𝑗 , 𝛽

∗
𝑗 ) for which 𝐻𝜉∗𝑗 ,𝛽

∗
𝑗

is retained.

3. Reject 𝐻𝜗∗𝑗
at level 𝛼(𝑗)

𝑙𝑜𝑐
, if the set {(𝜉∗𝑗 , 𝛽

∗
𝑗 ) ∶ 𝑞𝑗(𝜉

∗
𝑗 , 𝛽

∗
𝑗 ) = 𝜗

∗
𝑗 } has an empty intersection with 𝐶𝜉𝑗 ,𝛽𝑗 (𝐱1,… , 𝐱𝑛).

Due to Algorithm 5.3, it suffices to construct point hypothesis tests for (5.1). A standard technique for testing parametric
hypotheses is to perform a likelihood ratio test. In the risk management context, this method is described in Appendix A.3.5
of McNeil et al. (2005). Define the random variable 𝑁𝑢𝑗

∶= #{1 ≤ 𝑖 ≤ 𝑛|𝑋𝑖,𝑗 > 𝑢𝑗} and let �̃�1,𝑗 ,… , �̃�𝑁𝑢𝑗 ,𝑗
denote the corre-

sponding sub-sample for region 𝑗. Then the excesses 𝑌1,𝑗 ,… , 𝑌𝑁𝑢𝑗 ,𝑗
over 𝑢𝑗 are defined by

𝑌𝑖,𝑗 ∶= �̃�𝑖,𝑗 − 𝑢𝑗.

The test statistic for testing 𝐻𝜉∗𝑗 ,𝛽
∗
𝑗

is then given by

𝑇𝑗

(
𝑌1,𝑗,… , 𝑌𝑁𝑢𝑗 ,𝑗

; 𝜉∗𝑗 , 𝛽
∗
𝑗

)
∶= −2 logΛ

(
𝑌1,𝑗,… , 𝑌𝑁𝑢𝑗 ,𝑗

; 𝜉∗𝑗 , 𝛽
∗
𝑗

)
,

where the likelihood ratio Λ is defined by

Λ
(
𝑌1,𝑗,… , 𝑌𝑁𝑢𝑗 ,𝑗

; 𝜉∗𝑗 , 𝛽
∗
𝑗

)
∶=

𝐿
(
𝑌1,𝑗,… , 𝑌𝑁𝑢𝑗 ,𝑗

; 𝜉∗𝑗 , 𝛽
∗
𝑗

)
sup(𝜉,𝛽) 𝐿

(
𝑌1,𝑗,… , 𝑌𝑁𝑢𝑗 ,𝑗

; 𝜉, 𝛽
)
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F I G U R E 2 Raw data and mean excess plots for regions 2 and 4. The graphs in the upper panel display the data from Table 5 for 𝑗 ∈ {2, 4},
respectively. The graphs in the lower panel show the corresponding mean excess plots

with log-likelihood function

log𝐿
(
𝑌1,𝑗,… , 𝑌𝑁𝑢𝑗 ,𝑗

; 𝜉, 𝛽
)
= −𝑁𝑢𝑗

log 𝛽 −
(
1 + 1

𝜉

)𝑁𝑢𝑗∑
𝑖=1

log
(
1 + 𝜉

𝑌𝑖,𝑗

𝛽

)
.

Under 𝐻𝜉∗𝑗 ,𝛽
∗
𝑗
, 𝑇𝑗 is asymptotically 𝜒2-distributed with two degrees-of-freedom. This means that the (asymptotic) confidence

interval 𝐶𝜉𝑗 ,𝛽𝑗 (𝐱1,… , 𝐱𝑛) in the second step of Algorithm 5.3 is given by

𝐶𝜉𝑗 ,𝛽𝑗
(
𝐗1,… ,𝐗𝑛

)
=
{(

𝜉∗𝑗 , 𝛽
∗
𝑗

)
∶ 𝑇𝑗

(
𝑌1,𝑗,… , 𝑌𝑁𝑢𝑗 ,𝑗

; 𝜉∗𝑗 , 𝛽
∗
𝑗

)
≤ 𝐹−1

𝜒2
2

(
1 − 𝛼(𝑗)

𝑙𝑜𝑐

)}
. (5.2)

Utilizing (5.2), the confidence region [𝜗lower
𝑗 , 𝜗

upper
𝑗 ] for 𝜗𝑗 based on the third step of Algorithm 5.3 is constructed by finding

the minimum value 𝜗lower
𝑗 = min 𝑞𝑗(𝜉∗𝑗 , 𝛽

∗
𝑗 ) and the maximum value 𝜗upper

𝑗 = max 𝑞𝑗(𝜉∗𝑗 , 𝛽
∗
𝑗 ), where (𝜉∗𝑗 , 𝛽

∗
𝑗 ) are located on the

boundary of 𝐶𝜉𝑗 ,𝛽𝑗 (𝐱1,… , 𝐱𝑛).
A graphical method for the determination of a suitable threshold 𝑢𝑗 is based on the mean excess plot in coordinate 𝑗; see

Section 7.2.2 of McNeil et al. (2005) for details. Namely, all possible values 𝑢 of 𝑢𝑗 are plotted against the mean of the values
of 𝑌1,𝑗,… , 𝑌𝑁𝑢,𝑗 . If the GPD model is appropriate, the plot should yield an approximately linear graph for arguments exceeding
𝑢𝑗 . Usually the few largest values of 𝑢 are ignored, because they lead to very small values of 𝑁𝑢.

For example, Figure 2 shows the mean excess plots for the two regions 2 and 4. The mean excess plot for region 2 is approxi-
mately linear when ignoring the three smallest and the four largest values of 𝑢. This means that a suitable threshold 𝑢2 would be
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T A B L E 3 Estimated parameters 𝜉𝑗 , 𝛽𝑗 , 1 ≤ 𝑗 ≤ 19, for the region-specific GPD models. Estimation has been performed via maximum likelihood

𝜉𝑗 0.41 1.17 0.75 1.43 0.87 1.51 1.10 0.30 0.49 0.79

0.56 0.98 1.00 0.73 0.47 0.81 1.08 0.60 0.89

𝛽𝑗 19.59 22.21 18.41 0.82 1.10 1.56 4.57 9.75 2.91 6.46

0.64 0.99 5.12 3.42 20.34 4.52 6.98 1.96 1.64

T A B L E 4 Lower confidence bounds 𝜗lower
𝑗 for the 99.5% VaR, 1 ≤ 𝑗 ≤ 19, obtained by the Bonferroni, the Šidák, and the Bernstein copula

method, respectively. The results for the Bernstein method rely on 𝑀 = 1,000 Monte Carlo repetitions in Algorithm 5.4

Bonferroni 89.08 283.30 126.20 19.41 10.00 36.68 62.57 39.45 14.62 51.14

3.74 10.13 53.74 25.43 101.62 37.11 84.99 12.79 14.80

Šidák 89.22 284.03 126.46 19.48 10.03 36.81 62.75 39.51 14.64 51.25

3.75 10.15 53.82 25.47 101.78 37.20 85.20 12.81 14.83

Bernstein 91.59 287.32 127.61 19.81 10.13 37.37 63.54 38.82 14.73 51.74

3.78 10.25 52.89 26.27 99.90 37.58 82.71 12.91 14.98

between 18.815 and 28.316. Similarly, the mean excess plot for region 4 is approximately linear when ignoring the two largest
values of 𝑢, hence 𝑢4 < 0.321. Based on such considerations, we chose the thresholds 𝐮 = (𝑢1,… , 𝑢19)⊤ given by

𝐮 ∶= (1.0, 28.0, 9.0, 0.3, 0.2, 0.4, 2.6, 1.2, 0.4, 1.1, 0.1, 0.2, 22.5, 1.6, 3.2, 0.2, 12.5, 1.2, 0.5)⊤ .

Finally, it remains to determine the local significance levels (𝛼(𝑗)
𝑙𝑜𝑐
)1≤𝑗≤19. In the case of the Bonferroni or the Šidák method, this

is trivial. To calibrate the local significance levels with the Bernstein method, we employed a modified version of Algorithm 4.1
based on the empirical excess distribution. Algorithm 5.4 yields a resampling-based approximation of the copula of the vector
𝐓 = (𝑇1,… , 𝑇𝑚)⊤ of the region-specific likelihood ratio test statistics.

Algorithm 5.4.

1. For every 1 ≤ 𝑗 ≤ 𝑚, estimate the parameters 𝜉𝑗 and 𝛽𝑗 of the excess distribution of𝑋𝑗 via maximum likelihood and calculate
𝑁𝑢𝑗

.
2. Choose a number 𝑀 of Monte Carlo repetitions.
3. For each 1 ≤ 𝑏 ≤𝑀 draw a pseudo sample 𝐔#𝑏

1 ,… ,𝐔#𝑏
𝑛 from the (empirical) Bernstein copula 𝐵𝐊(�̂�𝑿,𝑛) and calculate the

corresponding GPD excesses

𝑌 #𝑏
𝑖,𝑗 = 𝐺←

𝜉𝑗 ,𝛽𝑗

(
𝑈#𝑏
(𝑖),𝑗

)
, 1 ≤ 𝑖 ≤ 𝑁𝑢𝑗

, 1 ≤ 𝑗 ≤ 𝑚,

where 𝑈#𝑏
(𝑖),𝑗 denotes the 𝑖-th reverse order statistic of (𝑈#𝑏

𝑖,𝑗 )1≤𝑖≤𝑛.

4. For each 1 ≤ 𝑗 ≤ 𝑚, compute 𝑇 #𝑏
𝑗 = 𝑇𝑗(𝑌 #𝑏

1,𝑗 ,… , 𝑌 #𝑏
𝑁𝑢𝑗 ,𝑗

; 𝜉𝑗 , 𝛽𝑗), and obtain the pseudo-sample

𝑉 #𝑏
𝑗 = �̂�𝑗,𝑀

(
𝑇 #𝑏
𝑗

)
, 1 ≤ 𝑗 ≤ 𝑚

from the copula of 𝐓.
5. Finally, calibrate �̂�𝑙𝑜𝑐,𝑛 = (�̂�(1)

𝑙𝑜𝑐,𝑛
,… , �̂�(𝑚)

𝑙𝑜𝑐,𝑛
)⊤ by solving

#
{
𝑏
|||𝑉 #𝑏
𝑗 ≤ 1 − �̂�(𝑗)

𝑙𝑜𝑐,𝑛
for all 1 ≤ 𝑗 ≤ 𝑚

}
= ⌈(1 − 𝛼)𝑀⌉ .

Table 3 displays the parameter estimates for the region-specific GPD models, and Table 4 displays the lower bounds
(𝜗lower
𝑗 )1≤𝑗≤𝑚 of the region-specific confidence intervals for the 99.5% VaR obtained by the Bonferroni, Šidák, and Bernstein

copula calibration, respectively.
Similarly as in Algorithm 4.1, an implicit weighting has been employed for the determination of the local significance levels

(𝛼(𝑗)
𝑙𝑜𝑐
)1≤𝑗≤𝑚 in Algorithm 5.4. Therefore, the confidence bounds obtained with the Bernstein copula method are not guaranteed

to be more informative (i.e., larger) than the ones obtained by the Bonferroni or the Šidák methods for all regions. However, we
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T A B L E 5 Insurance claim data from 19 adjacent geographical regions over 20 years

Region 𝒋

Raw data 𝒙𝒊,𝒋 1 2 3 4 5 6 7 8
year 𝑖 1 23.664 154.664 40.569 14.504 10.468 7.464 22.202 17.682

2 1.080 59.545 3.297 1.344 1.859 0.477 6.107 7.196

3 21.731 31.049 55.973 5.816 14.869 20.771 3.580 14.509

4 28.990 31.052 30.328 4.709 0.717 3.530 6.032 6.512

5 53.616 62.027 57.639 1.804 2.073 4.361 46.018 22.612

6 29.950 41.722 12.964 1.127 1.063 4.873 6.571 11.966

7 3.474 14.429 10.869 0.945 2.198 1.484 4.547 2.556

8 10.020 31.283 21.116 1.663 2.153 0.932 25.163 3.222

9 5.816 14.804 128.072 0.523 0.324 0.477 3.049 7.791

10 170.725 576.767 108.361 41.599 20.253 35.412 126.698 71.079

11 21.423 50.595 4.360 0.327 1.566 64.621 5.650 1.258

12 6.380 28.316 3.740 0.442 0.736 0.470 3.406 7.859

13 124.665 33.359 14.712 0.321 0.975 2.005 3.981 4.769

14 20.165 49.948 17.658 0.595 0.548 29.350 6.782 4.873

15 78.106 41.681 13.753 0.585 0.259 0.765 7.013 9.426

16 11.067 444.712 365.351 99.366 8.856 28.654 10.589 13.621

17 6.704 81.895 14.266 0.972 0.519 0.644 8.057 18.071

18 15.550 277.643 26.564 0.788 0.225 1.230 26.800 64.538

19 10.099 18.815 9.352 2.051 1.089 6.102 2.678 4.064

20 8.492 138.708 46.708 3.680 1.132 1.698 165.600 7.926

9 10 11 12 13 14 15 16 17 18 19
12.395 18.551 1.842 4.100 46.135 14.698 44.441 7.981 35.833 10.689 7.299

1.436 3.720 0.429 1.026 7.469 7.058 4.512 0.762 14.474 9.337 0.740

17.175 87.307 0.209 2.344 22.651 4.117 26.586 3.920 13.804 2.683 3.026

0.682 3.115 0.521 0.696 31.126 1.878 29.423 6.394 18.064 1.201 0.894

1.581 11.179 2.715 1.327 40.156 4.655 104.691 28.579 17.832 1.618 3.402

15.676 24.263 4.832 0.701 16.712 11.852 29.234 7.098 17.866 5.206 5.664

0.456 1.137 0.268 0.580 11.851 2.057 11.605 0.282 16.925 2.082 1.008

1.581 5.477 0.741 0.369 3.814 1.869 8.126 1.032 14.985 1.390 1.703

4.079 7.002 0.524 6.554 5.459 3.007 8.528 1.920 5.638 2.149 2.908

21.762 64.582 9.882 6.401 106.197 44.912 191.809 90.559 154.492 36.626 36.276

0.626 3.556 1.052 8.277 22.564 8.961 19.817 16.437 25.990 2.364 6.434

0.894 3.591 0.136 0.364 28.000 7.574 3.213 1.749 12.735 1.744 0.558

2.006 1.973 1.990 15.176 57.235 23.686 110.035 17.373 7.276 2.494 0.525

2.921 6.394 0.630 0.762 25.897 3.439 8.161 3.327 24.733 2.807 1.618

2.180 3.769 0.770 15.024 36.068 1.613 6.127 8.103 12.596 4.894 0.822

9.589 19.485 0.287 0.464 24.211 38.616 51.889 1.316 173.080 3.557 11.627

5.515 13.163 0.590 2.745 16.124 2.398 20.997 2.515 5.161 2.840 3.002

2.637 80.711 0.245 0.217 12.416 4.972 59.417 3.762 24.603 7.404 19.107

2.373 2.057 0.415 0.351 10.707 2.468 10.673 1.743 27.266 1.368 0.644

2.972 5.237 0.566 0.708 22.646 6.652 14.437 63.692 113.231 7.218 2.548
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observe improvements in almost all regions 𝑗. It is remarkable that this expected behavior of the Bernstein copula calibration
can already be verified for the rather moderate sample size of 𝑛 = 20, because the likelihood ratio tests and the Bernstein copula
calibration are both based on asymptotic considerations.

We omitted the values of (𝜗upper
𝑗 )1≤𝑗≤𝑚, because they are uninformative (extremely large). This is in line with the fact that all

scale parameter estimates 𝜉𝑗 in Table 3 are positive. For 𝜉 ≥ 0, the GPD has infinite support, thus the modeled 99.5% VaR tends
to be very large.

6 DISCUSSION

We have derived a nonparametric approach to the calibration of multiple testing procedures that take the joint distribution
of test statistics into account. In contrast to previous approaches that were restricted to cases with low-dimensional copula
parameters, the Bernstein copula-based approximation of the local significance levels proposed in the present work can be
applied under almost no assumptions regarding the dependency structures among test statistics or 𝑝-values, respectively. This
makes the proposed methodology an attractive choice for data the dependency structure of which has not been explicitly modeled
prior to the statistical analysis. Furthermore, our empirical results on simulated as well as on real-life data indicate the gain in
power which is possible by the consideration of the dependency structure among test statistics in the calibration of the multiple
test. This is particularly important for modern applications with high dimensionality of, but also pronounced dependencies in
the data.

On the other hand, Theorem 3.6 provides a precise asymptotic performance guarantee for the empirically calibrated multiple
test, meaning that a sharp upper bound for its realized FWER can be obtained, at least asymptotically for large sample sizes.
This is in contrast to most of the existing resampling-based multiple test procedures like the “max T” and “min P” tests proposed
by Westfall and Young (1993), which are obvious competitors of our approach.

Future work shall explore the case that some qualitative assumptions regarding the dependency structure are at hand. For
example, it will be interesting to quantify the uncertainty of the FWER of a multiple testing procedure that is calibrated by
assuming an Archimedean 𝑝-value copula as in Bodnar and Dickhaus (2014). In this case, nonparametric estimation of the
copula generator function as for instance proposed by Lambert (2007) will lead to an empirical calibration of the multiple test.

7 AUXILIARY RESULTS

In this section, two auxiliary lemmas are formulated and proved. The first lemma is used in the proofs of Theorem 2.1 and
Theorem 2.4. The second lemma follows from Theorem 2.4 and is used in Theorem 3.6.

Lemma 7.1. It holds that

‖‖‖𝐵𝐊
(
𝐶𝑿

)
− 𝐶𝑿

‖‖‖∞ ≤
1
2

𝑚∑
𝑗=1

𝐾
−1∕2
𝑗 ,

where ‖𝑔‖∞ ∶= sup𝐮∈[𝟎,𝟏] |𝑔(𝐮)| for 𝑔 ∶ [𝟎, 𝟏] ←→ ℝ.

Proof. We get

‖‖‖𝐵𝐊
(
𝐶𝑿

)
− 𝐶𝑿

‖‖‖∞ ≤ sup
𝐮∈[𝟎,𝟏]

𝐊∑
𝐤=𝟎

||𝐶𝑿 (𝐤∕𝐊) − 𝐶𝑿 (𝐮)|| 𝑚∏
𝑗=1

𝑃𝑘𝑗 ,𝐾𝑗
(
𝑢𝑗
)
≤

≤ sup
𝐮∈[𝟎,𝟏]

𝐊∑
𝐤=𝟎

𝑚∑
𝑗1=1

|||||
𝑘𝑗1
𝐾𝑗1

− 𝑢𝑗1
||||| ⋅

𝑚∏
𝑗2=1

𝑃𝑘𝑗2 ,𝐾𝑗2

(
𝑢𝑗2

)
≤

≤
1
2

𝑚∑
𝑗=1

𝐾
−1∕2
𝑗 ,

where the second inequality follows from the Lipschitz property of multivariate copula (cf. Section 2 of Sancetta and Satchell,
2004). For the last inequality we use the fact that 𝑃𝑘𝑗 ,𝐾𝑗 (𝑢𝑗) is the probability mass function of the binomial distribution for each
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𝑢𝑗 ∈ [0, 1] and 𝑗 = 1,… , 𝑚. Therefore, by the Jensen inequality it follows that

sup
𝐮∈[𝟎,𝟏]

𝐊∑
𝐤=𝟎

𝑚∑
𝑗1=1

|||||
𝑘𝑗1
𝐾𝑗1

− 𝑢𝑗1
||||| ⋅

𝑚∏
𝑗2=1

𝑃𝑘𝑗2 ,𝐾𝑗2

(
𝑢𝑗2

)
=

=
𝑚∑
𝑗=1

sup
𝑢𝑗∈[0,1]

𝐾𝑗∑
𝑘𝑗=0

|||||
𝑘𝑗

𝐾𝑗
− 𝑢𝑗

|||||𝑃𝑘𝑗 ,𝐾𝑗 (𝑢𝑗) ≤
≤

𝑚∑
𝑗=1

sup
𝑢𝑗∈[0,1]

⎛⎜⎜⎝
𝐾𝑗∑
𝑘𝑗=0

(
𝑘𝑗

𝐾𝑗
− 𝑢𝑗

)2
𝑃𝑘𝑗 ,𝐾𝑗

(
𝑢𝑗
)⎞⎟⎟⎠

1∕2

=

=
𝑚∑
𝑗=1

sup
𝑢𝑗∈[0,1]

(
𝑢𝑗
(
1 − 𝑢𝑗

)
𝐾𝑗

)1∕2

= 1
2

𝑚∑
𝑗=1

𝐾
−1∕2
𝑗 .

□

Lemma 7.2. Let 𝑝 ∈ (0, 1). Suppose that 𝐶 ′
𝑿
(𝐶←

𝑿
(𝑝)) > 0 exists, then

𝑛1∕2
(
𝐵𝐊

(
�̂�𝑿,𝑛

)← (𝑝) − 𝐶←
𝑿
(𝑝)
) 𝑑
←→ 

⎛⎜⎜⎝0,
𝜎2
(
𝐶←
𝑿
(𝑝) ,… , 𝐶←

𝑿
(𝑝)
)(

𝐶 ′
𝑿

(
𝐶←
𝑿
(𝑝)
))2 ⎞⎟⎟⎠ ,

where 𝜎2(𝐮) = 𝕍 [ℂ(𝐮)], 𝐶 ′
𝑿

is the first derivative of 𝑢 → 𝐶𝑿(𝑢,… , 𝑢), and 𝐶←
𝑿

, 𝐵𝐊(�̂�𝑿,𝑛)← is the quantile of 𝑢 → 𝐶𝑿(𝑢,… , 𝑢),
𝑢 → 𝐵𝐊(�̂�𝑿,𝑛)(𝑢,… , 𝑢), respectively.

Remark 7.3. In order to prove this lemma, we need a slightly extended version of Theorem 2.4. Let 𝐮 ∈ [𝟎, 𝟏] and 𝐮𝑛 ∶= 𝐮 ± 𝝐𝑛,
where 𝝐𝑛 → 𝟎 for 𝑛→ ∞, such that 𝐮𝑛 ∈ [𝟎, 𝟏] for all 𝑛 ∈ ℕ. Then under the assumptions of Theorem 2.4 it holds that

𝑛1∕2 ⋅
(
𝐵𝐊

(
�̂�𝑿,𝑛

) (
⋅ ± 𝝐𝑛

)
− 𝐶𝑿

(
⋅ ± 𝝐𝑛

)) 𝑑
→ ℂ

in (𝐶𝑿([𝟎, 𝟏]), ‖ ⋅ ‖∞).

The proof is essentially the same as that of Theorem 2.4. Notice that Lemma 7.1 and Bernstein's theorem hold uniformly.
This means that we can use Lemma 7.1 directly again and Bernstein's theorem with an additional argument. We used Bernstein's
theorem to show the uniform convergence of 𝑔𝑛(𝑓 ) → 𝑔(𝑓 ) for 𝑛 → ∞ and all 𝑓 ∈ 𝑆′. Recall that 𝑓 is any continuous function
on the compact set [𝟎, 𝟏]. We need to show that 𝑔𝑛(𝑓 ) → 𝑔(𝑓 ) for 𝑛→ ∞ still holds uniformly when we transform the argument
𝐮 of 𝑔𝑛(𝑓 ) to 𝐮𝑛. We get that

sup
𝐮∈[𝟎,𝟏]

|||𝑔𝑛 (𝑓 ) (𝐮𝑛) − 𝑔 (𝑓 ) (𝐮)||| = sup
𝐮∈[𝟎,𝟏]

|||𝐵𝐊(𝑛) (𝑓 )
(
𝐮𝑛
)
− 𝑓 (𝐮)||| ≤

≤
‖‖‖𝐵𝐊(𝑛) (𝑓 ) − 𝑓

‖‖‖∞ + sup
𝐮∈[𝟎,𝟏]

|||𝑓 (𝐮𝑛) − 𝑓 (𝐮)||| .
The first summand again converges to 0 because of Bernstein's theorem. The second summand converges to 0 because of the
uniform continuity of 𝑓 . The function 𝑔′𝑛 defined by 𝑔′𝑛(𝑓 )(𝐮) ∶= 𝑔𝑛(𝑓 )(𝐮𝑛) = 𝐵𝐊(𝑛)(𝑓 )(𝐮𝑛) is then used in the generalized
continuous mapping theorem instead of 𝑔𝑛.

Proof. We argue similarly to the proof of Theorem A in Section 2.3.3 of Serfling (1980). Fix 𝑝 ∈ (0, 1) and let

𝐺𝑛 (𝑡) ∶= ℙ
⎡⎢⎢⎢⎣
𝑛1∕2

(
𝐵𝐊

(
�̂�𝑿,𝑛

)← (𝑝) − 𝐶←
𝑿
(𝑝)
)

�̃�
≤ 𝑡

⎤⎥⎥⎥⎦ ,
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where �̃� ∶=
𝜎(𝐶←

𝑿
(𝑝),…,𝐶←

𝑿
(𝑝))

𝐶′
𝑿
(𝐶←

𝑿
(𝑝)) . Let 𝑢𝑛 ∶= 𝑡�̃�𝑛−1∕2 + 𝐶←

𝑿
(𝑝). We have

𝐺𝑛 (𝑡) = ℙ
[
𝐵𝐊

(
�̂�𝑿,𝑛

)← (𝑝) ≤ 𝑢𝑛
]
=

= ℙ
[
𝑝 ≤ 𝐵𝐊

(
�̂�𝑿,𝑛

) (
𝑢𝑛,… , 𝑢𝑛

)]
Put 𝑐𝑛𝑡 ∶=

𝑛1∕2(𝐶𝑿 (𝑢𝑛,…,𝑢𝑛)−𝑝)
𝜎(𝑢𝑛,…,𝑢𝑛)

. Then it holds that

𝐺𝑛 (𝑡) = ℙ
[
−𝑐𝑛𝑡 ≤ 𝑍𝑛

]
,

where 𝑍𝑛 ∶=
𝑛1∕2(𝐵𝐊(�̂�𝑿,𝑛)(𝑢𝑛,…,𝑢𝑛)−𝐶𝑿 (𝑢𝑛,…,𝑢𝑛))

𝜎(𝑢𝑛,…,𝑢𝑛)
. Furthermore, we get

Φ (𝑡) − 𝐺𝑛 (𝑡) = ℙ
[
𝑍𝑛 < −𝑐𝑛𝑡

]
− (1 − Φ (𝑡)) =

= ℙ
[
𝑍𝑛 < −𝑐𝑛𝑡

]
− Φ

(
−𝑐𝑛𝑡

)
+ Φ (𝑡) − Φ

(
𝑐𝑛𝑡
)
. (7.1)

Since 𝐶𝑿 and 𝜕𝑗𝐶𝑿 , 1 ≤ 𝑗 ≤ 𝑚, are continuous, we have

lim
𝑛→∞

𝑐𝑛𝑡 = lim
𝑛→∞

(
𝑡 ⋅

�̃�

𝜎
(
𝑢𝑛,… , 𝑢𝑛

) ⋅
𝐶𝑿

(
𝑢𝑛,… , 𝑢𝑛

)
− 𝐶𝑿

(
𝐶←
𝑿
(𝑝) ,… , 𝐶←

𝑿
(𝑝)
)

𝑡�̃�𝑛−1∕2

)
=

= 𝑡 ⋅ �̃�

𝜎
(
𝐶←
𝑿
(𝑝) ,… , 𝐶←

𝑿
(𝑝)
) ⋅ 𝐶 ′

𝑿

(
𝐶←
𝑿
(𝑝)
)
=

= 𝑡.

Next, we utilize Remark 7.3 (restricted to the point 𝐮 ∶= (𝐶←
𝑿
(𝑝),… , 𝐶←

𝑿
(𝑝)) with 𝐮𝑛 ∶= (𝑢𝑛,… , 𝑢𝑛)) and Polya's Theorem

(see Section 1.5.3 of Serfling, 1980) to show uniform convergence of the distribution function of 𝑍𝑛 to the standard normal
distribution function. Since Φ is continuous, we have

lim
𝑛→∞

sup
𝑥∈ℝ

|||ℙ [𝑍𝑛 ≤ 𝑥] − Φ (𝑥)||| = 0.

Using these two properties, (7.1) results in

lim
𝑛→∞

||Φ (𝑡) − 𝐺𝑛 (𝑡)|| ≤ lim
𝑛→∞

sup
𝑥∈ℝ

|||ℙ [𝑍𝑛 < 𝑥] − Φ (𝑥)||| + lim
𝑛→∞

|||Φ (𝑡) − Φ
(
𝑐𝑛𝑡
)||| =

= 0. □

ACKNOWLEDGMENTS
Funding of the first author has been provided by the Deutsche Forschungsgemeinschaft via the Research Unit FOR 1735 “Struc-
tural Inference in Statistics: Adaptation and Efficiency”. We are grateful to two anonymous reviewers and to the Associate Editor
for constructive suggestions which have lead to an improved presentation. Special thanks are due to the organizers of MCP 2017
for the successful conference.

CONFLICT OF INTEREST
The authors have declared no conflict of interest.

ORCID
Thorsten Dickhaus http://orcid.org/0000-0003-3084-3036

R E F E R E N C E S
Aitchison, J. (1964). Confidence-region tests. Journal of Royal Statistics Society Series B, 26, 462–476.

http://orcid.org/0000-0003-3084-3036
http://orcid.org/0000-0003-3084-3036


60 NEUMANN ET AL.

Belalia, M. (2016). On the asymptotic properties of the Bernstein estimator of the multivariate distribution function. Statistics and Probability Letters,
110, 249–256.

Bodnar, T., & Dickhaus, T. (2014). False discovery rate control under Archimedean copula. Electronic Journal of Statistics, 8(2), 2207–2241.

Bouzebda, S., & Zari, T. (2013). Strong approximation of empirical copula processes by Gaussian processes. Statistics, 47(5), 1047–1063.

Bücher, A., & Dette, H. (2010). A note on bootstrap approximations for the empirical copula process. Statistics and Probability Letters, 80(23–24),
1925–1932.

Cerqueti, R., Costantini, M., & Lupi, C. (2012). A copula-based analysis of false discovery rate control under dependence assumptions. Economics &
Statistics Discussion Paper 065/12, Università degli Studi del Molise, Dipartimento di Scienze Economiche, Gestionali e Sociali (SEGeS).

Charpentier, A., Fermanian, J.-D., & Scaillet, O. (2007). The estimation of copulas: Theory and practice. In J. Rank (Ed.), Copulas: From theory to
application in finance (pp. 35–62). London, UK: Risk Books.

Chen, S. X. (1999). Beta kernel estimators for density functions. Computational Statistics and Data Analysis, 31(2), 131–145.

Chêng, F. H. (1983). On the rate of convergence of Bernstein polynomials of functions of bounded variation. Journal of Approximation Theory, 39(3),
259–274.

Cottin, C., & Pfeifer, D. (2014). From Bernstein polynomials to Bernstein copulas. Journal of Applied Functional Analysis, 9(3–4), 277–288.

Deheuvels, P. (1979). La fonction de dependance empirique et ses propriétés. Un test non paramètrique d'independance. Bull. Cl. Sci., V. Sér., Acad.
R. Belg., 65, 274–292.

Dickhaus, T. (2014). Simultaneous statistical inference with applications in the life sciences. Berlin Heidelberg, DE: Springer-Verlag.

Dickhaus, T., & Gierl, J. (2013). Simultaneous test procedures in terms of p-value copulae. Proceedings on the 2nd Annual International Conference on
Computational Mathematics, Computational Geometry & Statistics (CMCGS 2013), pp. 75–80. Global Science and Technology Forum (GSTF).

Dickhaus, T., & Stange, J. (2013). Multiple point hypothesis test problems and effective numbers of tests for control of the family-wise error rate.
Calcutta Statistical Association Bulletin, 65(257–260), 123–144.

Diers, D., Eling, M., & Marek, S. D. (2012). Dependence modeling in non-life insurance using the Bernstein copula. Insurance Mathematics and
Economics, 50(3), 430–436.

Embrechts, P., Lindskog, F., & McNeil, A. (2003). Modelling dependence with copulas and applications to risk management. In S. Rachev (Ed.),
Handbook of heavy tailed distributions in finance (pp. 329–384). Amsterdam, NL: Elsevier Science B.V.

Gijbels, I., & Mielniczuk, J. (1990). Estimating the density of a copula function. Communications in Statistics Theory and Methods, 19(2), 445–464.

Härdle, W. K., & Okhrin, O. (2010). De copulis non est disputandum–Copulae: an overview. AStA Advances in Statistical Analysis, 94(1), 1–31.

Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50(3), 346–363.

Janssen, P., Swanepoel, J., & Veraverbeke, N. (2012). Large sample behavior of the Bernstein copula estimator. Journal of Statistical Planning and
Inference, 142(5), 1189–1197.

Joe, H. (2014). Dependence modeling with copulas. Boca Raton, FL: CRC Press.

Kiefer, J. (1961). On large deviations of the empiric D. F. of vector chance variables and a law of the iterated logarithm. Pacific Journal of Mathematics,
11, 649–660.

Lambert, P. (2007). Archimedean copula estimation using Bayesian splines smoothing techniques. Computational Statistics and Data Analysis, 51(12),
6307–6320.

Longin, F. M. (2000). From value at risk to stress testing: The extreme value approach. Journal of Banking and Finance, 24, 1097–1130.

McNeil, A. J., Frey, R., & Embrechts, P. (2005). Quantitative risk management. Concepts, techniques, and tools. Princeton, NJ: Princeton University
Press.

Nelsen, R. B. (2006). An introduction to copulas. 2nd ed. Springer series in statistics. New York, NY: Springer.

Omelka, M., Gijbels, I., & Veraverbeke, N. (2009). Improved kernel estimation of copulas: Weak convergence and goodness-of-fit testing. The Annals
of Statistics, 37(5B), 3023–3058.

Pfeifer, D., Mändle, A., & Ragulina, O. (2017). New copulas based on general partitions-of-unity and their applications to risk management (part II).
Dependence Modeling, 5(1), 246–255.

Rüschendorf, L. (1976). Asymptotic distributions of multivariate rank order statistics. The Annals of Statistics, 4, 912–923.

Sancetta, A., & Satchell, S. (2004). The Bernstein copula and its applications to modeling and approximations of multivariate distributions. Econometric
Theory, 20(03), 535–562.

Schmidt, R., Faldum, A., & Gerß, J. (2015). Adaptive designs with arbitrary dependence structure based on Fisher's combination test. Statistical
Methods and Applications, 24(3), 427–447.

Schmidt, R., Faldum, A., Witt, O., & Gerß, J. (2014). Adaptive designs with arbitrary dependence structure. Biometrical Journal, 56(1), 86–106.

Schuster, E. F. (1985). Incorporating support constraints into nonparametric estimators of densities. Communication in Statistics A—Theory Methods,
14(5), 1123–1136.



NEUMANN ET AL. 61

Segers, J. (2012). Asymptotics of empirical copula processes under non-restrictive smoothness assumptions. Bernoulli, 18(3), 764–782.

Serfling, R. J. (1980). Approximation theorems of mathematical statistics. New York, NY: Wiley.

Stange, J., Bodnar, T., & Dickhaus, T. (2015). Uncertainty quantification for the family-wise error rate in multivariate copula models. AStA Advances
in Statistical Analysis, 99(3), 281–310.

Stange, J., Dickhaus, T., Navarro, A., & Schunk, D. (2016). Multiplicity- and dependency-adjusted 𝑝-values for control of the family-wise error rate.
Statistics and Probability Letters, 111, 32–40.

Stute, W. (1984). The oscillation behavior of empirical processes: The multivariate case. Annals of Probability, 12(2), 361–379.

Swanepoel, J. W. H. (1986). A note on proving that the (modified) bootstrap works. Communications in Statistics A—Theory Methods, 15(11), 3193–
3203.

Westfall, P. H., & Young, S. S. (1993). Resampling-based multiple testing: examples and methods for p-value adjustment. Wiley series in probability
and mathematical statistics. Applied probability and statistics. New York, NY: Wiley.

Whitt, W. (2002). Stochastic-process limits: An introduction to stochastic-process limits and their application to queues. Springer series in operations
research. New York, NY: Springer-Verlag.

SUPPORTING INFORMATION
Additional Supporting Information including source code to reproduce the results may be found online in the supporting infor-
mation tab for this article.

How to cite this article: Neumann A, Bodnar T, Pfeifer D, Dickhaus T. Multivariate multiple test procedures based on
nonparametric copula estimation. Biometrical Journal. 2019;61:40–61. https://doi.org/10.1002/bimj.201700205

https://doi.org/10.1002/bimj.201700205

