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Abstract: We propose a Monte Carlo simulation method to generate stress tests by VaR scenarios
under Solvency II for dependent risks on the basis of observed data. This is of particular interest for
the construction of Internal Models. The approach is based on former work on partition-of-unity
copulas, however with a direct scenario estimation of the joint density by product beta distributions
after a suitable transformation of the original data.
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1. Introduction

The estimation of joint densities for possibly dependent random variables has a long history. Besides
classical parametric methods and kernel density approaches (see, e.g., Scott (2016)) other techniques
have found interest recently such as spline data interpolation (see, e.g., Schumaker (2015)). A different
approach that is frequently used nowadays in insurance and finance is the decomposition of the problem
into a marginal distribution estimation and the estimation of the interior dependence structure via copulas
(see, e.g., McNeil et al. (2015) for a general survey). In particular, Bernstein copulas and, more generally,
partition-of-unity copulas seem to be very well suited for Monte Carlo studies for dependent risks
from which risk measures such as Value at Risk (VaR) or Expected Shortfall can easily be estimated
(see, e.g., Blumentritt (2012); Cherubini et al. (2004); Cottin and Pfeifer (2014); Durante and Sempi (2016);
Ibragimov and Prokhorov (2017); Joe (2015); Mai and Scherer (2017); Malevergne and Sornette (2006);
Rank (2007); Rose (2015) or Szegö (2004), and for partition-of-unity copulas, in particular with applications
to tail dependence, Pfeifer et al. (2016, 2017, 2018)). Another recent approach to tail dependence modelling
via copulas was reported by Yang et al. (2015). A very interesting application to claims reserving with
dependence was discussed by Pešta and Okhrin (2014).

Reasonable VaR-estimates from original data or suitable scenarios within so-called Internal Models
are of particular interest under Solvency II (see, e.g., Cadoni (2014); Cruz (2009); Embrechts et al. (2013);
Mainik (2015) or Sandström (2011)). In this paper, we propose a simple stochastic Monte Carlo
algorithm beyond copulas for the generation of various VaR scenarios that are suitable for comparison
purposes in Internal Models for the calculation of solvency capital requirements. Note that the
European Union (2015) concerning the implementation of Solvency II in the EU requires the
consideration of such scenarios in several Articles, in particular in Article 259 on Risk Management
Systems saying that insurance and reinsurance undertakings shall, where appropriate, include
performance of stress tests and scenario analyses with regard to all relevant risks faced by the
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undertaking, in their risk-management system. The results of such analyses also have to be reported in
the ORSA (Own Risk and Solvency Assessment) report as described in Article 306 of the Commission
Delegated Regulation. The problem is, however, that the Commission Delegated Regulation does
not make any clear statements on how such stress tests or scenario analyses have to be performed.
Article 1 of the Commission Delegated Regulation defines a “scenario analysis” as an analysis of the
impact of a combination of adverse events. The Monte Carlo simulation algorithm developed in this
paper allows for a mathematically rigorous description how such scenarios can be generated, being
flexible enough to cover also extreme situations.

2. The Monte Carlo Algorithm

The central idea in this paper is to transform firstly n marginal observations from d different risks
with suitably estimated cumulated distribution functions (cdf’s), so that the resulting data can be
considered as observations from a multivariate distribution concentrated on the d-dimensional unit
cube, similar—but typically not identical—to a copula. The next step is to approximate this distribution
by a mixture of product beta distributions concentrated around each observation. This is similar to
the estimation of the underlying dependence structure by a Bernstein copula or related constructions
(see, e.g., Cottin and Pfeifer (2014) and Pfeifer et al. (2016, 2017, 2018)). By a marginal-wise backwards
transformation of the simulated multivariate distribution with the quantile functions of the originally
estimated marginal cdfs, we obtain realizations of an approximating distribution of the original data
which allows for various VaR scenarios and VaR estimates that are particularly suitable in Internal
Models under Solvency II. Note that this procedure influences the modelled dependence structure as
well as the marginal distributions of the risks involved.

To be more precise, assume that Xki is the ith observation of the kth risk, for i ∈ {1, . . . , n}
and k ∈ {1, . . . , d}. Then, if Fk denotes the true underlying cdf of the kth risk, then obviously{(

F1(X1i), . . . , Fd(Xdi)
)
| i = 1, . . . , n

}
is a sample of the true underlying copula by Sklar’s Theorem

(cf. Durante and Sempi (2016), chp. 2). Now, if F̂k denotes a suitably estimated absolutely continuous
cdf for the kth risk and f̂k its corresponding density, define

ĥ(x1, . . . , xd) :=
1
n

n

∑
i=1

d

∏
k=1

b
(

xk, (m + 1)F̂k(Xki), (m + 1)
(
1− F̂k(Xki)

))
for (x1, . . . , xd) ∈ (0, 1)d (1)

(mixture of randomized product beta distributions) and

ĝ(y1, . . . , yd) := ĥ
(

F̂1(y1), . . . , F̂d(yd)
)
·

d

∏
k=1

f̂k(yk) for (y1, . . . , yd) ∈ Rd, (2)

where b(x, α, β) := xα−1(1− x)β−1

B(α, β)
for 0 < x < 1 and α, β > 0 denotes the density of the Beta

distribution with parameters α and β, B(α, β) :=
∫ 1

0 xα−1(1− x)β−1 dx denotes the corresponding
Beta function, and m > 0 is a further steering parameter of the model. This approach is similar to
the construction of Cottin and Pfeifer (2014) and resembles a classical kernel density estimate for the
dependence structure where the kernel is represented by product beta densities.

Note that, given Xki = z, the expectation of the Beta distribution with parameters (m + 1)F̂k(z)

and (m + 1)
(
1− F̂k(z)

)
is F̂k(z) and its variance is

F̂k(z)
(
1− F̂k(z)

)
m + 2 ≤ 1

4(m + 2) .

Seemingly, ĝ is the randomized density of a multivariate distribution (scenario distribution) that
“interpolates” the original observations of the risks under investigation. This follows by similar arguments
as Joe (2015), pp. 8–9 or Durante and Sempi (2016), Remark 2.2.2 since, obviously, ĥ is the randomized
density of a d-dimensional distribution with cdf Ĥ, and ĝ is the density of the cdf Ĝ defined by

Ĝ(y1, . . . , yd) := Ĥ
(

F̂1(y1), . . . , F̂d(yd)
)

for (y1, . . . , yd) ∈ Rd. (3)
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Note that, due to the remark above, the additional parameter m influences essentially the shape
of the density ĝ as the bandwidth does for kernel type density estimators. In general, we can conclude
that ĝ is more strongly concentrated around the original observations the larger m is. Given the
observations Xki = xki, simulations following the cdf Ĝ or the density ĝ can be created as follows:

1. Choose an index I randomly according to a uniform distribution over {1, . . . , n}.
2. Generate independently d random variables Z1, . . ., Zd where Zk follows a Beta distribution with

parameters (m + 1)F̂k(xkI) and (m + 1)
(
1− F̂k(xkI)

)
(product beta distribution).

3. Set Yk := F̂−1
k (Zk).

Then, (Y1, . . . , Yd) represents a Monte Carlo sample from the desired multivariate scenario distribution.
Obviously, the shape of the density ĝ depends on m as well as on the estimation of the marginal

risk cdf’s. Hence, large sets of scenarios can be generated to estimate the VaR or other risk measures
from Monte Carlo studies that embed the original data in a suitable way.

3. Case Study

For simplicity, we concentrate on the example data set given by Cottin and Pfeifer (2014) because
it has also been used as a data basis in several papers on partition-of-unity copulas (Pfeifer et al. 2016,
2017, 2018). Here, we have d = 2 and n = 20. The marginal distributions were estimated by Q-Q-plots
as normal and Gumbel for the log risks, i.e., as lognormal for the first risk and Fréchet for the second
risk (see Table 1 and Figures 1 and 2).

Figure 1. Q-Q-plot for the first risk, log data.

Figure 2. Q-Q-plot for the second risk, log data.
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Table 1. The original data.

No. Risk X1 Risk X2

1 0.468 0.966
2 9.951 2.679
3 0.866 0.897
4 6.731 2.249
5 1.421 0.956
6 2.040 1.141
7 2.967 1.707
8 1.200 1.008
9 0.426 1.065
10 1.946 1.162
11 0.676 0.918
12 1.184 1.336
13 0.960 0.933
14 1.972 1.077
15 1.549 1.041
16 0.819 0.899
17 0.063 0.710
18 1.280 1.118
19 0.824 0.894
20 0.227 0.837

From this analysis, we obtained estimates for the location parameter µ and the scale parameter σ

for the log risks (see Table 2).

Table 2. Parameter estimates for the log risks.

µ σ

ln(X1) 0.0954 1.1909
ln(X2) –0.0437 0.2857

The graphs in Figures 3–14 show scatterplots for various Monte Carlo simulations with the
algorithm described above, for several integer values of m, and graphs of the contour plots of the
estimated scenario density ĝ. The original data are marked by circles. The simulation size was 10,000 in
each case. For comparison, we also present scatterplots for a Monte Carlo simulation with a certain
adaptive kernel density estimator, where, for the first risk, we used pointwise lognormal densities
and, for the second risk, Fréchet densities matching their modes with the data points (cf. Scott (2016),
chp. 6.6). In particular, the kernel density estimator used here is given by

f̂ (x, y, σ, α) :=
1

20

20

∑
i=1

k1(x, X1i, σ) · k2(y, X2i, α), (4)

where

k1(x, z, σ) =
1√

2πσx
exp

−1
2

(
ln
( x

z
)
− σ2

σ

)2


and

k2(x, z, α) =
α + 1

x

( z
x

)α
exp

(
−
(

1 +
1
α

)( z
x

)α
)

, x > 0.
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Figure 3. Simulation scatterplot of ĝ(y1, y2), m = 15. Small scale.

Figure 4. Simulation scatterplot of ĝ(y1, y2), m = 15. Large scale.

Figure 5. Contour plot of ĝ(y1, y2), m = 15.
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Figure 6. Simulation scatterplot of ĝ(y1, y2), m = 30. Small scale.

Figure 7. Simulation scatterplot of ĝ(y1, y2), m = 30. Large scale.

Figure 8. Contour plot of ĝ(y1, y2), m = 30.
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Figure 9. Simulation scatterplot of ĝ(y1, y2), m = 50. Small scale.

Figure 10. Simulation scatterplot of ĝ(y1, y2), m = 50. Large scale.

Figure 11. Contour plot of ĝ(y1, y2), m = 50.



Risks 2018, 6, 122 8 of 15

Figure 12. Simulation scatterplot, kernel density estimate. Small scale.

Figure 13. Simulation scatterplot, kernel density estimate. Large scale.

Figure 14. Bivariate density contour plot, kernel density estimate.

For the kernel density estimate, the parameters σ = 0.3 and α = 7 were used.
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Table 3 shows various estimates of the VaRα for the aggregated risk (=1− α-quantile of the sum
distribution for the risks), calculated from 100,000 simulations each, where α denotes the risk level.

Table 3. VaR estimates for the aggregated risk.

m = 15 m = 20 m = 25 m = 30 m = 50 m = 100 Kernel Density

V̂aR0.05 13.987 12.978 12.347 12.016 11.341 10.908 11.754
V̂aR0.01 40.637 31.235 26.989 23.966 19.498 16.580 17.272
V̂aR0.005 60.752 44.270 36.410 30.846 23.390 18.864 19.087

Obviously, the estimated VaR’s decrease with increasing m for every risk level α, which seems
reasonable since, with increasing m, the scenario distribution is closer concentrated around the original
data points, which is also clearly reflected in the graphs above. For m → ∞, we would get a VaR
estimate from the empirical distribution, i.e., a value of 12.630 for α ≤ 0.01 and 8.980 for α = 0.05.
Note also that with a kernel density approach, extreme scenarios can in general not be obtained.

It is interesting to observe that for α = 0.005 (Solvency II standard) the estimated VaR is almost
twice as high for m = 15 as in comparison to m = 30.

VaR estimates with a classical Bernstein copula or finite, infinite or continuous partition-of-unity
copulas with or without tail dependence as in Pfeifer et al. (2017, 2018) typically give much smaller
values. Tables 4 and 5 list some results for comparison. The rook copula driver for the Negative
Binomial and the Gamma copula shows no tail dependence, while the upper Fréchet copula (UF)
driver does. For technical details, see Pfeifer et al. (2017, 2018).

Table 4. VaR estimates with Bernstein and Negative Binomial copulas.

Bernstein NB Rook, a = 7 NB UF, a = 7 NB Rook, a = 15 NB UF, a = 15

V̂aR0.05 7.166 6.885 7.016 6.974 7.155
V̂aR0.01 15.634 15.973 15.744 15.877 16.059
V̂aR0.005 21.105 20.801 21.311 20.256 21.733

Table 5. VaR estimates with Gamma copulas.

Gamma Rook, a = 7 Gamma UF, a = 7 Gamma Rook, a = 15 Gamma UF, a = 15

V̂aR0.05 9.330 10.072 9.522 10.191
V̂aR0.01 18.113 21.224 18.550 21.428
V̂aR0.005 22.933 28.123 23.079 28.588

The graphs in Figures 15–23 show some realizations of the induced empirical copulas (scaled
rank vectors) based on 5000 simulations for different choices of m and the kernel approach outlined
above. The empirical copula of the original data (scaled rank vectors) is represented by circles in each
plot. For comparison purposes, we also show some realizations of the Negative Binomial (NB) and
the Gamma copulas using the parameters in Tables 4 and 5, taken from Pfeifer et al. (2017, 2018) and
Cottin and Pfeifer (2014).
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Figure 15. Empirical copula, m = 15.

Figure 16. Empirical copula, m = 30.

Figure 17. Empirical copula, m = 50.
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Figure 18. Empirical kernel copula.

Figure 19. Gamma rook copula, a = 15.

Figure 20. Gamma UF copula, a = 15.
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Figure 21. NB rook copula, a = 15.

Figure 22. NB UF copula, a = 15.

Figure 23. Bernstein copula.
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Seemingly, the structure of the various copula approaches alone (with and without tail
dependence) does not give any hint to the height of the VaR estimate for the aggregate risk. An ordering
of the figures according to the decreasing magnitude of the VaR estimate for α = 0.005 (Solvency II
standard) is: Figure 15, Figure 16, Figure 20, Figure 17, Figure 19, Figure 22, Figure 23, Figure 21,
and Figure 18.

Finally, we present Q-Q-plots for the marginal distributions of the log risks from 5000 simulations
for different choices of m and the kernel approach outlined above (see Figures 24 and 25). The plot
positions for the theoretical quantiles are chosen with the parameters from Table 2. Additionally, the
original data points are shown as circles.

Figure 24. Q-Q-plot for the first risk, ordered log data.

Figure 25. Q-Q-plot for the second risk, ordered log data.

Seemingly, the product beta and the kernel density approach are in good coincidence with the body
of the data, while the product beta approach is characterized by essentially higher values in the upper tail
of the marginal distributions. This emphasizes again the fact that unfavourable VaR estimates cannot be
characterized by the copula structure alone but that the interplay between the dependence structure and
the marginal distributions is essential, as discussed by Ibragimov and Prokhorov (2017).
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4. Conclusions

The algorithm proposed here typically generates mathematically well-defined high-score VaR
scenarios on the basis of observed losses with particular emphasis on the underlying stochastic
dependence which reproduce the original data exactly, and give stress tests and scenario analyses
under Solvency II a more precise meaning. It is applicable in arbitrary dimensions and generally
superior to kernel density or classical and recent copula approaches, with respect to complexity,
easy implementation (even in usual spreadsheet programs), and larger scenario VaR estimates.
We have tested the procedure described in this paper with the 19-dimensional dataset discussed
by Neumann et al. (2018) and came to similar conclusions. A crucial point here is the estimation of the
marginal distributions which, of course, influences the results to a certain extend, as does the value of
m. However, in any case, the original data are exactly reproduced, and the selection of the steering
parameters should depend on the purpose of the application.
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