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Abstract: We construct new multivariate copulas on the basis of a generalized infinite partition-of-unity ap-
proach. This approach allows, in contrast to finite partition-of-unity copulas, for tail-dependence as well as
for asymmetry. A possibility of fitting such copulas to real data from quantitative risk management is also
pointed out.
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1 Introduction

The theory of copulas and their applications has gained much interest in the recent years, especially in the
field of quantitative risk management, insurance and finance (see e.g. [13] or [16] ). While classical approaches
like elliptically contoured copulas and Archimedean copulas are widely explored, other approaches concen-
trate on non-standard, non-symmetric or data-driven copula constructions (see e.g. [9], [8], [2] or [6] and
the papers therein for a survey, especially the contributions related to vine copulas). Statistical and computa-
tional aspects of copulas have also been investigated in more detail recently (see e.g. [1] and [12]). In this paper,
we want to focus on a particular class of copulas and their generalizations, the so called partition-of-unity
copulas (see e.g. [10] or [7]). Whereas in the usual approach, only finite partitions-of-unity are considered,
which do not allow for a modelling of tail-dependence, we extend this concept to infinite partitions-of-unity,
which allows for tail-dependence as well as for asymmetry, and which can also be used to fit given data to a
more realistic copula model. Our investigations resemble in some sense more recent approaches such as [18],
[4], [19], [5], or [3]. Whereas in these papers, local modifications of known standard copulas are considered
in order to obtain tail dependence or asymmetries, we focus on a closed form representation of completely
new copula densities which allows for easy Monte Carlo simulations as well as a data driven modeling of tail
dependence and asymmetries. This approach is not restricted to two dimensions in general, but can likewise
be used in arbitrary dimensions. However, in order to illustrate our results, we will give examples in the bi-
variate case only.

To facilitate the readability of the paper, all elaborate proofs are given in an appendix.
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2 Main Results

LetZ* = {0, 1, 2, 3, - - - } denote the set of non-negative integers and suppose that {(pi(”)}iez+ and {1/)]-(v)}].EZ+
are non-negative maps defined on the interval (0, 1) each such that

PRAOEDIIGES!
i=0 j=0

and
1 1
/(pi(u)du =a; >0, /z,bj(v)dv =B;>0fori,jeZ".
0 0

The maps @;(u) and ;(v) can be thought of as representing discrete distributions over the non-negative
integers Z* with parameters u and v, resp. The sequences {a;};.,. and { /3,} then represent the probabil-
ities of the corresponding mixed distributions each.

Let further { bij } represent the probabilities of an arbitrary discrete bivariate distribution over Z*xZ*

jezr

ijez
with marginal distributions given by p;. = Z bij = a;and p.; = Z pij = Bjfori,j € Z*. Then
j=0 i=0
bi
c(u,v) —ZZ lé @i P;(v), u,v e (0,1) )
i=0 j=0

defines the density of a bivariate copula, called generalized partition-of-unity copula. The fact that c in fact is
the density of a bivariate copula can be seen as follows:

/C(u v)dv = sz}é ) /lﬁ,(V)dv ZZ p” B ¢

i=0 j=0 i=0 j=0

— = Pij — P v i) B

D) o PiWw=) = =) pj= > o %= > i) =1,
. 1 . 1 . . 1 .

i=0 j=0 i=0 j=0 i=0 i=0

1
likewise for / c(u, v)du.

0
Note that from a ,,dual® point of view, we can rewrite (1) as

cw,v) = >3 pifiw &), u,ve(0,1) 2
i=0 j=0
where fi(*) = (. ), gj(s) = ) ,1,j € Z* denote the Lebesgue densities induced by {¢;w)},_,. and

{l,b, v)} jeze This means that the copula density c can also be seen as an appropriate mixture of product
densmes which possibly allows for a simple way for a stochastic simulation.

An extension of this approach to d dimensions with d > 2 is obvious: assume that {(pk,-(u)}i ez fork =
1, ..., drepresent discrete probabilities with

> i) = 1foru € (0,1)
i=0

and

/‘Pki(u)du =qy >0forieZ".
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Let further {p;};c,-« represent the distribution of an arbitrary discrete d-dimensional random vector Z over
7+ where, for simplicity, we write i = (i1, - - , i), i.e.

PZ-i)-p;, ieZ™,
Suppose further that for the marginal distributions, there holds
P(Zy=i)=ay, i€Z", k=1,---,d.
Then

c(w): Z d H‘pk i), w=(u1,--+,uq) € (0, 1) (3)

tez+ H A, iy k=1
k=1

defines the density of a d-variate copula, which is also called generalized partition-of-unity copula.
Alternatively, we can rewrite (3) again as

c(w) = ZpIkalk(uk) u=(u,--,ug) € (0,1)°

icz+d k=1

where the f;;(e) = P1i(*) ,i€Z" k=1, ,ddenote the Lebesgue densities induced by the {¢;(u)}

e
Aki i€Z

3 The symmetric case (diagonal dominance)

For simplicity, we restrict ourselves to the two-dimensional case in the sequel. The generalization to higher
dimensions is obvious.

Let ¢; = p; fori € Z* and / @i(u) du = a; > 0. Define

) o, ifi=j
Pij : 0, otherwise.
Then

clu,v) 1= 3 20 00) il oilr) ‘”l(v) =S w0, wy e ©, 1)
i=0 i=0
defines the density of a bivariate copula, called generalized partition-of-unity copula with diagonal dominance.

Example 1 (binomial distributions — Bernstein copula). Consider, for a fixed integer m > 2, the family of
binomial distributions given by their point masses

‘1)ui(1—u)m_1_i, i=0,---,m-1

m_
. = 1 ’
(pm,l(u) 0’ 1. > .

Here we have, fori=0,--- ,m-1,

1 1
z=/§0m,i(u)du=<mi_1>/u(1 w)™ M du
0 0

(m-1)! .F(i+1)F(m—i)_ (m-1)! .i!(m—l—i)!_l

Tilm-1-0)! Im+1)  i(m-1-1i)! m! " m
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and hence

m-1

2
cm(u,v)=m Z <m z_ 1) wv) 1-u)1- v))m_l_i, u,ve(0,1) (4)

i=0
which corresponds to the density of a particular Bernstein copula (see e.g. [2, Theorem 2.1]. Especially, for
m = 2, we obtain

c;(u,v)=4uv-2u-2v+2, u,ve(0,1).

The corresponding copula C, is given by
x Yy
Cr(x,y) = //cz(u, v)dvdu=xy+xy(1-x)(1-y), x,y € (0,1)
00
and belongs to the so called Farlie-Gumbel-Morgenstern family (cf. e.g. [14, p. 77]). For general m > 1 relation

(4) represents the density of a copula with polynomial sections of degree m in both variables (cf. [14, chapter
3.2.5]. The following graphs show some of these densities for different values of m.

m=2 m=3 m=4 m=5

Clearly, all those densities are bounded by the constant m, hence the coefficients A;; and A, of upper and
lower tail dependence are zero:

11 ¢t
J [ cm(u, v)dudv m(1— 02 Ofg’cm(u,v) dudv 2
Lt . -0 _ _ T im Y _
Ay = lim -t <lim =~ =0and A, =lim t <lim = =0

Example 2 (negative binomial distributions). Consider, for fixed 8 > 0, the family of negative binomial dis-
tributions given by their point masses

Pp.i(u) = (ﬁ ’ 1 B 1)(1 —wbul, iezt.

Here we have, fori € Z™,
1

1
ag. - / 010) i - </3 - 1) /ui(l P du- [B+D TG+ DIB+D B
0

i'T(B) rB+i+2)  (B+i)B+i+1)

0
and hence

B
=(f+1) (1—u)(1—v))ﬁi<ﬁ+l:_1> <ﬁ+§+1>(uv)i, u,ve(0,1).

- 1
i=0

A e ; 2
Cﬁ(u,v)=ull)(lv))Z(ﬁ+i)(ﬁ+i+1)<ﬁ+:._1> (uv)'
= )
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For integer choices of f this expression can be explicitly evaluated as a finite sum, as can be seen from
the following result.

Lemma 1. For f§ € N, there holds

ﬁﬁl
cplu,v)=(B + 1)%2( )<ﬁ+1)(uv) u,ve(,1).

1=

To give an illustration of Lemma 1, we show an exemplary tablefor § =1, - - - , 6, likewise for the correspond-

ing copula Cy(x, y) = //cﬁ(u, v)dvdu, x,y € (0, 1).

B cplu,v),u,ve(0,1)

, ,-wl-v)
(1-uv)’
5 (1 +3u)(1 - w1 -v)?
(1- uv)
3 4 1+ 8uv + 6u?v )(1—u)3(1—v)3
(1-uv)
4 s 1+ 15uv+30u’v? + 10u°v3) (1 - wa-v*
1 -uv)’
s 6 1+ 24uv +90u?v? + 80u’v? + 15u*v*) (1 - W’ (1-v)°
(1- uv)11
¢ 7 1+35uv+210u’v? + 35007V + 175uv* + 21u°v®) (1 - W1 -v)°
(1- uv)13
B Cplx,y),x,y €(0,1)
1 y(2 xX-y)
1-xy
3-3x-3y+x? +y?+3x%y2 - x?y? - ¥y?)
2 xy

(1- xy)
ﬁ(‘* 6X — 6y + 4X° + 4xy + 4y + 4x3y + 24x%y? + 4xy? - x> —6xPy —6xy? -y> - ...
3 1 xy
- Xy = X4y + axtyt - Xy - X3yt + axty? + 4xPy? + 4xPy® - xty - 16x3y? - 16x%y3 - xy®)

The following graphs show the negative binomial copula densities cg for g = 1, --- , 6.

3

B =
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B-4 B> B-6

Negative binomial copulas typically show an upper tail dependence, as can be seen from the following
exemplary table.

g 1 2 3 4 5 6 7 8 9 10

Au(B) 5 11 93 193 793 1619 26333 53381 215955
U 8 16 128 256 1024 2048 32768 65536 262144

N =

A closed formula for the tail dependence coefficients for integer values of f is given in the following result.

Lemma 2. For f € N, there holds

11
J [ cplu, v)dudv 1/2
o tt _ 2I'2p) xByP _4r@p) B B-1
e T I ) //(“y)zﬁ“ T TE o/u(l o

(6)

<2B>
B 1
-1- 7 ~1—\/@forlargeﬁ.

2p
B
4, p. 385]. The authors remark in their paper: “The latter [sequence] is also known as the enumerator of cycles
of objects, where the individual objects are enumerated by the Catalan numbers.”

Note that relation (6) also implies that ﬁle Ay(B) = 1.

Note that the sequence 4PA v(B) = 4P - is related to certain combinatorial graph problems, see [11, table

Example 3 (Poisson distributions). Consider the family of Poisson distributions given by their point masses

P, iw=01- M)’Y’y L(u) icz*

where L(u) = -In(1 —u) > 0, u € (0, 1) and v > 0. Here we get, for i € Z*, with the substitutions z = L(u) and
y=0+7)z,

1 1 . oo
i () i
a 1=/q)%,~(u)du=/(1—u)'w igu) du=/%e 1492 g5
0 0 0 (7)

= 771 Xl Y Ay = ’Yi _ v i 0
eyt ey (1+7)" 1+~ 1 v)’
0
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indicating that the a, ; correspond to a geometric distribution with mean v and hence

cv(u,v)=(1+'y)(1—u)7(1—v)7§: 7(1”)1‘“(11,!'2”)1“(1’”) , wve1).

i=0

The following graphs show some of these copula densities for different choices of .

v=10 v =20 v =30

The corresponding copula C cannot be calculated explicitly. However, in contrast to the visual impres-
sion, the coefficient Ay (y) of upper tail dependence is zero here for all v > 0, although we have a singularity
in the point (1, 1) in all cases.

For a rigorous proof, we first remark that

h(x, y) ==Z in < ZT‘ . Zi—' =exp(x +y)forallx,y >0
: ! ! !

i=0
such that, with the constant K := v — /(1 + ),
e, v) = (1 +7)1-u)1-v)h (—\/7(1 T )In(1 - u), —/~(1 + 1) In(1 - v))
<21 -wka -k, u,ve 0,1).

This implies

11
J | ey, v) dudv 2K+1
¢t . (1-0 _

<2lim~——~— =0, 8)

1-t 1 (K+1)°

Ay(y) = 13%?

as stated. (Note that 2K+ 1 =1+ 2y -2+/4(1 +v) > 0.)
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Example 4 (log series distribution). Consider the family of log series distributions given by their point
masses
ul ;
@;(u) = m, ieN

where again L(u) = —In(1 - u), u € (0, 1). Here we get

/(p,(u) du== ( > (-1Y*'In(j + 1) for i € N. 9)

The proof of this relation requires some more sophisticated arguments, as is shown in the sequel.

Lemma 3. For ¢ > 0 and n € N there holds

ot n

[ e ay (31) (-1*! InG+)-In(0)

0 j=0

Note that for the special case ¢ = 1 we obtain, by the substitution x = - In(1 - u),

1 ot n
e dx = N\ ey
et ]
0

0 =1

i
Hence with ¢;(u) = ui fori € N this means

i-In(1-u)

1 i /.
a; = /(pi(u) du = % = %Z (;) (1Y In@ + 1) fori € N.
0 =1

The density of the bivariate log series copula is hence given by

1 (u )
c(u, V)‘Z (pl(u)gol(v) (L~ w) In(1 = V)Z forO<u,v<1. (10)

The following graph shows the corresponding copula density.

plot of c(u, v)
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The log series copula does not have a positive tail dependence either, as in the case of the Poisson copula.
The proof of this statement again requires some more sophisticated arguments. We proceed in the following
steps.

Lemma 4. With L(u) = -In(1 - u), we have
1
lim 1 L(ut)
— 11
tm 1- / (1)
t

Lemma 5. With L(u) = —In(1 - u), the a; given in (9) and the copula density given in (10), it holds that

1 1 1
1 ot L(ut)
K(t) := ﬁ//c(u,v) dudv<1 -t Tw duforO<t<1, (12)
t

which in turn implies that the log series copula has no tail dependence.

4 The asymmetric case

Specifying the probabilities p;; in a non-symmetric way we obtain asymmetric copula densities even if the
maps ¢;(*) and ;(e) are identical. A very simple approach to this problem is a specification of a suitable

non-symmetric (n + 1) x (n + 1)-matrix M, = [pij} i,j=0,-n forn € Z* with

n n
> b= pui=aifori=0
k=0 k=0

and

Dij = A 1f1=]‘ fori,j>n.
0, otherwise

Example 5 (negative binomial distributions, asymmetric case). We consider the negative binomial distribu-
1

tions from Example 2 with 8 = 1. Then a; = /(pl,,-(u) du = m fori € Z*. With n = 4 and
18 5 5 0 2
1 10 0 0 O O
M, = ) 0O 5 0 0 O
0O 0 0 3 O
2 0 0 0 O

the conditions above are fulfilled, giving the copula density, according to (1),

oo

clu, v)-zz - gm(u)go,(v)-zz - RZCLIOEDY WP, wve©1),

i=0 j=0 i=0 j=0 k=n+1

or, more explicitly,

6v

cu,v) =(1-w)@-v)- (2 6u 12u® 20u° 30u4> My | 12v |+
2003
30v*

+1-wa-v Z(k+1)(k+2)u"k a-uwd-v

3 H(u,v), u,ve(0,1)
pars 5(1 -uv)
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with the polynomial

H(u,v) = 150u’v” - 450u®v® - 10u’v? + 510u°v® - 1013V - 30u°v* - 101°V° + 30u®Ve — . ..
... = 300UV +30uv? - 5utv® + 80utVE — 300y + 9413V + 30uv - 30wV’ - 60UV +

oo+ 15wV + 10u” + 18u%v? - 30wy + 10v* - 15uv? + 10v2 - 18uv + 10u + 5V + 6.

plot of c(u, v) plot of c(u, v) - c(v, u)

The corresponding copula C again has a coefficient of upper tail dependence A, = % as in the symmetric case.

The following example shows an asymmetric copula composed by two different negative binomial distribu-
tions.

Example 6. We consider the negative binomial distributions from Example 2 with § = 1 and § = 2. Then

1 1
— . = 1 s = . = 2 = . el +
a; = /(pl,,(u) du = FETPE) and B; /(pz,](v) dv CESIEES) 2a;,4 for i, j € Z*. Let further
0 0

B ifj=2i
piy=1{ B; ifj=2i+1 fori,jez",
0 otherwise
i.e.
Bo P vr -
cee eee By B3
Pilijene = | =0 v o Ba Bs (13)

Bs Bz
where - - - stands for zero. Then p;. = Zpi]- =a;and p.; = Zpii =Bjfori,j e Z" since
j=0 i=0

2 2 1

GG ) BraG ) - Ardaey - dfriezn.

Bai + Bais1 =

It now follows from (2) that

cw,v)=> Y pifiw g, u,ve(0,1)

i=0 j=0
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(1-uw

ut and g;(v) - G+1)(1-v)2V

is a copula density where f;(u) = fori,j € Z*, u,v € (0, 1). Using (13),
1

j
one obtains, after some tedious but straightforward calculations, that

201 -w(1 - V2 1+2v+5uv?+ 4uv?)

1—uv2)4

c(u,v) , u,ve(0,1)

which obviously is asymmetric.

"~
Moo W

plot of c(u, v)

The corresponding copula C can again be calculated explicitly, giving

Clx,y) = Lz (2 —x=2xy? +xy* + x%y3 - 27 +y3) , x,y€(0,1).
1-xy?)

This copula has a coefficient of upper tail dependence

which is between the coefficients of upper tail dependence for the symmetric case with § = 1 and 8 = 2, cf.
the final table in Example 2.

Remark 1. Negative binomial copulas (see Examples 2 and 5) can easily be simulated through the alternative
representation formula (2) involving mixed Beta distributions here. Poisson copulas can be simulated using
the transformation z +— 1 — e applied to Gamma distributed random variables Z with a random shape
parameter a where a — 1 is generated by the geometric distribution shown in (7), and scale parameter 1 + .

Remark 2. For practical applications in quantitative risk management, it seems reasonable to fit the required
probabilities [pij] ijezr to empirical data via their empirical copula, for instance as was proposed in [15]. In
the particular case of Bernstein copulas (see Example 1) such a procedure can be very easily implemented,
even in higher dimensions (cf. [2]).

As a practical exercise, we refer to Example 4.2 in [2], where the empirical copula from an original data set
was fitted to a general Bernstein copula. The following two graphs show the scatter plot from the empirical
copula (big red dots) superimposed by 1000 simulated points of that Bernstein copula (left) and of a negative
binomial copula of type (5), with 8 = 5.
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1.0
0.9
08
0.7
0.6
0.5
04
03
0.2
0.1 .

00 01 02 03 04 05 06 07 08 09 10 o0 o0t 02 03 04 05 06 07 08 08 10

Bernstein copula fit negative binomial copula fit

As can be seen nicely, the Bernstein copula represents the local asymmetry of the empirical copula better,
but shows no tail dependence, as the negative binomial copula does.

The fit to the negative binomial copula was, for the sake of simplicity, performed by a numerical match
between the theoretical correlation for the negative binomial copula and the correlation of the empirical cop-
ula, which is 0.815. Note that the theoretical correlation p(B) for the negative binomial copula of type (5) can
be explicitly calculated as

= (i+ 1)2 2
(B)=12 -3=3B(2(B+1)°¥Y(1,B+2)-2B-1
P8 B<§(ﬁ+i)(ﬁ+i+1)(ﬂ+i+z)2 ﬂ<(ﬂ A A )
2
where ¥(1, z) denotes the first derivative of the digamma function, or ¥(1, z) = F) InI'(2), z > 0.
B 1 2 3 4 5 6 7

p(B) 0.4784 0.6529 0.741 0.7937 0.8288 0.8537 0.8723

For the sake of completeness, we finally show a comparison between the Bernstein copula fit and a Pois-
son copula fit with parameter = 6. The empirical correlation for the Poisson copula here is 0.814.
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1.0 1.0

0.9 0.9

0.8 08

07 0.7

0.6 0.6

05 05

04 04

03 0.3

0.2 0.2

0.1 + 0.1 +

0.0 0.0 -

0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 04 05 0.6 0.7 08 0.9 1.0

Bernstein copula fit

Poisson copula fit

Note that although the empirical plot for the Poisson copula might suggest some tail dependence here
this is actually not true in the light of (8).

More sophisticated fitting procedures - including asymmetric cases — also in higher dimensions will be
investigated elsewhere.

It should be finally pointed out that copula constructions as presented in this paper will have a major
impact in the construction of Internal Models under the new Solvency II insurance supervising regime in
Europe (see e.g. [5] or [17, chapter 13]).

Appendix

Proof of Lemma 1. We will show by induction the equality of the following two expressions:
oo , . B-1
K(ﬁ,z):=z ﬁ“._l B+l.+1 z‘=k(ﬁ,z):=+ﬁ+12 B_.l ﬁfl Z'for0<z<1. (14)
i i (1-2) P i i
First notice that we have, for § e Nand0<z< 1,

i=0
OK(B,2) ~—. i—1 i+1)\ i aK KB, 2) _~—.; i—1 i+1)\ i
RSP (i PR - S () (P )

from which we can conclude the relation

o L oK Ki@z Z KSEZ,Z)
%——(B(IHZ)K(I;JJ 2) - (ﬁz)) orK(B+1,2) = aﬁ(ﬁ—+2)a' (15)

A similar, but more elaborate calculation shows that the latter equality remains valid if K(8, z) is replaced by

k(B, 2):

%*k(B,2) bk(ﬁ,z)
k(B+1,2) = —az‘ 16
(B+1,2) = =220 (16)
In the first step of the induction, for § = 1, we have
K(l ) Z (l + 1)(1 + 2) 1 Z 1) l 2 %hll(z) _ ( 1 k(l,Z)
j=2 -z
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with h(z) := Zzi = %_Z for |z| < 1. For the second step, assume that relation (14) holds for some 8 € N.

i=0
Then it follows by (15) and (16) that

%K(B,2) + 9K(B.2) Zazk(ﬁ,z) 4 9k(B,2)

_ 022 0z _ 0z? 0z _
K(B+1,2) = 5B+ 2) 5G+2) k(B+1,2)

which finishes the proof. O
Proof of Lemma 2. First, note that for § € N,

pare i i pare B-1-i i B-1
which is a special case of Vandermonde’s identity. This in turn implies

B-1
B-1\(B+1 28\ _ 2r(2p)
(ﬁ+1)§< ; im0 ) = e

Now, in the light of Lemma 1, we obtain

1 1 1 8 8 .
[ cplu,v)dudv [ f (1(1u)uv()12ﬂ+vl) (uv)' dudv

h A B-1\(B+1 h
o 1that 3 - . 1Rt
Au(B) = lim h _(B+1)Z,--o< i )( i )%‘?3 A

To evaluate the last integral, we substitute s =1 - u, w = 1 - v and get

Le—n

=

h h

N 1 -wfa-vf RS PN
18, h,1): / / Sy duay - [/ o sw)zﬁﬂu $)'(1 - w)' s dw.

1-h1-h 00

In a further step, substituting s = hx, w = hy we obtain

1 1
18, h, i) = h / / (1 - h)'(1 - hy) dxdy,
J (x+y- hxy)zBJ'1

giving

Au(B)

B-1 B-1 11
. -1\ (B+1) ;. 1B D Be1) [ [ Ay
Y 1)§< 1 )( ’ )hlw " 12( >< l' >O/o/(x+y)2ﬂ“d"dy

_ 2I(2pB)
- I2(B) //()(+y)2/3+1 dxdy.

It remains to evaluate the integral term in the expression above. Therefore, we consider the one-to-one map
g:T—(0,1%: wv)— uv,(1 —u)v) for T := {(u,v) e R2|0 <u<1,0<v<min <%, 1:‘) } (Note

that with (x, y) := g(u, v), we have u = xXTy’ v = x +y for (x,y) € (0, 1)2.) By the substitution formula for

Y

multiple integrals, we now obtain, putting f(x, y) := m,

and observing that for the determinant of

the Jacobian, we have here detAg(u, v) = v,

11
// )zﬂﬂ dxdy = //f(x y)dxdy = / f g, v)) -|det Ag(u, V)| dudv
5 6 X+y

8(T)

1 1/2
=//uﬁ(1—u)ﬂdudv=/min (%, 11u) .uﬁ(l—u)ﬁdu=2/uﬂ(1—u)ﬂ_1du
T 0 0
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which proves the first line in (6). For the first equality in the second line, note that, by symmetry and the
substitution v = 2u,

1/2 1/2 1/2
_4TGp) / wP(1-wftdu = ZF(Zﬁ) . [/ WP -wfdu - / 21 - wft du

rzp) ()
0 0

rep) 1 rep |
— ﬁ 1 p-1 _A2p) _ B-1.p-1 _
_zrz(ﬁ) / (1-w" (1 - 2u)du = 2(B) 451 /(2 v VP (1 -v)du

0 0

_ IR | @z-AF 22! Torep | e _@
R 2 T 2BT2BAFT T 2B(B- DAL 4P

Which proves the first equality in the second line of (6). The asymptotic expansion follows by Stirling’s for-
mula. (]

S}

1- e”‘)
Proof of Lemma 3. Define gn(c) := / _—

< e “* for ¢ > 0. Note that fr(x) := & for x > Ois

0
bounded by 1 for all n € N. We can therefore apply the dominated convergence theorem where appropriate.
Now

S S

1-eX)" .
g;z(C):=—/f)x~e"C"dx=—/ e™)" e ¥dx = /Z()(l’l"(’”)xdx
0 0
_ - (n) (_1)j+1/e—(j+c)x dx = i (n) (_1)j+1 (_ 1 —(]+c)x > _ - <n) (-1 )1+1 1
— | j |\ j jret o | j jtc
J=0 0 j=0 j=0

for ¢ > 0. Let further

n

hn(c) := Z (7) (1" In(+¢) - In(c)) for c > 0.

j=0

Then

n 11 1<(n i (n 1
et (e )

j=0

n

! - j+1 d . - j+ 1 1
hu(c) = . <7> (-1y 15 In(j + ¢) - In(c)) = ' (’J") (-1 (;Tc B E)
j=0 j=0

j=0 (

j=0

n
since0 = (1 -1)" = Z = <’;> (-1Y. This implies gj, = h), and hence gn(c) = hn(c) + Kx or equivalently,
Kn = gn(c) — hn(c)forallc >0

, for some constant K, € R. But then also
Kn = lim gn(c) - lim hn(c)
C—oo C—roo

= Cli_)n; (/ 1_)(767)() e dx) - Cll)rroloz (}) (=1Y* In( + ¢) -1In(c))

0
—wl_efx)nl' oy ax =S (™) 7 tim (1 (1 0d 0=0
A e e () e ({10 1)) - foar S
0 J=

for all n € N. Hence gn = hy for all n € N, which proves the Lemma. (J
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Proof of Lemma 4. Substitute s = 1 — t. Then (11) is equivalent to

L u-(1-5s))
1slﬂ)l S L(w) du lsw S
1-s 0

/L a1-w)- (l—s))dW=1

L(1-w)

with the substitution u = 1 — w. This means that we have to show that

/ In(w+s-ws) dw
sw S In(w)

Define
Flw,s) == MW*S) Gy ) o Inlw 51 =5))
In(w) In(w)
Then
F(w,s) < In(w +s — ws) < G(w,s)for0<wss

In(w)

(note that In(w) <0 forO < w< 1).NowforO<s<1,

/ 4 -In (1 -8 )
s/G(Wrs)—F(W,S)dws/T")HSdw<—ln(1 s)/ WSSIT&S;S)
0 0
with the limit

S

0 < lim 1 / G(w, s) - F(w, s)dw < lim
sl0 S sl0
0

In(1 -5s)

In(s) 0.

Hence it suffices to prove

S

S
liml/F(w s)dw—hml/mdwél.
sl0 S sl0 S —-In(w)

0 0

By the substitution x = — In(w) we obtain the equivalent expression

oo

-ln e*+s
lim1 / f)e""dxil.

Note that

7 -In e;x+s)e”‘dx= 7 -In e"‘(}j+se"‘))e,xdx= 7 x-1n i+se_x)e”‘dx

—1In(s) —1In(s) —In(s)

T 7 In 1+se™ 7 In 1+se™
= / e_de— / 7)€_de=5— / 7)€_de.
D D X D X
-1In(s) -1In(s) -1In(s)

Hence it suffices to prove

In 1 X
lim 1 / In 1+se™) v, Ly
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With the substitution s = e this is equivalent to

Z1n (1 + e"’T> \
%iTm eT/fe”‘ dx=0.
T

Substituting finally y = x — T, this means
lim e’ / 7111 yl *€) o) dy = lim 71n L+e) eV dy=0.

+T Ttoo y+T
0 0

But this is now evident due to

7 1n 1+e”) _ Ty+1 _ T +1 _

. y . y y - . y y -

OS%TQ y+T € dys%lTTo y+Te dy %To(y+Te )dy 0
0 0 0

by Lebesgue’s dominated convergence theorem. (For T > 1, an integrable majorant is given by e™.)

This proves Lemma 4. [

Proof of Lemma 5. First notice that by therelation L(u) = -In(1-u) =In 1) < {3, -1= {4 forO<u <1,
we obtain

1 A 1 1
u' > 1 i-1¢q4 _ 1 .
a; = O/’ 1) du O/(1 u)du—o/u (1 u)du—iiz(ﬂl) foralli € N. 17)
Now
11 1
KO = —— / / @' gy L / / dv (18)
To1-t a;i2L(u)L(v) 1-t a zzL(v) L(u)
t t t

by Lebesgue’s dominated convergence theorem since for fixed v € (0, 1), by (17),

- (uv)’ i-1_ 2+ (uv)? - 3uv . 3
Z GRLWILY) © Z (i 1) ) L( ) < Z i+ 1) A-w)?  A-uw)

du = 32V Now for 0 < t < 1, we have

the r.h.s being integrable w.r.t. u with value f e

(1-u )3

t . 1 .. .
ut ~ Vit i1 Vi
/ L(u) du =t / L(vt) dv=t L(v) dv
0

o—_

[=]

and hence

1 1 t 1.

SR/ T (N VAR N T SR TS0 N A R SR SR W
/ o) du_/L(u) du /L(u) du-(l t )/L(v) dv-(l t )m,
t 0 0 0
for all i € N. Thus we get, from (18),

1 1 .
1 < 1 - vt _ i+l
I((t)‘1/{ 12L(v)/L(u) }dv‘ 1t/ZiL(v) (1-)av

1 o i ; ~ 1
/ Li { 7_tz(vt) } . L [ L) - L) dvo1- b Lo
/ -

1- L(v) 1-t / L(v)

H
[

which proves relation (12). From Lemma 4 we thus obtain the final result

0<Ay = lti%?K(t) <1-1=0andhenceAy =0,

which proves Lemma 5. [
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Obituary
Sadly, Hervé Awoumlac Tsatedem has passed away in November 2015 at the early age of 31 due to an
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