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Abstract

In this paper we review Bernstein and checkerboard copulas for arbi-
trary dimensions and general grid resolutions in connection with discrete
random vectors possessing uniform margins, and point out the relation
to tensor product Bernstein operators. We further suggest a pragmatic
and effective way to fit the dependence structure of multivariate data to
Bernstein copulas via rook copulas, a subclass of checkerboard copulas,
which is based on the multivariate empirical distribution.
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1 Introduction

In the history of approximation theory, univariate and multivariate Bernstein
polynomials have played a central role since the beginning of the 20" century,
see, e.g., [11] for a survey of Bernstein polynomials in one variable and [1],
chapters 8.4 and 18, for a short treatment of Bernstein polynomials in sev-
eral variables. They have not only been used to provide a constructive proof
of the famous Weierstrafl approximation theorem for continuous functions on
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compact intervals, including explicit estimates for the rate of convergence, but
also for more advanced applications in functional analysis and computer aided
design, such as Bézier curves and surfaces, see, e.g., [7], [15] and [16]. Here,
shape preserving and local smoothness properties of Bernstein polynomials are
of central interest, in particular w.r.t. engineering applications. (It might be
interesting to note here that Donald Knuth has used Bézier curves for the design
of TpX-fonts.) Applications of Bernstein polynomials for modelling stochastic
dependence in a nonparametric way have, in contrast, been considered much
later.

The use of copulas for modelling and simulation purposes, for instance in risk
management, is of increasing importance, see, e.g., [3], section 5.3, or [9], chapter
5, and the references given there. Let us recall that a (d-dimensional) copula C'
is the cumulative distribution function (cdf) of a random vector U = (Uy, -+, Uy)
whose one-dimensional marginal distributions are uniform on the interval [0, 1].
The following well-known theorem (see, e.g., [9], p. 186) deals with a key prop-
erty of copulas.

Theorem of Sklar: Let F be the cdf of some random vector X = (X1, Xy),
ie., F(xy,,xq) = P(X1 < x1,-, Xy € x4) with marginal cdfs Fy,---, F;. Then
there exists a copula C': [0,1]¢ - [0,1] such that

F(xlv"'axd):O(Fl(xl)a"'de(xd)) (1)

for all x1,---,xz4 € R. If Fy,---, Fy are continuous, then C' is uniquely deter-
mined. Vice versa: For a copula C and univariate cdfs F1,---, Fy the assignment
F(xy,xq) = C(Fi(x1), -, Fg(zq)) defines the cdf F of some d-variate ran-
dom vector with marginal cdfs Fy,---, Fy.

Thus, the theorem of Sklar states that the cdf F' of any d-variate random
vector can be written in terms of its marginal distribution functions Fi,---, Fy
and a suitable copula C' which thus describes the dependence structure of the
vector components. Such a decomposition is often very useful in practice; for
an exemplary application in the context of Bernstein copulas see Example 4.2.
The definition of this specific copula type, constructed by means of Bernstein
polynomials, is given in section 2.

The discussion of potential copula models has so far mostly focussed on other
types, i.e., either the elliptical case (e.g., the Gaussian and t-copula) or the
Archimedean case (e.g., Gumbel-, Clayton-, and Frank-copulas). It seems that
the true impact of Bernstein polynomials on copula models has been discovered
only more recently, first in the framework of approximation theory (see, e.g., [8],
[10], [11]) and later in particular in connection with applications in finance (see,
e.g., [2], [5], [6], [13], [14]). Bernstein copulas possess several benefits compared
to the traditional approaches:

e Bernstein copulas allow for a very flexible, non-parametric and essentially
non-symmetric description of dependence structures also in higher dimen-
sions
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e Bernstein copulas approximate any other given copula arbitrarily well

e Bernstein copula densities are given in an explicit form and can hence be
easily used for Monte Carlo simulation studies.

In this paper, we review the construction of Bernstein copulas through dis-
crete random vectors with uniform margins (called discrete skeletons), and point
out their connection to checkerboard copulas, as discussed, e.g., in [8], [10] and
[11], and to Bernstein tensor product operators (cf. the proof of Theorem 2.2).
The explicit representation of Bernstein copulas in terms of tensor product Bern-
stein operators with a discrete skeleton has, to our knowledge, not been stated
in the related literature before. This approach, amongst others, opens a prag-
matic and storage saving approach to fit the dependence structure of observed
data to Bernstein copulas via rook copulas, a special subcase of checkerboard
copulas based on the multivariate empirical distribution. The tensor product
representation might also be helpful in further studies on global smoothness
preservation for copula approximation since it allows a direct transfer of results
from multivariate approximation theory (as formulated, e.g., in [4] and [12])
into the copula context.

2 Some simple mathematical facts on Bernstein
polynomials and Bernstein copulas

The assertions of the following lemma are well-known in the literature, but for
convenience and better understanding in the copula context we give a short
proof.

Lemma 2.1. Let B(m,k,z) = (’:)zk(l—z)m’k, 0<z<1,k=0,---,meN. Then
we have

1
[ mB(m-1,k,z)dz=1for k=0,-,m-1.
0

Further,

diB(m,k,z) =m[B(m-1,k-1,2)-B(m-1,k,2)] for k=0,---,m
z

with the convention B(m -1,-1,z) = B(m - 1,m,z) = 0. For the Bernstein op-
erator B,, defined by B,,f: 2+~ X1 o f (%) B(m, k, z) for real-valued functions
fon [0,1] and z € [0,1], this yields

iBmf(z) = mmi:l A f (E)B(m— 1,k,2)
dz fr m

where A, f(2) := f (z + %) - f(2) for z € [0,1] denotes the forward difference
operator.
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Proof. Let B(x,y) = % for z,y > 0 denote the Beta function and I' the

Gamma function, as usual. Then

1 m-—1
f mB(m—l,k:,z)dz:m( . )B(k;+1,m—k:)
0

_(m=-1\T(k+1)I'(m-k)
_m( k ) T(m+1)

- m(m-1)! El(m -k -1)!
T Hm k-1 m!
-1,

Further, for 0 < k < m,
dz k A
= m(m - 1)2k71(1 _ Z)(mfl)*(k‘fl)
k-1

- m(mk_ 1)zk(l - z)m_l_k

=m[B(m-1,k-1,2z) - B(m-1,k,z)]

which, by the above convention, also holds for k € {0,m}. The remaining state-
ment follows easily from this. O

Theorem 2.1 and Definition. For d € N let U = (Uy,-++,Uy) be a random
vector whose marginal component U; follows a discrete uniform distribution
over T; := {0,1,--;m; — 1} with m; e N, ¢ =1,--- d. Let further

d d
p(k‘l,"-,kjd)Z:P(m{Ui:k‘i}) for all (k‘l,"',k‘d)EXTi.
i=1 i=1
Then
mi-1 mg-1

d
G (ur,ug) = o Y p(ky, e ka) [[maB (mi— 1,k ug),
k1=0 ka=0 i=1

(w1, uq) € [0, l]d, defines the density of a d-dimensional copula CY, called
Bernstein copula. We call cg the Bernstein copula density induced by U. The
vector U is also called the discrete skeleton of the Bernstein copula.

Proof. For fixed 1< j < d we obtain, according to Lemma 2.1 above,

1
/0 cg (w1, uq) du;

my—1 mqg—1 d 1
= Z Z p(k1,~~-,kd)HmiB(mi—l,ki,ui)f ij(mj—l,k‘j,uj) de
k1=0  kq=0 i=1 0

i*]
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mi-1  mg-1 d
= o >0 p (ke ka) [ TmaB (mg = 1,k w)
k1=0  kg=0 i=1
%]
mi—-1 mj-1—-1 mjii-1  mgy-1 [m;-1 d
= oy e | Y pRy k) ) TTma B (ma = 1, ki, ug)
k1=0  kj_1=0 kj11=0  kg=0 \ k;=0 i=1
1#]
mi—-1 mji-1—-1 mjii-1  mg-1
=X XX Z P ﬂ{U ki) Hsz(mz 1, ki, ug)
k1=0 ]{?j,1=0 kj+1=0 k}d

z:t] z:tj

_ UV
=Cp (Ula"'vuj—lauj+17"'»ud)

fOI" (Ul, ey Uj_l,Uj+1, ~--,ud) € [0, 1]d_1, Where U\J = (Ul, ey Uj_1, Uj+1, tty Ud)
(note that for j = 1, the symbol UVreads (Ua,+++,Uy), likewise for j = d). We
thus obtain another Bernstein copula density, but of dimension d — 1 instead of
d. Continuing integration according to the remaining variables except for the
variable u, for fixed 1 <r <d, we end up with

1 1
\/O~ ..-’/0\ C(ul’...7ud) dul...dur—l dur+1"'dud
my—1

Z P (U, =k.) m.B(m, - 1,k.,u,)
k=0

my—1 my—1

Z —m,.B(m, -1,k ,u,) = Z B(m,-1,k.,u,)
ky=0 Mr

my—1 -1
Z (mrk )uf(l _ ur)mT—k—l =1

k=0

for all u, € [0,1] which proves that the r-th marginal density of % is that of a
continuous uniform distribution over [0,1], for every 1 <r < d. O

Remark 2.1. Note that the line of proof above shows that if U = (Uy,---,Uy)
is a random vector with joint Bernstein copula density cg as above, then also
any partial random vector V' = (U;,,--,U; ) withn<d and 1 <4y <+ <4, <d
possesses a Bernstein copula density ¢} given by

cp (i, uq,)
milfl My, —

Z Z P(ﬂ{UW_kW})HmW mi(_lakiwuie)a

=0

(ui1 EA) uin) € [O’ 1]71.

Theorem 2.2. Under the conditions of Theorem 2.1, the Bernstein copula Cg
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induced by U is explicitly given by

CY (a1, 1) 1= fwd...fml Y (- ug) dus-—dug
S LE P(mw <k, })H3<mukz,xl>

k1=0 kd
for (z1,+,xq) € [0,1]7.
Proof. Let Fy denote the cdf of U, i.e. Fy (z1, -, 24) = P(ﬂil {U; < ml}) for
(z1,,2q) € RY and let Z = (Zy,--, Zy) be given by Z; := % for i =1,---,d.
Then for the cdf of Z, we obtain

ko kd) (ﬂ{U < ki -1}) (ﬁ{Ui<ki})

Fa (k.
ml md
=Fy (k1 =1, kg - 1)

d

for (ki,---,kq) € X T;. By applying Lemma 2.1 consecutively d times, it follows
i=1

that

m11 mdl

)= S S p(m{U k})HmZ i1 )

=0

mi—1 mag—1

Z Z (ﬂ{U € (ki- -]})HmiB(mi—Lki,ui)

]Cl k}d
mi-1 mg-1 k k d
1 d
= Z AV ,msz( 7)HmiB(mi_17kiaui)
k1=0  kq=0 my’ mq/ ;-1
ad

= mb’ml 00 BmdFZ (uh "'7Ud)
for (uq,--+,uq) € [0, 1]d where Ay, oy 2= Ay, 0--0A,, s the tensor product of
the forward difference operators A, , -+, A, from Lemma 2.1 and B,,, o---c B,
is the tensor product of the Bernstein operators By, , -+, By, in the sense of [1],
section 8.4 (i.e., roughly speaking, the operator with index m; is applied with
the i-th of the d components as a variable and all other components remaining
fixed). By integration, we thus obtain

U Td T
CB (xl,"',xd) = A [0 C(Ul,"',ud) dul...dud
= Bml 00 Bm,dFZ (‘Th”';xd)

my my kl
. FZ( md)HB(mz,k“xz)

k1=0  kg=
d
= Z ZP( {U<k})HB(mzvkzaxz)
kl 0 =1
for (x1,+,24) €0, 1]d, as stated. O
6
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Remark 2.2. Note that the term Ay, ...;m, Fz (T%, e r%) in the proof above
corresponds — up to an index shift — to the d-th order difference of the d-
increasing cdf Fz, see, e.g., [17], chapter 6, or [8], Proposition 4.2. For instance,

for d = 2, we obtain

ki k ki+1 ky+1 ki+1 k
Aml,szZ(fl,i)=FZ( 1+ 7 5+ )—FZ( 1+ 772)
mi1 Mo my mo mi ma
_Fz(ﬂ,@)wz(ﬂ,ﬁ),
mi  Mao my ma

Remark 2.3. From a probabilistic point of view, in the light of Lemma 2.1,
Bernstein copula densities cg (u1,-++,uq) can also be considered as mixtures of
densities of random vectors Y (ki,my, -, kq,mq) = (}/(k?l-,ml)’“.?Y-(kdﬂnd)) with
independent components which follow beta distributions with parameters k; +1
and m; - k; and density

m;—1 _ ks
fY(kj,mj)(z) _ mj( ‘;{:j )Zky(l — )™M 1-k;
— 1 ij(l _Z)mjflfkj

B(kj + 1,mj - kj)

for j =1,-~-,d and z € [0,1]. Here U is the mixing random vector. From an
algorithmic point of view, this representation is particularly useful for Monte
Carlo simulations with Bernstein copulas.

3 Bernstein and checkerboard copulas

There is also a natural relationship between Bernstein and checkerboard copulas
as discussed in [2] , [5] and [6]. We refer to a slightly more general setup here.

Theorem 3.1 and Definition. Under the assumptions of Theorem 2.1 define

d . .
the intervals I, .., == X (Lj kj+1

PR

d
] for all possible choices (k1,---,kq) € X T;.
i=1

Then the function

mi-1 mg-1

d
@p=]mi Y Y, ok, ka) 1
i=1 k1=0  kq=0

is the density of a d-dimensional copula C’g g, called checkerboard copula (in-
duced by U). Similarly as before, U is called the discrete skeleton of the checker-
board copula. Here 14 denotes the indicator random variable of the set A, as
usual.

Proof. The assertion is a direct consequence of the fact that a random vector
W = (Wq,--,Wy) follows a checkerboard copula iff the conditional distribution
of W given U fulfills the conditions

d
PW (o |U = (K1, ka)) =U (In, ...,,) for all (ky,-- kq) € X T,
=1
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where U (I, ... k,) denotes the continuous uniform distribution over Iy, ... x, and
d
U = (]{71, ey kd) < We Ikl,'",k?d for all (kl,“', k'd) € >< Tz
i=1

(i.e., U denotes in some sense the “coordinates” of W w.r.t. the grid induced
by Ik17"‘7kd)' O

Remark 3.1. The Bernstein copula induced by U can be regarded as a natu-
rally smoothed version of the checkerboard copula induced by U, replacing the
discontinuous indicator functions

*m

d
]llkl‘...,kd (Uh"'yud) = 11]1( kz""l] (ui)

L}
mg’ my

by the continuous polynomials

B (ml - 1,k:i,ui) 5 (u17~~~,ud) € [0, 1]d .

e

I
—_

3

Theorem 3.2 (Approximation Theorem). Every copula C in d dimensions can
be uniformly approximated by a sequence {C’g évr}reN of checkerboard copulas
with grid constants mgq,...,m.q € N, if 1%321 {m} tends to infinity when r
tends to infinity. If C is the cdf of the random vector Z = (Z3,-+,Z4) an
admissible choice of the discrete skeletons U,, r € N is given by the random
vectors U, = (U1, Upq) with Uy := [my; - Z; = 1] for j = 1,---,d where [2] :=
min{k € Z|z < k} for z € R (rounding upwards). In this case,

d d ( k., ki+1
pr(k1,~~~,kd):P(ﬂ{Uri:ki}):P(ﬂ{ <7< it })
i=1 g=1 Mrj My

= P(Z € Ikl,"'ykd)

d
for all (ki,--+, kq) € X T)y.
i=1

Proof. The statement Theorem 3.2 as well as the following Corollary 3.1 follows
from a straight-forward extension of the two-dimensional case discussed in [8],
section 5. O

Corollary 3.1. Every copula C in d dimensions can be uniformly approximated

by a sequence {C’gg}reN of Bernstein copulas with discrete skeletons and grid

constants my,q,...,myq € N, if 1mkind {m,r} tends to infinity when r tends to
<k<

infinity. The discrete skeletons may be chosen identically as in the checkerboard
copula approximation.

The practical importance of Theorem 3.2 lies in the fact that the Monte
Carlo simulation of — especially high dimensional — copulas is generally difficult,
while a simulation of checkerboard copulas is comparatively easy.
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4 Bernstein and rook copulas

In most practical applications, e.g., when modelling financial portfolios contain-
ing different stocks and derivatives or insurance portfolios with different types
of risk, the stochastic dependence structure of the various model variables is
not explicitly known, see, e.g., [9], [13] and [14] for numerous examples. In
such situations, assumptions on the class of corresponding (parametric) cop-
ula families are sometimes made on the basis of statistical tests. Alternatively,
a non-parametric approach could be chosen, for instance identifying the dis-
crete skeleton of a checkerboard or Bernstein copula directly via the observed
data. A major problem here is to find a suitable contingency table since the
marginal distributions must be discretely uniform, which means that a set of
side conditions has to be fulfilled. Also, this approach becomes ineffective for
higher dimensions d, since in general H?:l m; real numbers have to be stored
in order to describe the distribution of the discrete skeleton completely. Such
problems are completely avoided if so-called rook copulas are used for modelling
the discrete skeleton.

A rook copula is a particular checkerboard copula with the same grid size
in each dimension that distributes probability mass according to the placement
of rooks on a checkerboard without mutual threatening. It can in general be
constructed in d dimensions as follows. Let

001 002 0 00,d-1 00d
011 J12 o 01,d-1 01d
M:=| : : o :
Om-2,1 Om-22 = Om-2,d-1 Om-2,d
Om-1,1 Om-1,2 ** Om-1,d-1 Om-1,d

denote a matrix of permutations in column vector notation, i.e. each column
(00K, O1ks "+, Om-1,5) 1s a permutation of the set T := {0,1,---,m -1} for k =
1,---,d. A checkerboard copula C' is a rook copula iff there holds

d 1
Pm (klv"'akd) = P(ﬂ {Ui = kz}) =—
i=1 m

< (k1,-,kq) = (o1, 042,+,01,4) for some teT.

The distribution of the discrete skeleton of a rook copula can thus be completely
described by storing just m - d instead of m? real numbers.

Example 4.1. The rook copula corresponding to
the picture on the right is given by the matrix

w0123 450677

101 4 2 3 6 5 7|°
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In practical applications, in the case of continuous distributions, the per-
mutation matrix pertaining to a rook copula can directly be extracted from
the ranks of the observed random vectors according to the following procedure.
Given a matrix @ = [z;;] of data, where ¢ = 1,---,n is the i-th out of n indepen-
dent d-dimensional observation row vectors and j = 1,---,d is the corresponding
component (dimension) index:

e For each j, calculate the rank 7;; of the observation z;; among x1;, -, Zn;
fori=1,---,n.

e Form the matrix M := [(r;; —1)] of permutations for the empirical rook
copula.

W.r.t. Monte Carlo simulations, it is extremely easy to generate samples that
follow either a rook copula or a Bernstein copula with the same discrete skeleton.
For simplicity, we explain the procedure by means of the following example only.

Example 4.2. The following table contains some original data (x;1,2;2), @ =
1,---,20 from an insurance portfolio of storm and flooding losses, observed over
a period of 20 years, their ranks and the permutation matrix M.

1 Ti1 Tiz | Ti1 | Ti2 M

1| 0.468 | 0.966 4 9 3 8

219951 | 2679 | 20 | 20 | 19 | 19

3 | 0.866 | 0.897 8 4 7 3

4 | 6.731 | 2.249 19 19 | 18 | 18 )
5 | 1.421 | 0.956 13 8 | 12 9 28

6 | 2.040 | 1.141 17 15 | 16 | 14 i

71 2967 | 1.707 | 18 18 | 17 | 17 .

8 | 1.200 | 1.008 11 10 | 10 9 X, 8 B

90426 | 1.065 | 3| 12| 2] 11 el

10 | 1.946 | 1.162 | 15 | 16 | 14 | 15 B

11 | 0.676 | 0.918 5 6 4 5 05

12 | 1.184 | 1.336 10 17 9| 16 )

13 | 0.960 | 0.933 9 7 8 6 LI I ‘-X § 2 & &
14 | 1.972 | 1.077 16 13 | 15 | 12 !

15 | 1.549 | 1.041 14 11 | 13 | 10

16 10819 1 0.899 6 5 5 7| Figure 1: Scatterplot of observed risks
17 0.063 0.710 1 1 0 0 Ti1 and T2 (lIl mlHlOl’l euros)

18 | 1.280 | 1.118 12 14 | 11 | 13

19 | 0.824 | 0.894 7 3 6 2

20 | 0.227 | 0.837 2 2 1 1

In the first step, we draw a pair (o;1,0;2) out of M with equal probability
% = 2% w.r.t. the index ¢ € {0,---,m -1} = {0,-+,19} . In the second step, we
either draw a sample Z = (Z;, Z3) from a continuous uniform distribution over
the rectangle I, »., = [%, U“T“] X [%, ‘7727“] for the rook copula, or a sample
Z = (Z1, Z>) with independent components where Z; follows a beta distribution
with parameters o;; + 1 and m — oy, j € {1,2}.

A generalization of the procedure to arbitrary dimensions, replacing the

rectangle I,,, »,, by a general cube, is obvious.

10
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Figure 2: 5000 simulated random vectors following the rook copula (left) and
the Bernstein copula (right)

Note that according to a fundamental theorem in statistics, the empirical
distribution function of a multivariate observation converges uniformly to the
true cdf when the sample size increases. Likewise, the empirical copula based on
the extracted marginal ranks converges uniformly to the true underlying copula.
This implies that with an increasing number of observed data, the rook copulas
as well as the Bernstein copulas with the discrete skeletons derived from the
marginal ranks converge to the true underlying copula as well, since in both
cases the grid constant m corresponds to the sample size.
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