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An Application of Record Values to Stochastic Simulation 

Dietmar Pfeifer, Aachen 

Abstract: 

Using record values rather than record times, a new method for 

testing the independence of random number generators with con

tinuous cumulative distribution function (c.d.f.) is proposed 

as well as another algorithm for generating Poisson-distributed 

random variables (r.v. 's) from any continuous distribution. 

Record values were originally introduced by K.N. Chandler in 1952, 

inspired by "the frequency with which record weather conditions 

are reported in the newspapers" ([1]). 

is a sequence of real r.v. 's on a probability space 

( >1, Ol, P), any observation of this sequence which is strictly grea

ter or less than all previous ones is called a record value. The 

indices at which these record values occur are r.v.'s themselves; 

they are called record times. 

A strict definition of record values and record times could be gi

ven as follows: 

Definition: 

The random indices {Un}n:O are inductively defined by 

{

min {k e ]li/ I Xk (w) > Xu (w) (w)} , if it exists 
n-1 

Un - 1 (w) , otherwise 

for w e >1 and n e ]li/. {Un}n':o is the sequence of the upper re

cord times and {Xu } 00 the sequence of the upper record values 
n n=O 
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of the sequence {Xk }k=1' Let {Ln}n=O be the sequence of the 

upper record times of the sequence {-Xk }k:1' {Ln}n:O is called 

the sequence of lower record times and {XL } 00 the sequence of 
n n=O 

If the r. v. 's {Xk }k=1 are independent and identically distributed 

(i.i.d.) with continuous c.d.f., the sequence of record times is 

infinite almost surely (a.s.), as can easily be shown by induc

tion. Moreover, there exist infinitely many record values a.s., 

which finally exceed or go below every fixed value from the inte

rior of the support of the c.d.f. a.s. 

As the distribution of the record times then does not depend on the 

original distribution, they can be used for distribution-free tests 

in time-series (cf. [2J). In [2J, the test-statistics can be ex

pressed in terms of max {k e ~+IUk ~ n} and max {k e Z+ILk ~ n} 

for a fixed n e lli (which are the number of upper and lower records 

in a series of n observations). Since in stochastic simulation all 

considered c.d.f. 's are assumed to be known, it is the purpose of 

this paper to propose a similar test for the independence of ran

dom number generators using record values rather than record times. 

Besides a gain of information using the c.d.f. of {Xn }n:1 ' the 

distributions under consideration are Poisson-distributions while 

the distributions of the test-statistics in [2J are rather tedious 

to calculate. 

The c.d.f. of the record values can easily be calculated using the 

following 

Lemma: 

Let n e lli and Yo' ••• ,Yn Z1' ••. ,Zn be real r.v. 's inde-

pendent of each other with the c.d.f.'s FO' .•• ,Fn and 

G1 , •.• ,Gn resp. Then 



Proof: 

,,; y. ,,; t}) 
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f I 
(-oo,t J (-oo,t J 

n 
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Let g: JR2n+ 1 + {o, 1} be defined by 

1 S L t ,,; t; ~ t (; - 1 n) , i - i-1 ~ ~- , ... , 

0, otherwise 

n n 

= 1 (-""t] (tn ) TT 
j=1 

1 (-00 t J (t·_ 1 ) IT 1 (_00 t ] (s.), where 1A 
'j J i=1 'i-1 ~ 

denotes the indicator r.v. for any event A € ~ • Then 

n 
P( n {Z.,,; Yi-1 ~ 

i=1 ~ 
Y. ~ t}) = 
~ J1n{z.~ 

Q i=1 ~ 
,,; Y. :S t} dP 

~ 

fg (Yo ,···,yn ,Z1,···,Zn)dP= f gdP(yo' y Z Z) 
.•. , n' 1'···' n 

Q JR2~1 

f f 1 (-oo,t] (tn ) n- 1(_00,t.] (t j _ 1 ) ••• 
JR JR j=1 J 

(n+1)-times 

f J fr 1(_00 t J(s.)dG 1 (s1)···dG (s )dFO(tO)···dF (t)= 
i=1 'i-1 ~ n n n n 

JR JR 
'------y----' 

n-times 

From now, let {Xk }k=1 be i.i.d. with continuous c.d.f. F. Set 

1;0 inf {s € JR IF(s) > o}, 1;1 = sup {s € JRI F(s) < 1} • Then 

we have the following representation: 

o 
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Lemma: 

t tn t1 

f f···f:IJ~ 
-00 -00 -00 

, otherwise 

for every n € ]!if. 

Proof: 

Let t < I; 1 and ko = 1. Since F is continuous, "<" and " ,:; " 

are interchangeable in the lemma above, and the Monotone Conver

gence Theorem yields 

n 
P( l:J n 

1 < k1 < k2 < ••• < kn m= 1 

kn=kn_1+1 

t tn t1 

f f .. · f 
j =0 

n 

n-1 
TT 
i=O 

For t ~ 1;1' P(Xu ~ t) 
n 

The formula given above 

R(t) -In (1 - F(t» 

Corollary: 

For t < I; 1 and n € ]!if 

can 
t 

f 

n 
TT 0m- km_1-1 (t 1) dF (to) ... dF(t ) = 

m=1 m- n 

n-1 j. 1 
TT F ~+ (t.) dF(tO) ..• dF(tn ) 
i=O ~ 

P (Xu < 00) = 1 • 
n 

o 

much be simplified by setting 

1 
'---~F'(-s~) dF(s) for t < 1;1 
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R(t) 

dF(s) f 
o 

n s -s 
n! e 

n Rk(t) 
ds = 1 - e-R(t) klo ~ 

i. e. R (XU follows an Erlang-distribution (c. f. [6], p. 69) • 
n 

This result can readily be obtained by induction. 0 

Using a standard argument relating the Erlang-distribution with 

the Poisson-distribution, we are led to the following 

Lemma: 

Yt = min {n e z+ 1 Xu > t} and Zt 
n 

min {n e £+1 XL < t} 
n 

(wi th min ¢ = (Xl) are real r. v. 's a. s. following a Poisson

distribution with parameters R(t) and R(t) = -In F(t) resp. 

Proof: 

Since F is continuous, Yt and Zt are real r.v. 's a.s. (cf. to 

what has been said after the first definition above). Further, 

Xu 
.; t < Xu n e ]N 

n-1 n 

Yt n <=> i.e. 

t < X1 , n = 0 

P(Yt 0) P(X1 > t) 1 - F(t) = e-R(t) and 

P (Y t = n) = P (Xu .,; t < Xu ) 
n-1 n 

P(Xu > t)-P(Xu >t) 
n n-1 

-R(t) Rn(t) 
e ~ for n e ]N by the corollary and the monotony of 

record values. The result concerning Zt follows by transition 

from {Xk }k:1 to {-Xk }k:1 ' i.e. from F to 1 - F(-.) , and from 

t to -t . 

Since ~O < t < ~1' 0 < R(t), R(t) < 00, which guarantees that 

the distributions are not degenerate. 0 
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The r.v. 's Yt and Zt can be interpreted as the number of record 

jumps which are needed to exceed or go below the value t for the 

first time. 

Now let x 1 ' ••• ,xn (n e ill) be random numbers taken from a random 

number generator for a c. d. f. F. Choosing t; with F (t; ) = p for p p 
o < p < 1, a procedure for testing the hypothesis HO: x 1 ' ••• ,xn 
are independent realizations of the random number generator 

against H1 : HO is not true can be described as follows: 

Divide x 1 ' •.. ,xn into finite subsequences with the last element 

of each subsequence being the first one to exceed or go below t;p . 

For each subsequence, count the number of record jumps (if there 

is only one element in a subsequence, the number of jumps is zero). 

Under the assumption of independence these numbers are independent 

realizations of the r.v. 's Yt; and Zt; resp., which are Poisson-
p p 

distributed with parameters A R(t;) = -In (1-p) and AL = R(t;p)= 
,U P 

-In p resp. The decision between HO and H1 then has to be made 

depending on the outcome of a goodness-of-fit test such as 
2 Pearson's X -test, applied to the numbers of record jumps obtained. 

Since the mean number of random numbers needed to produce a reali

zation of Yt; and Zt; is Gumbel's return period ([3J p. 21) 
p p 

T(t; ) 
p 

1 - F (t; ) 
p 

R(t; ) 
e p 

R(t; ) 
e p 

1 
P 

A 
e U 1 

1 - p and 

resp., the mean number of subse-

quences amounts to n(1-p) and np resp. Obviously, large numbers of 

subsequences imply small Poisson parameters and vice versa. Since 

large Poisson parameters yield more information about the original 

random numbers, p should be chosen accordingly. However, the fre

quencies with which small record jumps occur should not be less 

than 5 in order to avoid too much grouping of data concerning the 
2 

X -test. 

Therefore, n(1-PU) 
-AU 2 :, 5 e n (1-Pu) 

and 
-A L 2 :, 5 i.e. ~ n PL e = n PL , Pu -IE n and 
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for upper (pu) and lower (PL) records resp. 

The testing procedure described above can also be applied when in 

doubt whether F is the appropriate distribution or when F is com

pletely unknown. This is true, since under the assumption of inde

pendence a change of the value of the c.d.f. F at ~p yields a 

corresponding change of Poisson parameter only without leaving the 

class of Poisson-distributions. In this case AU and AL are to be 

estimated by the sample mean after choosing a convenient value for 

~ • By a well-known theorem of Fisher the x2-test then can still 
p 

be applied having f-1 degrees of freedom instead of f in the usual 

case. 

Example: 

The first 5000 random numbers generated by the linear congru

ential method with the modulus P = 2 15 , the multiplier 

AO 899 and the initial value ro = 3 (c.L [4J, p. 39/53) 

give the following results putting Pu 

(Le. AU = AL = ln 16 'V 2.773): 

15 
16 and PL 

number of observations (theoretical) 295 (312.5) 

sample mean 2.759 

frequencies (theoretical) 

0 20 (18.44) 

47 (51.12) 

77 (70.87) 

62 (65.49) 

48 (45.40) 

24 (25.17) 

8 (11.63) 

(4.61) 1 
(1. 60) ; 

0 (0.49) I 
10 0 (0.14) 

11 (0.03) j 

X 2_ test statistic T 3.18 

degrees of freedom f 

critical value c at a 

significance level of 5% 14.07 

Z 1 

16 

319 (312.5) 

2.712 

18 (19.94 ) 

50 (55.28) 

78 (76.63) 

81 (70.82) 

56 (49.09 ) 

27 (27.22) 

(12.58) 

(4.98) 1 
0 (1. 73) , 

0 (0.53) r 
0 (0.15) 

0 (0.04) j 

9.24 

14.07 

1 
16 
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In [4J, p. 53 the results of several independence tests for the 

random number generator used above (and others) are given. Among 

these tests the similar run test with runs above and below the me

dian and the up-and-down run test are of special interest since 

they deal with the growth behavior of the random numbers just as 

the record value test does. Further, run tests also use the 

x2-test statistic so that the results are comparable: 

T 

record value test 

15 
Pu = 16 

3.18 9.24 

1 
16 

with f 

run test with runs 

above and below the median 

7.09 

7 and c = 14.07 

.
. T I preco_-r_~ value~est 

U 2 PL = ~ run test 
---- . -_._------ ---------

T 2.24 0.23 1.69 

up-and-down 

with f 4 and c = 9.49 

The r.v. 's Yt and Zt can also be used to generate Poisson-distri

buted random numbers with parameter A > 0 from any continuous 

c.d.f. F. According to what has been said earlier the algorithm 

using e.g. upper record values can be described by the following 

diagram, setting p = 1 - e- A: 
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K 0 

5 So 

generate a ra n-
dam number Z ~------.-----------, 

OICC. to F 

Z > 5p 

yes 

K desired 
Poisson -distri b. 

r. number 

no 

no 

Z > 5 
yes 5 

K 

Z 
K+1 

Since the mean number of random numbers distributed according to 

F which is needed to produce a Poisson-distributed random number 

with parameter A is always e A , the algorithm might be applicable 

for small values of A only; however, for large A the mean number 

can be reduced using the fact that the sum of independent Poisson

distributed r.v. 's is ~gain Poisson-distributed. For this purpose, 

let 

N = min {n e:IN I A£' n(n+1) ln (1 + l)} 
n 

(which minimizes f (n) = n e A/ n over:IN) 

and generate N independent Poisson-distributed random numbers with 

parameter ~. Summing up these random numbers yields a Poisson

distributed random number with parameter A. The mean number M of 



747 

random numbers distributed according to F which is needed then 

reduces to 

M = N e A/ N 
1 N+1 

N(1 + N) e A + 3 
2'e 

since 1 
A > (N-1 ) N In (1 + N-1) ~ (N - 1) for N ~ 2 • 

More tedious calculations show that even the inequality 

M';eA + e holds for N ;;" 2 I Le. M-eA->-O 
6 (N - 1) 

M 

non-reduced 

10 
reduced 

2e ~T 

if A ->- 00. 
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If F is assumed to be the uniform distribution on [0,1J there is 

another algorithm for generating Poisson-distributed random numbers 

which is derived from the properties of Poisson processes ([5J, p. 

172/173). The mean number of uniformly distributed (u.d.) random 

numbers needed to give a Poisson-distributed random number with 

mean A then amounts to 1 + A. A comparison of both methods with 

respect to CPU-times shows that the algorithm based on records is 

slightly faster for A < 0,5 though the mean number of u.d. random 

numbers needed is e A > 1 + A. This is mainly due to the simplicity 

of the algorithm which avoids arithmethic operations on the random 

numbers needed. 

Numerical results were obtained by the aid of a Control Data com

puter Cyber 175. The relevant steps of the programs for which 

CPU-times were recorded are given below. Program PROD corresponds 

to the conventional algorithm, program REC to the algorithm based 

on record values. The u.d. random numbers are generated by the 

linear congruential method with modulus 222, multiplier 648053 and 

initial value 17. Compilation was done by the FTN compiler with 

OPT = 2 XL stands for A. The percentage of the mean CPU-time 

saved using REC instead of PROD is shown in the figure below. The 

dark line and the dashed line correspond to n = 105 and n = 106 

Poisson-distributed random numbers resp. 

C-OPI-XL I 
,all, JaN-O 

10 CO~Tl"UE-
... ·0 • Sal. 

20 CONTINUE 
/11-"'·1 
l-bIaS05]-I 
,-1'10011,2"12) 
X-I/Z."22 
S·)[·S 
U(S.LT.CIGOTO ]0 
1("';;.1 
GOTO 20 

]0 CONfINUE 
"-,,tl 
!F(J.NE.I00000IGOtO 10 

PAOG~AH REC OP'-2 

C"l.-EXP(-XL J 
1=17 S J:;.N=Q 

HI CONTINUC 
JC=O 1 s=o. 

20 CONTlNUf 
I=6~805J·I 

1=1100(1.2-·221 
1=112."·22 
N=N_1 
IF(X.GT.CIGOTO 3D 
IFO.LE.SIGOTO ZQ 
s=): 
1(=1(.1 
GOTO 20 

30 CONT I NUE 
J=J·l 
IF(J.N[.looaODIGOTO 10 

18 

" 16 

12 

10 

4 

~ 

" , , , , , , , 
O+--r-'--.--r-'--.--'--,-~~-

° 0,1 0,2 0" 0,4 A 0,5 
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