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|. Risk Measures

I. Risk Measures 1
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Let X be a suitable set of non-negative random variables X (risks) on a
probability space (Q,.4,P). A risk measure R on X is a mapping X — R" with
the following properties:

PX=P" = R(X)=R(Y) forall X,YeXx [distribution invariance]
R(cX) = cR(X) forall XX and ¢>0 [scale invariance]
R(X+c)=R(X)+c forall XeX and ¢ >0 [translation invariance]
R(X) < R(Y) forall X,Y € X with X<Y [monotonicity]

The risk measure is called coherent, if it additionally has the property:

RX +Y)<R(X)+R(Y) forall X,YeX [subadditivity]

I. Risk Measures p
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This last property is the crucial point: it induces a diversification effect for
arbitrary risks X,,---, X, (dependent or not) since it follows by induction that
coherent risk measures have the property

R

2 X
k=1

gzn:R(Xk) forany neN.
k=1

The popular standard deviation principle SDP which is sometimes used for
calculating premiums in insurance is defined as

SDP(X) = E(X) + v+/Var(X) for a fixed y>0 and XeX=2¢ (Q,A4,P),
the set of non-negative square-integrable random variables on(Q, A4, P).

SDP is coherent, but it is not a risk measure in the strict sense because it is not
monotone.

I. Risk Measures 3
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The risk measure used in Basel II/lll and Solvency Il is the Value-at-Risk VaR,
being defined as a (typically high) quantile of the risk distribution:

VaR, (X):=Q,(1—«a) for XeXand 0<a <1,

where Q, denotes the quantile function

Q) =inf{x eR|P(X <x)>u}  for O<u<1.

VaR is a proper risk measure, but not coherent in general.

I. Risk Measures 4
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The “smallest” coherent risk measure above VaR is the expected shortfall ES
(used in the Swiss Solvency Test - SST), which is in general defined as

ES. (X) = é]VaRU(X)du (*)

for 0 <a <1, where 1, denotes the indicator random variable of some event
(measurable set) A. Equivalent representations are

P(X=VaR,(X)) _

(01

ES,(X) = VaR_(X)+E (X —VaR_(X)| X > VaR (X)) nd

ES, (X) = 5{5 (X Uxvar, o0y ) — VaR (X)[P(X > VaR (X)) - a]}. (**)

I. Risk Measures )
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In case that P(X >VaR_ (X))=«, ES,(X) is also equivalent to

ES, (X) = 1]VaRu(X)du — E(X|X > VaR_ (X))
e 0

Note that in general, we have

P(X >VaR (X))>a>P(X > VaR,_(X)).

I. Risk Measures 6
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Graphical sketch of proof for the equivalence of (*) and (**):

1 P(X < x)

! [ vaRr,(x)du

> x-P(X=x)=E(X-1

VaR (X)-(P(X > VaR (X)) —a) x>VaR, (X) {szaR"(X)})

{szaRa (X)}

VaR_ (X)

I. Risk Measures 7
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Example 1: Let the risks X and Y be independent and uniformly distributed over

the interval [0,1]. Then, for a<%,
VaR, (X)=VaR, (Y)=1—« and VaR (X +Y)=2—-+2a <VaR_ (X)+ VaR,(Y),
ES, (X) =ES,_(Y) = 1—% and ES_(X +Y) = 2—5\/204 <ES, (X)+ES,(Y),

hence there is a strict diversification effect for both risk measures.
For Y = X, however, we obtain

VaR, (X)=VaR (Y)=1-a and VaR_ (X +Y)=2-2a=VaR_ (X)+VaR (Y),

ES, (X) =ES,(Y) = 1—% and ES, (X +Y)=2—a =ES,_(X)+ES_(Y),

hence there is no strict diversification effect for both risk measures.

I. Risk Measures 8
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Some formulas for normal and lognormal risk distributions:

1. Case P* =N(u,oz>:
VaR (X) = i+ u, o, ES.(X) = it £a)
(6%

with ¢ denoting the density, ® the cumulative distribution function and
u, = '(3) the §-quantile of N (0,1).

Note that here VaR_(X) and ES,(X) are exactly SDP's for « <%, hence both

risk measures are coherent in this case!

2. Case P zﬁN(u,az):

2

VaR (X)=exp(u+u, o), ES (X)= éexp[,u + "?](1 —®(u,_, —0)).

I. Risk Measures 9
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Some remarks on the interplay between correlation and diversification under
the risk measure VaR (X):

“ ‘Diversification effects’ means the reduction in the risk exposure of insurance
and reinsurance undertakings and groups related to the diversification of their
business, resulting from the fact that the adverse outcome from one risk can be
offset by a more favourable outcome from another risk, where those risks are
not fully correlated. The Basic Solvency Capital Requirement shall comprise
individual risk modules, which are aggregated [...] The correlation coefficients
for the aggregation of the risk modules [...], shall result in an overall Solvency
Capital Requirement [...] Where appropriate, diversification effects shall be
taken into account in the design of each risk module.”

[Directive 2009/138/EC, (64) p. 7; (37) p. 24; Article 104, p. 52]

I. Risk Measures
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Example 2: Let the joint distribution of the risks X and Y be given by the
following table (where a = 0.005 (Solvency Il standard)):

I. Risk Measures

with 0< < 0.440, giving VaR_(X) =50, VaR_(Y) = 40.

PX=x,Y=y) x
0 50 100 | P(Y=y) | P(Y<Y)
0 B | 0.440—3 | 0.000 0.440 0.440
40 | 0.554— 3 B | 0.001 0.555 0.995
50 0.000 0.001 | 0.004 0.005 1.000
P(X = x) 0.554 0.441 | 0.005
P(X < x) 0.554 0.995 | 1.000
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For the moments of X and Y, we obtain, with o denoting the standard

deviation:

E(X) | E(Y) | olX)| oY) p(B) = p(X.,Y)

22.550 | 22.450 | 25.377 | 19.912 | —0.9494 +3.9579 3

which shows that the range of possible risk correlations is the interval
[—0.9494; 0.7921], with a zero correlation being attained for 5 = 0.2399.

I. Risk Measures



cart Quantitative Risk Management
unll;)eS;;EthZg; OLDENBURG

The following table shows the distribution of the aggregated risk S=X+Y:

s| 0 40 50| 90| 100| 140 | 150
P(S=s) | 3 | 0.554—3 | 0.440—3 4 | 0.001 | 0.001 | 0.004

P(S<s) | B 0.554 | 0.994—-73 | 0.994 | 0.995 | 0.996 | 1.000

giving a risk concentration (as opposite to risk diversification) due to
VaR_(S) =100 > 90 = VaR_(X)+ VaR_(Y),

independent of the parameter 3 and hence also independent of the possible
correlations between X and Y!

I. Risk Measures
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A copula (in d dimensions) is a function C defined on the unit cube [0,1]® with
the following properties:

e the range of Cis the unit interval [0,1];

C(u) is zero for all u=(u,,---,u,) in [0,1° for which at least one coordinate
is zero;

C(u) =u, if all coordinates of u are 1 except the k-th one;

C is d-increasing in the sense that for every a<b in [0,1]° the volume

assigned by C to the subinterval [a,b] =[a,, b,]x---x[a,,b,] is non-negative.

Il. Copulas
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A copula can alternatively be characterized as a multivariate distribution
function with univariate marginal distribution functions that belong to a
continuous uniform distribution over the unit interval [0, 1].

Every copula is bounded by the so-called Fréchet-Hoeffding bounds, i.e.
C.(u)=max(u, +---+uy; —d+1,0)<C(uy, -,uy) < C(u) ;== min(u,,---,uy).

The upper Fréchet-Hoeffding bound C* is a copula itself for any dimension; the
lower Fréchet-Hoeffding bound C, is a copula in two dimensions only.

1 o u-as--_: :

Representations: (U,1-U) or (1-U,V) (U,U)

Il. Copulas
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Sklar’s Theorem: Let H denote some d-dimensional distribution function with
marginal distribution functions F,---,F,. Then there exists a copula C such that

for all real (x,,---,x,),
H(X1I'“1Xd) - C(FI(X'])I"'le(Xd))'

If all the marginal distribution functions are continuous, then the copula is
unique. Moreover, the converse of the above statement is also true in case of

continuity. If we denote by F',---,F, ' the generalized inverses of the marginal

distribution functions (or quantile functions), then for every (u,,---,u,) in the
unit cube,

Clu,---,uy) = H(Iﬂ’1(u1),~~,Fd’1(ud)).

Il. Copulas
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Example 3: Consider a random vector (X,Y) with the density

x+y if0<x,y<1
0 otherwise.

fx,y)= {
Then by integration, we obtain for the cdf F
F(x,y):%xy(x—i—y) for 0< x,y <1.
The quantile functions are given by
QW) = @, () = — >+ > [T+80 for 0<u<1.

Hence by Sklar’s Theorem, the corresponding copula is given by

Clu,v) = F(Qx(u),QY(v)):%(—1+\/1+8u)(—1+\/1+8v)<—2+J1+8u +J1+8v)

for 0<u,v<1.

Il. Copulas
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For the copula density we obtain

0? cw v):2J1+8u +J1+8v —

2 for 0<u,v<1.
udv J1+8u 1+ 8v

c(u,v)= 5

7
=3
oy

T e

Graphs of the copula C (left) and its density c (right)

Il. Copulas
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If X is any real random variable, then

e the random vector X = (X, X,---,X) with d components possesses the upper

Fréchet-Hoeffding bound C* as copula

e the random vector X =(X,—X) with two components possesses the lower

Fréchet-Hoeffding bound C, as copula.

Random variables who have C* or C, as copula are called comonotone or

countermonotone, resp.

Any copula is invariant against (the same type of) monotone transformations of
the marginal random variables / distributions.

Il. Copulas



cart Quantitative Risk Management
unll;)eS;;EthZg; OLDENBURG

Here is a canonical construction of comonotone random variables X and Y with

a discrete distribution over the set {x,,x,,---} with x, < x, <--- for X and the set

{y11y2:"'} with y, <y, <--- forY:

0 Fy(y1) FY(yZ) FY(yS) 1

The occurrence probability of a pair (x,.,yj) corresponds to the width of the

corresponding coloured rectangle.

Il. Copulas
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Here is a canonical construction of countermonotone random variables X and Y

with a discrete distribution over the set {x,, x,,---,x,} with x, < x, <---<x, for

X and theset {y,y,..--.yu} with y, <y, <---<y,, for Y:

0 Fy (x,) Fy(x;) o Fe(Xhs)
(e ¥iy)
(X1'yM) (XZIyM—1 (X3'yM—1) (XN—1ly3)
0 1_FY(yM—1) 1_FY(yM—2)“' 1_FY(y2) 1_Fy(y1) 1

(similarly for unbounded random variables)
The occurrence probability of a pair (x,.,yj) corresponds to the width of the

corresponding coloured rectangle.

Il. Copulas
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Example 4: Consider random variables X and Y with the following marginal
distributions:

X o 1] 2| |y o 1] 2| 3
P(X=x) |0.1]03|0.6 P(Y=y) |0.2]0.3]0.1|0.4
Fy (x) 0.1/0411.0 F(y) 0.2/05[06 1.0

1-F(y) |0.8]0.5]0.4|0.0

Comonotone case:

PX=x,Y=y) X
0 1 2
0/0.1/0.10.0
1(0.0]0.2]0.1
Y 2/0.0|0.0]0.1
3100|0004

Il. Copulas
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Example 4: Consider random variables X and Y with the following marginal
distributions:

X o 1] 2| |y o 1] 2| 3
P(X=x) |0.1]03|0.6 P(Y=y) |0.2]0.3]0.1|0.4
Fy (x) 0.1/0411.0 F(y) 0.2/05[06 1.0

1-F(y) |0.8]0.5]0.4|0.0

Countermonotone case:

0 1 2
0{0.0|0.0]0.2
1100(0.0|0.3
210.0/0.0]0.1
3/0.1{0.30.0

Il. Copulas
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Correlations can be expressed through the copula, but not conversely:

Hoeffding’s Lemma: Let (X,Y) be a random vector with a copula C and
marginal cdf's £, and F£, such that E(| X |)<oo, E(|Y|)<oc and E(| XY |) < .

Then the covariance between X and Y can be expressed in the following way
through the copula C:

Cov(X,Y) = f f [C(F(x), F, (y)) — F (X)F, ()] dx diy.

—00 —00

Il. Copulas
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Attainable Correlations Theorem: Let (X,Y) be a random vector with a copula
C and marginal cdf's F, and F, such that E(|X|)<oc, E(|Y])<oo,

E(| XY |)<oo and the variances o5 and o, are strictly positive.

Cov(X,Y)

OxOy

e The attainable correlations p(X,Y)= form a closed interval

[pmin'pmax} < [_1’1] with Prin < 0< Prmax-

e The minimum correlation p(X,Y)=p,,, is attained iff X and Y are counter-
monotonic. The maximum correlation p(X,Y)= p... is attained iff X and Y

are comonotonic.

Note that the extreme cases of p,,,=—1and p,, =1 are attained iff X and Y

are almost surely linearly dependent.

Il. Copulas
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No Diversification Theorem (Pfeifer 2012): Let X and Y be risks with cdf’s
F, and F,, resp. which are continuous and strictly increasing on their support.

Denote, for a fixed a €(0,1),
Q (e, 8) =min{Q,(U) +Q,2—a—-é—-u)[1-a—-6<u<1} for 0<é<1—q.
Then there exists a sufficiently small ¢ € (0,1—«) with the property

Q(a,e)>Q,(1—a)+ Q,(1—a) = VaR _(X)+ VaR (Y).

Assume further that the random vector (U,V) has a copula C as joint
distribution function with the properties

V<l—-a—ciff U<l—a—¢ and V=2—a—c¢—U iff U>1—a—=.

Il. Copulas
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If we define X" :=Q,(U), Y':=Q,(V), S :=X"+Y", then (X*,Y*) has the

same marginal distributions as (X,Y), and it holds
VaR, (X" +Y")>Q"(a,e) > VaR, (X )+VaR, (Y*) = VaR,(X)+ VaR (),
i.e. there is a risk concentration effect. Moreover, the correlation p(X*,Y*) is

minimal if V=1-a—-¢—-U for U<1-a—¢ (lower extremal copula C) and

maximal if V =U for U<1—a—e¢ (upper extremal copula C).

Il. Copulas
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lower extremal copula C upper extremal copula C

Il. Copulas
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Example 5: Assume that the risks X and Y follow the same lognormal
2

distribution E/\/'[—%,az] with o >0 which corresponds to E(X)=E(Y)=1.

The following table shows some numerical results for the extreme copulas C

and C in the last Theorem, especially the maximal range of correlations
induced by them. According to the Solvency Il standard, we choose « = 0.005
(and £ =0.001, which will be sufficient here).

Il. Copulas
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o 0.1 0.2 0.3 0.4 0.5 0.6 0.7

VaR,_(X)=VaR_(Y) 1.2873 | 1.6408 | 2.0704 | 2.5866 | 3.1992 | 3.9177 | 4.7497

VaR, (X)+ VaR_(Y) 2.5746 | 3.2816 | 4.1408 | 5.1732 | 6.3984 | 7.8354 | 9.4994

VaR, (X' +Y") 2.6205 | 3.3994 | 4.3661 | 5.5520 | 6.9901 | 8.7134 | 10.7537
Prin (XY ~0.8719 | -0.8212 | -0.7503 | —0.6620 | —-0.5598 | —0.4480 | —0.3310
Pona (XY 0.9976 | 0.9969 | 0.9951 | 0.9920 | 0.9873 | 0.9802 | 0.9700

2
PX=P" = E./\/[—%,az]

Il. Copulas
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. . T
70 / ~ \
- // 02 e
. A 00 - / - - ‘%-—-"
: 7 i 05 //1 15 2 25 63
" = 04 7
/ 06
!: e o a8 /

Left: graph of VaR, (X* +Y*) and VaR_(X)+VaR (Y) as functions of o

Right: graph of . (X",Y") and p,,(X",Y") as functions of ¢

Il. Copulas
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In general, three types of copulas can be distinguished:

1. Copulas which can be described only implicitly, but can be constructed
explicitly (e.g. GauB-, t- and, more generally, elliptic copulas)

2. Copulas which can be described explicitly, but which are difficult to
construct (e.g. Archimedean copulas)

3. Copulas which can be described and constructed explicitly (e.g. vine copulas,
checkerboard copulas, Bernstein copulas).

Il. Copulas
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Examples for type 1 copulas (X = positive definite correlation matrix):

GauB copulaCS :

Y (u) 2 (uy)

[ [ ——exp
e Y. @) det(x)

Cg(uw"'lud) -

—%VTE1V]dV1 edvy

t-Copula C with v €N degrees of freedom:

v+d

v+d
£ )t ) T —; ]
C;:"(up"'lud): f

e I‘[;]«/(Try)d det(X)

[1 + lvTZW][ *dv, edvy
1%

Il. Copulas
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GauB3 copula: Suppose that the random vector X:(X1,---,Xd)T follows a
multivariate normal distribution A (0,Z) with zero expectation and some
positive definite correlation matrix . Then the joint cumulative distribution

function of the random vector Z=(Z,,---,Z,)" with

is the Gaussian copula C¢, i.e. CS is also the underlying copula for X.

Using the linear structure of jointly normally distributed random variables a
possible construction for a GauB copula can be obtained as follows:

e Decompose the given matrix ¥ as a product © = AA”, e.g. using a spectral

representation [via eigenvalues and eigenvectors] or using a Cholesky-
decomposition.

e If Z is a random vector of d independent standard normally distributed
components Z,,---,Z,, then X can be stochastically represented as X = AZ.

Il. Copulas
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The spectral decomposition of an arbitrary positive definite symmetric matrix M
is characterized by the following matrix product:

M=TAT '=TAT’

A 0 - 0
0 A\ - 0], . . L

where A=|" % . . | is the diagonal matrix of the (positive) eigenvalues
0 0 - X

of M and T is an orthonormal matrix consisting of the corresponding
eigenvectors. The required transformation matrix A is then given by

\/)\_10 .. 0

A=TA" with A" |0 ‘/X Sy

0 0 \/E

Il. Copulas
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5 2 4
Example 6: Let | denote the unit matrix. The matrix M =|2 1 2| involves the

4 2 5
characterististic polynomial

() = det(M— M) = —2* + 1102 — 11\ +1

with the three zeros
M=1 A\,=5+2/6
and a possible orthonormal matrix

—0.7071 0.6739 —-0.2142
T =| 0.0000 0.3029 0.9530|.
0.7071 0.6739 —-0.2142

Il. Copulas
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This implies

—0.7071 2.1202 -0.0681
A=TA" =| 0.0000 0.9530 0.3029|.
0.7071 2.1202 —-0.0681

Note that the spectral decomposition method is quite tedious especially in
higher dimensions.

In comparison, the Cholesky decomposition is more efficient in general.
W.l.0.g., we can assume that A is a lower triangular matrix:

a, 0 - 0
A_|% % 0
dg1 Ay Agq

Il. Copulas
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This implies
2
a dpdy a4y,
2 2
; ay,4;, ayta, - 8ydy T ayag
M=|m;]=AAT=| : : : :
d
2
Aydyy  Agi@y T Agp8y Zadk
k=1

This equation can be solved recursively, giving

k1 - my; _E :akiaji
— — 2 — Kk — i=1 i
8y = My e = [M =D 8 a4 =2 Ay _a’)—' 1<j<k<d.
= n i

Il. Copulas
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5 2 4
In the example above, M =2 1 2| giving
4 2 5
2*@ ] 0 0 152361 0.0000 0.000
A=|25 =5 0/=[0.8944 0.4472 0.000|.
Z g 1.7889 0.8944 1.000
2 2051
5 5

Remark: The equation M = AA” can in general have infinitely many different
solutions, for instance here also

O O
N o N
- O O

Il. Copulas
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In the 2-dimensional case dependent standard-normally distributed random

vectors X = (X1,X2)T can also be represented by the Box-Muller-transformation

X, =+-2In(V) -cos(27V)
X, = +-2In(U) -cos(2nV + a),

i

where U and V are continuous uniformly distributed random variables over [0, 1]

and a € [O,ﬂ is an arbitrary angle. Note that, denoting R:=./—2In(U), it follows
that R* has a £(1/2)-exponential distribution, hence
N E(R?)
Cov (X, X,)=E(R )fCOS(Zﬂ'V)-COS(ZTI’V +a)dv = Tcos(a) = cos(a).
0

For the correlation this means

p(X,, X,)=cos(a)e[-1,1].

Il. Copulas




cart Quantitative Risk Management
l.lnI\/Oesls’j‘iElTl'ZC'llf;l OLDENBURG

For oz:% we have cos(2nV +a)=—sin(27V), in which case X; and X, are

uncorrelated. Due to symmetry, the negative sign can also be dropped here.

t-Copula: This type of a copula is derived from a multivariate t-distribution
t, (u,E) with v degrees of freedom (v €N) which is obtained from a multi-

variate normal distribution A/ (y,X) via a variance mixture. To be more precise,
a random vector X with such a distribution can be represented by a A/ (0,%)-

distributed random vector Z and a y’-distributed random variable W,
independent from Z, by

X:=p+ |22
Bryw

Note that the variance-covariance matrix of X only exists if ~ > 3, and is then

given by LA 5}
v—2

Il. Copulas
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In a similar way we can represent random vectors X that follow so called elliptic
distributions as

X := pu+ ARS

where A is again a suitable linear transformation matrix. Here R is a non-
negative random variable, independent of the random vector S which is
continuous uniformly distributed over the d-dimensional unit sphere

S::{xe]Rd|xTx:1}.

Such a vector S can generally be represented as

1

S=—_7
2]

where e.g. Z is standard normally A/ (0,1)-distributed.

Il. Copulas
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Archimedean Copulas:

These are characterised by their so called generator ¢ via

for u,---,u, €[0,1].

Cd(u1,"',ud) = 901[2@«1,')

Special case:
o(x)=—Inx
with

d

:Hui

i=1

d
Cd(u1l"'lun) = 90_1 [Z@(ui)

d
= exp[Zln u,
i=1

(independence copula)

Il. Copulas
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Strict generators are characterized by the following result:

Generator Theorem: Let ¢: (0,1]—>R be continuous, strictly decreasing and

convex with ¢(1)=0 and |i[pgo(z)= . If ¢ ' denotes the inverse mapping on

the interval [0,00), then

d
Cd(u1,---,ud):go‘1[z<p(u,) for u,---,u, €[0,1]
i=1

is a copula for d =2. It is a copula for all d >2 iff ¢ ' is completely monotone,
i.e. iff

k
(=1 kg0_1(s)>0 forall keN and s>0.

Il. Copulas
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1

Bernstein’s Theorem: Each inverse ¢ ' of a strict generator can be represented

as the Laplace transform of a suitable non-negative random variable Z via

p '(s)=E(e ), s>0.

Note that in the special case Z=1 we have ¢ '(s)=e*, s >0, which leads to
the independence copula (in any dimension).

Il. Copulas
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Examples of Archimedean copulas with strict generators:

Clayton-Copula:

d

—1/6
C,(u,,-,u,) = Zui‘)—d-H] , ue(0,1]d, 6>0
i=1

a—1
with P? =T(«a,a) for a—5>0 and density f, (z)_ ) a‘e ™, z>0,
i.e. go1(s)=E<e‘z)=[ @ ]a, s >0, with o(t) = -1 t€(0,1].
a+s o

Il. Copulas
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Examples of Archimedean copulas with strict generators:

Frank-Copula:

Ce(u1,---,ud):—%ln

1+(e‘9—1>ﬁ{ee0:i__11} ,u

i=1

with P? :LS(e"’) (log-series distribution over N) for >0, i.e.

k
y 1 (1—e‘9)e‘s In 1—(1—e‘9)e" _
© (s):E( ) 5;( = ) =— ( 5 ), s >0, with
e—Gt
Aty =—InT—7. te (0,1].

Il. Copulas
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Examples of Archimedean copulas with strict generators:

Gumbel-Copula:

Q

,uec(0,1, >1

i=1

10
C9(u1,---,ud):exp[ {Z _In(U) }

The mixing random variable Z here follows a particular positively stable
distribution with Laplace transform

0 '(s)= E(e‘sz) —e", s>0.

Il. Copulas
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Summary:
Generator iXi
Name | Copula C, g
©, distribution
d —1/6 1 1 1
-0 —0
Clayton ;u, —d+1‘ , 0>0 E(t —1) r 5,5]
d v ositivel
Gumbel | exp —iZ(—In(u,.))e} , 021 (—Int)’ £ Y
p stable
1 . 1—e % 1—e™ | £LS(e’)over
Frank ——In[1—-(1—¢"* ,0>0 | —
ran ; [ ( )H{ o } InT—— .

Il. Copulas
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Checkerboard copulas:

For deN let U=(U,,---,U,) be a random vector whose components U, follow a
discrete uniform distribution over the set T:={0,1,--,m—1} with meN for
i=1,--,d. Let further denote

for all (k,,---, k;) €T’

pa k) i=p|( )0 =k}

the joint probabilities of U (forming a d-dimensional contingency table) and

k; k;+1
m' m

(N _X for (k- ky)eT?

TS

giving all possible subcubes of (0,1}" with edge length 1/ m. The checkerboard
copula density ¢, of the checkerboard copula C, is then defined by

dm71 m-1
o= S5 8 k),
k=0  ky=0

Il. Copulas
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Interpretation:

A random vector V =(V,,---

.V,) with a copula as cdf has a checkerboard copula

iff the conditional distribution of V given the event {V c ’k1,~~~,kd} is continuous

uniform over I, with p, (k- k,)=P(Vel, . ) forall (k- k)T

Example 7: Assume d =2 and m =3 and consider the contingency table

I
b= =1 0| 1 | 2 |PWU=)
0|630|430] 0 13
j 1] 2/30 | 530 | 3/30 13
2230 | 1730 | 7730 13
PWU,=i) | 13| 13| 173

Il. Copulas
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copula density ¢3_(v;,V,) copula G (v;,V,)

Il. Copulas
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Approximation Theorem: Every copula C in d dimensions can be uniformly
approximated by a sequence {C,.} of checkerboard copulas. A particular

meN

choice of admissible parameters is given by

d (k. k. +1
pm(k1,---,kd):P(Zelkw,,,kd):P[ﬂ{E’<Zjg ’r: } for all (k- k,)€T®

j=1

where Z=(Z,,---,Z,) denotes a random vector that has C as joint cdf.

Interpretation: If V_ is a random vector that has the approximating checker-
board copula C,,, as cdf, then

PV, €l i) =Pm(kyoky)=P(Z €D, ) forall (k- k,)eTe.

The difference is that the conditional distribution of Z given {Zelkh,,,lkd} is

“smoothed” by a local continuous uniform distribution.

Il. Copulas
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Rook copulas: Particular checkerboard copulas
that distribute probability mass according to the
placement of rooks on a checkerboard without
mutual threatening. It can in general be
constructed in d dimensions as follows: Let

Oon 002 t Opg Ood
011 012 0 O1d O1d

M = :
Om21 Om22 " Omadi1 Omoad
Oma1 Oma2 " Omad1 Tmad

denote a matrix of transposed permutations , i.e. each <00k,a1k,~--,am_1’k) is a

permutation of the set T := {0,1,---,m—1} for k =1,---,d. A checkerboard copula
Cis a rook copula iff for the non-zero probabilities there holds

d
pm(k1,---,kd):P[ﬂ{U, :k,}]:% & (ki ky) = (0pi00.-,0.4) for some teT.
i=1

II. Copulas 55
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Example 8: The rook copula corresponding to the picture above is given by the
matrix

(kukz) =(7.7)

(kukz) =(4,3)

N o vl W N = O
N UuToy W iNN M= O

(kukz) =(0,0)

Rook copulas are of special importance for Monte Carlo simulations on the basis
of empirical copulas which will be discussed in a later section.

Il. Copulas
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Bernstein copulas: Bernstein-polynomial of degree m:

m zk(‘l—z)mfk, OSZS1, k:O’...,mEN

B(m,k,z) = K

For deN let U=(U,,--,U,) again be a random vector whose components U,
follow a discrete uniform distribution over the set T := {O,1,---,m—1} with

meN for i=1,---,d. Let further denote again
for all (k,,-+-, ky) €T’

Pk k) i=P| (U =k}

the joint probabilities of U (forming a d-dimensional contingency table). Then

d
Cp Uy, ey Uy )= dz Zp ok HB —1,k,u;), (u1,~-,ud)€[0,1]d

ky=0 ky= i=1

defines the density ¢, of a Bernstein-Copula C, induced by U.

Il. Copulas
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Remark: A Bernstein copula can be considered as a smoothed version of a
checkerboard copula, distributing the mass of the local continuous uniform
distribution over the whole unit cube in an appropriate way.

Visualization of the smoothing effect for d =1:

0.8 0.8
0.6 0.6

044 0.4+

> o KN ><’7$28<
b

Il. Copulas
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Example 9: Smoothing effect for d=2 and m=4; the distribution of

U= (U,,U,) is given in the following table:

0 1 2 3
0 0.02 | 0.00 | 0.08 | 0.15
1 0.00 | 0.03 { 0.12 | 0.10
2 0.13 | 0.07 | 0.05 | 0.00
3 0.10 [ 0.15 | 0.00 | 0.00

The following pictures show the smoothing effect of the corresponding
Bernstein copula in comparison with the raw checkerboard copula:

Il. Copulas
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Partition of unity copulas: Generalizations of checkerboard and Bernstein
copulas, based on a family of functions {¢(m,k,*)]J0<k<m-—1, meN} (so

called partition of unity) with the following properties:

o(m, k,u)du :% for k=0,---,m—1

—-

=
. o(m,k,»)=1 for meN.

0

3 o

~
I

Under the conditions of checkerboard and Bernstein copulas,

d

m—1 m—1 d
C, (u“...,ud) E= de"'ZP[ﬂ{Ui = ki}]H¢(m,k,.,ul.), (u“...'ud) c [0'1]d
k=0 kq=0 \i=1 i=1

defines the density ¢, of a partition of unity copula C, induced by U.

Il. Copulas
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Remark 1: Checkerboard and Bernstein copulas are special cases of a partition

of unity copula:

Checkerboard copula: ¢(m,k,u) = ]l[ﬁﬂ](u)

m' m

m —

1 k m—1-k
K u“(1—u)

Bernstein copula: #(m, k,u) =

forO0<u<land 0<k<m-1 meN.

Il. Copulas
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Remark 2: Every partition of unity {¢(m,k,+)|0 <k <m—1, meN} generates a

new partition of unity {¢(m,k,+)|0 <k <m—1, meN} for any fixed K €N via
K—1

de(m,k,):=>"¢(K-m,K-k+j,») for k=0,--,m—1
j=0

since

1
f¢K(mku)du /Z;[QXK ka+j,u)du_ n=; k=0, m—1
m—1 K—1 m—1 K-m

. Ge(m, k) =" "p(K-m,K-k+j,)=> ¢(K-m,i,»)=1meN.

~
||
~
||

0 j=0 0 i=0

-

Il. Copulas



cart Quantitative Risk Management
unll;)eS;;EthZg; OLDENBURG

Visualization of the resulting smoothing effect for Bernstein copulas:

1 1
08 08
061 /\ 061
0.4+ 044
0.21 0.21
o 02 04 05 08 1 o 02 04 05 08 1
U u
K=3 m=5 K =10

Il. Copulas
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Other extensions of (known) copulas:

For every d-dimensional copula C and arbitrary 0< ¢, <1, k=1,---,d
C'(u,,-- uo,)_l_[u1 ) (u?‘,-n,ug‘,‘d), 0<u, U, <1

defines a new copula which is not symmetric if some of the «, are not
identical.

For every d-dimensional copula C and arbitrary K € N
C(K)(U1, ° Ud)—CK< 1/K, * VK) 0<U1, * ,Ud§1
defines a new copula. In case that the limit

C(oo)(U»l,"',ud): IIJ_(?QC(K)(U‘U“',ud)' OSu‘“""ud §1

exists as a copula, then C_, is called extreme value copula.

Il. Copulas
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Proof of the first case:

Let V=(V,---,V,) be a random vector with copula C as cdf and U= (U,,---,U,)

a random vector with the independence copula as cdf, also independent of V.
Define

W, = max{V, Uy} for k=1,---,d.

Then W = (W,,---,W,) has the copula C" since

<U1 L U3d> Hu(1 o)

=1

d
k=

with P(W, <u,)=P(V, <up)-P(U, Sup ™) =up -up ™ =u,, 0<uy,-,u, <1.

Il. Copulas
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Proof of the second case:

Let V,=(V,,-,Viy), i=1,---,K be independent random vectors with copula C as
cdf’s each. Define

W, = (max{\/1m,~~-,VKm})K for m=1,---,d.

Then W =(W,,---,W,) has the copula C" since

P () <}

Il. Copulas
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Remark: The Gumbel copula is a particular extreme value copula since from

C(u,,---,u,)=exp , 0>1

i=1

_{z"j(_|n(u,))9}w

it follows for every K € N that

CK(UJ’K,-n,uf,’K):exp

—K {i(—ln(u}”‘))grﬁ] = exp

= exp

kS|

and hence also

C=Cy =C., forall KeN.

Il. Copulas
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Nesting of copulas (— compatibility problem):

Question: If C,,C, are bivariate copulas, are then also

C(u,v,w) =G, (C(u,v),w) and/or G (u,C(v,w)) with 0<u,v,w <1
copulas (likewise for larger dimensions)?

Answer: Generally not! Counterexample: Choose C,=C, =C, (lower Fréchet-
Hoeffding bound), then

G(u,v,w) =G, (Clu,v),w)=C(u,v,w),

but this is not a copula.

Il. Copulas
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Nesting of Archimedean copulas:

If ¢, and ¢, are two strict generators of Archimedean copulas C, and C, whose

inverses ¢,' und ¢,' are completely monotone and for which also the

composition —¢, (¢, ") is completely monotone, i.e.

k
(1" dtk ¢, (¢, (1)) >0 forall k€N,

then

Cu,v,w) =G (Cluv)w) = 0, (0,0 01 ' (1(U) + @1(V)) + 0, (W), 0 <u,v,w <1

also is a copula. This construction principle can similarly be extended to higher
dimensions (— hierarchical Archimedean copulas).

Il. Copulas
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Example 10: Nesting of Gumbel copulas: consider

S01(t) = (—Int)", Soz(t) = (_Int)b with a > b > 1, then
@ (r(0) = (_In(¢f1(t)))b = (—In(exp(—t”a)))b =t and

oL (1) = (=D, t** > 0 with ¢ —ﬁ b_;
dtk P2 (P - k = = ' a ] L
Jj=0

Hierarchical Gumbel copula:

C(u,v,w) =G, (Cylu,v),w) = eXp[_({_ln(C1(U,V))}b N (_lnw)b)Vb]

bl/a

1/b
+(—Inw)b] , 0<u,v,w<1.

ot o)

Il. Copulas
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A short review on quantile and related functions:

Let ¢:R—R be a weakly increasing right-continuous function

. Denote

I(y) ==inf{y(x)| x e R}, S(v):=sup{y(x)|x € R}. Then the pseudo-inverse "

of ¢ is defined by

v (y)=inf{x eR|v(x) >y}, y(I(¥),S()).

5(4)

I()

lll. Order Statistics and Extreme Value Theory

j {Ch 1(y)

I P(x)
) .

I(4)

5()




cart Quantitative Risk Management
l.lnIVoesIS’I&'EITTZC'I'E;l OLDENBURG

Properties of a pseudo-inverse:

o Y(x)<y iff x<y (y) forxeR and y € (I(y),S()), or, alternatively,

o Y(x)>y iff x>y (y) forxeR and y € (I(y),S())).

e ¢ ' is weakly increasing over the interval (/(¢),S(¢)) and left-continuous.

o (¢ (y)>y forall ye(I(y), ().

e If ¢ is continuous in 4 '(y) for some y € (I(1)),5(1)), then ¢(4'(y))=y.

o ¢ '(¢(x))<x forall xeR with ¢(x) e (I(y),S(v)).

e If " is continuous in ¥(x) for some x R with ¢(x)e (I(v),S(x)), then
¢ (¥(x)) = x.

Remember that the pseudo-inverse F' of a univariate cdf F is also called
quantile function.

lll. Order Statistics and Extreme Value Theory
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Empirical distribution function:

Let X, X

n

(neN) be independent identically distributed (i.i.d.) random

variables with cdf F. Then the empirical distribution function F, is defined as

F (x) ::%le( wx(X,) forall xeR.

Interpretation:
The empirical distribution function £, is the cdf of a discrete random probability

measure ¢ (random Laplace distribution) which gives the mass ik to each of the
n
random variables X;,---, X,, i.e.

nt

#(k|X €A
#KIX €A) o0 a1l Borel sets AeB.
n

§(A) =

lll. Order Statistics and Extreme Value Theory
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Glivenko-Cantelli Theorem:

~

The empirical distribution function F, converges uniformly to the true

n

distribution function F for n — oo, i.e.
lim sup| F,(x)— F(x)|=0.

N—=00 xeR

Note that the weaker proposition

lim| £,0)—F(x)|=0 forall xeR

is a direct consequence of the Law of Large Numbers (LLN) applied to the i.i.d.
sequence {Yn(x)}neN with Y, (x)==1_.,(X,) for neN, xR with a binomial

distribution P = B(1,F(x)) each.

lll. Order Statistics and Extreme Value Theory
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Order statistics:

Let X,,---, X, be independent identically distributed random variables with cdf
F. Then the k-th order statistic X, is defined as a quantile of the empirical

distribution function:

k

n

X, i=F =] for k=1,---,n.

Interpretation:

The k-th order statistic corresponds (up to uniqueness) to the k-th largest value

among X,,---, X, i.e.

nrt

min{X,,---, X, } = X;, < X,, <...< X, =max{X,,---, X, }.

Note that ties can occur among order statistics with positive probability if the
underlying distribution has atoms.

lll. Order Statistics and Extreme Value Theory
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Marginal distribution of order statistics:

F(x)[1=FO)["" for xeR, k=1,---,n.

(X <) =3

i=k

Proof: By the second property of the pseudo-inverse, we have, using the
notation above:

—p[K < £ (x)
n

=P[in<x)2k

)1-FO)I™.

lll. Order Statistics and Extreme Value Theory
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Joint distribution of two order statistics:

FI()[F(y)— FOOP 1= FO)]™

P(Xen <X, X, <y)= ZH:ZJ:[IJ][{

j=r i=k

forreal x<y, 1<k <r<n.

Proof: The random vectors
Y,(x,y) = (Y, (X, ¥), Yy (X, y), Ys:(x,y)) with
Yalx,y) =10 (X)), Yo (X, y) = 1,1 (X,) YailX, y) =1, (X,) fori=1,---,n
are independent and multinomially distributed, i.e.
P(Y,(x,y) = (k. Ky, ks)) = FR () [F(y) — FOO)T [1— F(y)[©

for ki, k,,k; €{0,1} with k,+k, +k; =1.

lll. Order Statistics and Extreme Value Theory
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Joint distribution of two order statistics:

FI()[F(y)— FOOP 1= FO)]™

P(Xin <X, X, <y)= ii[?][f

j=r i=k

forreal x<y, 1<k <r<n.
This implies that Y(x,y):= ZY,(X, y) is also multinomially distributed, with
i=1

P(Y(x,y) = (ki ky. k3)) = [ F () [F(y) — FO)[* [1- F(y)]®

k. k,, ks

for k. k,,k; € Z" with k, +k, + k; =n.
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Joint distribution of two order statistics:

FI()[F(y)— FOOP " 1= FO)]™

P(Xen <X, X, <y)= ZZ[ ][,

j=r i=k

forreal x<y, 1<k <r<n.

Now
k - r -
P(Xk:n SX' XrnS,V):PBSFn(X):;_F(,V)]
(Y(x Y)>k Y, (X, ¥)+Y,(x,y)>r) :iiP(Y(x y)=(i,j— ln—j))

j=r i=k

_; FIO)[F(y)— FOOY 1= FO)]™

—I

F ')[F(y)— FOOL " 1= F)™.

2

EMSWMB

n
J

i=
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Univariate density for order statistics: In case that F has a density f we have

fo ()=t
Xn B(k,n—k +1)

F ) [1=F(x)]"* for x e R,

Proof: From F, (x)= 2[7 F'(x)[1- F(x)]"" we obtain, by differentiation:

i=k

d n
fy, (X)= JFXM (x) = ;
= (03
— f(x) {n S|

i=k—1

7|2 poon-roor)

; ] {i FOO[1=FOOI™ —(n—DF (x)[1— F(x)]""'"}

"Fi) [1—FOO" '—nz

F’(x) [1- F(x)]"_H}

n—
k —

f(x)

k—1 n—k
mF (x)[1—F(x)]

=n f(x)Fk 1(x)[1—F(x)]
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Bivariate density for order statistics: In case that F has a density f we have

foxe ) (%.y)

e
k—1r—k—-1,n-—
0 otherwise

n(n—-1)

|FOFFO0[F(y) FOOT “"M=F)"" ifx<y

for x,yeR and 1<k <r<n.

The proof is similar to the one for univariate densities by calculating the partial
derivatives

f

n__J
enxen) (K1) 8x dy 122

AFOO[F(y) = FOOT 1= F)™
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Joint density of all order statistics: In case that F has a density f we have

n
n'| [f(x,) ifx,<x,<---<x
(X Xpn) (X‘l""lxn) — £[1 ( k) 1 5 .

0 otherwise.

Proof: Let & denote the set of all permutations ¢ = (o,,---,0,) of (1,2,---,n) and

B:={(x,+,X,) ER"|X, < X, <---< X, }. Then, by the i.i.d. property,

P(Xun < Xy X < X,) = DOP({X,, <X, <o <X, 0 {X, <3 X, <, })

oex

=n> P{X <X, << X In{X, < x, X <X, })

)

=n! 11 Uy, u, - f(u,)du,---du,
_[O _[os( 1 )g (ue ) du,
from which the statement follows immediately.
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Order statistics under special distributions:

e If the random variables are continuous uniformly distributed over [0,1], then
X, is B(k,n—k +1) Beta-distributed.

e If the random variables are &()\)-exponentially distributed, then the
increments X,,, X,, — X, X5, — X500 X,y — X, 1, @re also independent and

exponentially distributed with

pXen=Xicn = £((n—k +1)A) for 1<k <n (with the convention X, =0).

e In general, if Fis continuous, the (finite) sequence of order statistics forms a
(finite) Markov chain with transition probabilities

1—F(x)
1-F(y)

n—k-+1
P<Xk:n§X|Xk1:n:y):FXk:,,(X|Xk1:n:y):1_[ ] IX>y12§kSn'

(This property does not hold in the discrete case.)
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Remark: Order statistics can similarly be defined also for arbitrary random
variables X,,---,X, (neN), with the same formal definition of I:'n. In general,

however, neither the Glivenko-Cantelli Theorem nor the distribution formulas
remain valid.

Note that a (general) order statistic X,,, can usually not be identified with some

element X, of the sequence with a non-random index R, for k =1,---,n.

In the i.i.d. case, the order statistics are almost surely pairwise different. Here a
rank vector R(X)=(R(X,),---,R(X,)) can be properly defined for X =(X,,---, X,)
a.s. via the relation R(X;)=k iff X, =X,,, i.e. the rank vector indicates the

position of the components of X w.r.t. a sequential ordering.
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More generally, a rank vector r(x) = (r(x1),~--,r(xn)) can be defined uniquely for

every vector X =(X,,--+,X,) € R" in the following way:

Proposition: For every X :(X1,---,Xn)€ R" there exists a unique permutation

o =(oy,++,0,) of (1,---,n) with the following properties:

° XU1§X¢72§”'§XU

o oy <o,ifx, =x, fork=1--,n-1

Under these conditions, the rank vector r(x):(r(x1),-~,r(xn)) can be uniquely

defined as the inverse permutation r(x):=o .
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Example 11: Let x =(2,1,4,3,4,4,1,2,1,3). In tabular form, we obtain

index 1 2 | 3|45 ]| 6 7 8 | 9110
X2 X7 X9 X1 X8 X4 X10 X3 XS X6
2 (2|3 3

o 2 719184 |10] 3 |56
r(x)=o" 4 |1 8 6|9 10| 2 5| 3

ordered data

For example, we get r(x,) =4, i.e. the first data value x, =2 has rank 4 (it is
the 4" largest in the ordered sequence); r(x;)=29, i.e. the fifth data value
X5 =4 has rank 9 (it is the 9" largest in the ordered sequence, behind the 8"

largest data value x; =4 because the index of 5 is larger than the index of 3).
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Now if X:(X1,---,Xn) is any random vector then the (random) rank vector

R(X) = (R(X,),---,R(X,)) can be defined pointwise as
ROX)(w) = (R(X1(w)),~-,R(Xn(w))) forall we

(the basic set on which all random variables are defined).

Theorem: If X=(X,---,X,) is a random vector with independent and
identically distributed components then the rank vector R(X) = (R(X1),---,R(X,,))
has a Laplace distribution over the set > of all permutations of (1,---,n),

neN.

Corollary: In the i.i.d. case, the (individual) rank R(X,) has a Laplace
distribution over the set {1,2,---,n} for every k €{1,2,---,n}.
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Max-stability and domain of attraction:

A non-degenerate cdf G is called max-stable, if there exist constants
A, >0, B, € R such that

X
_+Bn
A

n

G”" =G(x) forall xeR, neN.

A probability distribution is called max-stable, if the corresponding cdf is max-
stable.

If Fand G are non-degenerate cdf’s and if for suitable constants A, >0, B, € R
there holds

lim F" [ALJF Bn] = G(x) for all continuity points x of G (in symbols: x € C(G)),

then we say that F is in the domain of attraction of G, in symbols: F € D(G).
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Skorokhod'’s Theorem: Let £, and G be cdf’s with

'Ign F (x) = G(x) for all x € C(G).

Then there exist random variables X, and Y such that

F, =F, F, =G and Y =lim X a.s.

n—oo

Sketch of proof: Let U be continuous uniformly distributed over [0,1]. Then
X, :=F '(U) and Y := G '(U) are appropriate choices because

G '(u) = limF, '(u) for uc(0,1) almost everywhere.
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Corollary: If - under the conditions of Skorokhod’'s Theorem - there are
a,,a>0 and 3,,€R with

a=lima, and g=1img,,
n—oo n—oo
then also

lim F, (o, x + 3,) = G(ax + 3) for all x ¢ R with ax+ 3 € C(G).

Proof: Take X, and Y as in Skorokhod’s Theorem. Then also

lim Xn_/Bn — Y_ﬁ

n—oo an o

a.s. from which we obtain the weak convergence result

'Ign F(ax+03)= rlgn P(X, <ax+(3,)=PY <ax+5)=Glax + 3), ax + 3 € C(Q).
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Chintchin’s Theorem: Let F, and G be cdf's, G non-degenerate, and assume

that there are o, >0 and 3, e R with

limF, (o, x + 3,) = G(x) for all x € C(Q).

Then necessary and sufficient conditions for the existence of a non-degenerate
cdf G* and o, >0 and G, € R with

lim F,(c;x + ;) = G"(x) for all x € C(G")

. . - — .
are: lim—2 =« and |ImM:ﬂ for suitable a >0 and gecR.
nﬂooan n—oo an

In this case, we necessarily have G*(x) = G(ax + 3) for all x e R. (We say that G
and G* are of the same type.)
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Characterization Theorem: Let G be a non-degenerate cdf. Then there holds:
e G is max-stable iff there exists non-degenerate cdf’'s £, and A, >0,B, R

with n e N such that

limF,

n—oo

ALJan‘k = G"¥(x) for all x € C(G) and all k e N.

'n-k

e D(G) = o iff G is max-stable. In this case, G € D(G), in particular.

Extremal Types Theorem: Any (non-degenerate) max-stable cdf G is necess-
arily of one of the following three types (up to positive-linear transformations):

G(x)=e*",xeR [Gumbel type]
G,.(x)=e*", x>0 (a>0) [Fréchet type]
G, (x)=e ", x<0 («>0) [Weibull type max]
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Corollary. Let G be a non-degenerate cdf and {X,}  be an i.i.d. sequence of

random variables. If there exists A, >0, B, € R such that

limP(A,-(X

n—oo

—Bn)§x>:G(x) for all x € C(G),

n:n

Then G is max-stable, i.e. the normalized partial maxima converge weakly to
one of the three types of limit distributions from the Extremal Types Theorem.

Proof: Clear since P(X,,, <x)= F, (x)=F"(x) forall xeR.

Remarks. The limit distributions in the Extremal Type Theorem are usually
called extreme value distributions.

It is possible to formulate a corresponding limit theorem also for normalized
partial minima of an i.i.d. sequence of random variables, e.g. by changing the
sign.
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Characterization Theorem of domains of attraction (l):

For any cdf F, let x,,,(F):=sup{x e R|F(x) <1} and ~,(F):= F' [1—1 ,heN.
n

Necessary and sufficient conditions for a cdf F to be a member of a domain of
attraction of an extreme value cdf are:

1. for Fe D(G,): There exists a positive measurable function g on R such that

1—F
im (t+Xg(t)):e”‘ for all xeR.
t1Xeup (F) 1—F(t)

X (F)

A possible choice for g is g(t) = 1= Flu) du for t < x_, (F).

1— F(t) sup

A possible choice for the normalizing constants is

1
A =——, B =~,(F) forneN.
9(7.(F)
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Characterization Theorem of domains of attraction (l):

For any cdf F, let x,,,(F):=sup{x e R|F(x) <1} and ~,(F):= F' [1 U
n

,heN.

Necessary and sufficient conditions for a cdf F to be a member of a domain of
attraction of an extreme value cdf are:

2. for FGD(GZ,Q): x. (F)=o00 and

sup

1—F(t-
im& =x“ forall x>0.

tio  1—F(t)

A possible choice for the normalizing constants is

A = L
¥ (F)

B,=0 for neN.
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Characterization Theorem of domains of attraction (l):

For any cdf F, let x,,,(F):=sup{x e R|F(x) <1} and ~,(F):= F' [1 U
n

,heN.

Necessary and sufficient conditions for a cdf F to be a member of a domain of
attraction of an extreme value cdf are:

3. for FGD(G&a): x.. (F)< oo and

sup

1—F(x (F)—x-h)

sup

iy 1—F (X, (F)—h)

sup

=x° forall x>0.

A possible choice for the normalizing constants is

1
A=—— B =x,(F) forneN.
Xsup(F)_FYn(F) )
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Remark:
The sequence {~y,,(F)}nEN from above fulfils in particular the relationship

limn-(1—F(y,(F)))=1.

n—oo

More generally, any sequence {7,,(F)}nEN with this property can be used to

choose appropriate normalizing constants A, and B, as above.
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Characterization Theorem of domains of attraction (ll):
Sufficient conditions for a cdf F with density f to be a member of a domain of

attraction of an extreme value cdf are:

1. for FED(G,): f'(x)<0 for sufficiently large x < x,,,(F), f(x (F)) 0 and

sup

f'(x)(1-F(x))

XTXgup (F) f2(x) N Xszup( )

f '(x)(1-F(x))=1for all xeR

2. for FG'D( ) f(x) > 0 for sufficiently large x and

x-f(x)
xie 1— F(x)

3. for FeD(GM): f(x) > 0 for sufficiently large x < x,_(F) and

sup

(Xoup(F)— x)f(x)

sup

xTx'supm 1-F(x)

[Il. Order Statistics and Extreme Value Theory



cart Quantitative Risk Management
l.lnI\/Oesls’j‘iElTl'ZC'llf;l OLDENBURG

Tail equivalence:

tail
Two cdf's F and G are tail equivalent, in symbols: F ~ G, if xsup(F): xsup(G) and
there holds

1— F(x)

XTIXSUP(F”_—G(X) = 3 for some j e (0, ).

Two distributions are called tail equivalent (with the same symbolism), if their
corresponding cdf’s are tail equivalent.

Corollary:
tail
e If € D(G) for an extreme value cdf G and F, ~ F,, then also F, € D(Q).
tail
e |[f Gis an extreme value cdf and F ~ G, then F € D(G).

This means that the domain of attraction D(G) of an extreme value cdf G

consists exactly of all cdf’'s F that are tail equivalent to G (cf. the Characteri-
zation Theorem of domains of attraction).
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Example 12: The following distributions are tail equivalent (with 3 =1):
tail
e G, ~&(1), i.e. the Gumbel distribution has an exponential tail

tail
e G, 6 ~Pala) for a>0, i.e. the Fréchet distribution has a Pareto tail

tail
e G, ~PY7" for PX=pB(1,a) and a >0, i.e. the Weibull type max distribution
has a shifted Beta tail.

Sketch of proof:

. 1-e . 1-e" d _,
e |im =lim -——— ¢ =1
xlo @ ho A dz |,
1—e " | 1-e* . 1—e™" d ,
e |im =lim =lim =—— =1
XToo 1 Xjoo X 7@ a0 A dz o
(1+x)"
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Example 12: The following distributions are tail equivalent (with 3 =1):

tail
e G, ~&(1), i.e. the Gumbel distribution has an exponential tail
tail
e G, 6 ~Pala) for a>0, i.e. the Fréchet distribution has a Pareto tail

tail
e G, ~PY" for PX=pB(1,a) and a >0, i.e. the Weibull type max distribution
has a shifted Beta tail.
Sketch of proof:
e For P*=B(l,a) we have F(x)=1-(1—-x)" for 0<x<1, hence

Fo ((x)=F,(x+1)=1—(—x)" for —1< x <0, which implies

. 1—e ™ . 1-e? d .,
lim———=lim————— =lim———
X0 1—F, (x)  x0  (=x) hio h dz |,
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Example 13: Let, as usual, ® denote the cdf of the standard normal distribution
N(0,1) and ¢ its density. Then ® € D(G,). A possible choice of normalizing

constants is

=~2Ilnn and B, =+/2Inn _%‘In(ln\r/gl-l-ln(47r) for n> 2.
nn

Sketch of proof: We have

il '(x) = \/erxp
2

x? X ;
S 1= 20 for x € R, hence, by L'Hospital’s rule,

o(x)
I|m (x)(1—<1>(x))_|, ‘(1—‘1>(X)):“m(1—<1>(x))—x.(p(x)
i elx) #'(x)
— _lim x-p(x )—l X - p(x) 1

xToo ® (X) xToo X- (,O(X)
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Example 13: Let, as usual, ® denote the cdf of the standard normal distribution
N(0,1) and ¢ its density. Then ® € D(G,). A possible choice of normalizing
constants is

A =+2Inn and B, =+/2Inn _%‘In(ln\r/gl-l-ln(47r) for n> 2.
nn

Sketch of proof: Alternatively, with g(t):%, t >0, we obtain, by L'Hospital’s

rule,
p% p%
1-®|t+— t+—
ml=Ferxg@) ) L AT ) (0 x
tie 11— F(t) tic  1—d(t) tie  (t) t’
1 xY
=limexp|—=|[t+Z| —t?||=e*
G Y

for all x e R.
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Example 13: Let, as usual, ® denote the cdf of the standard normal distribution
N(0,1) and ¢ its density. Then ® € D(G,). A possible choice of normalizing

constants is

A =+2Inn and B, =+/2Inn _%‘In(ln\r/gl-l-ln(47r) for n> 2.
nn

Left: plot of the density of X, for n=1000 [red] and the scaled Gumbel
density A,-g,(A,-(«—B,)) [blue]; right: plot of deviation of densities
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Example 14: Let F be the cdf of a standard LA(0,1)-lognormal distribution.

Then FeD(G,). A possible choice of normalizing constants is

A = A -exp(—B,)and B, =exp(B,) for n>2 with the normalizing constants

A, and B, for the standard normal distribution.

Sketch of Proof: We have

Fx) = a(nx), £x)=200%) s [1]'()():""('”"2_@'('”") for x>0, hence,
X f ©*(Inx)

by L'Hospital’s rule,

im| 7[00 (1 F0x) = 90('”"2“ ? ;'”X)(1_<1>(|nx))4;22‘%(1_@( )
e 9'(2) oz (1-9(2))
as before.

[Il. Order Statistics and Extreme Value Theory



cart Quantitative Risk Management
l.lnlVoesIS’I‘SEITTZC';;l OLDENBURG

Example 14: Let F be the cdf of a standard LA(0,1)-lognormal distribution.

Then FeD(G,). A possible choice of normalizing constants is

A = A -exp(—B,)and B, =exp(B,) for n>2 with the normalizing constants

A, and B, for the standard normal distribution.

Left: plot of the density of X, for n=10000 [red] and the scaled Gumbel

density A -g, (,Z\n -(-—én)) [blue]; right: plot of deviation of densities
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One-parameter representation of extreme value cdf’s:

exp(—(1+yx) ") for 1+yx>0and v =0
G0=1 o (y€R)
Igmgexp(—(1+6x)’ ):e*e forxeR and v =0

Plot of densities of G (x) for various values of v
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Smirnov’s Theorem I: Let {X,}  be an ii.d. sequence of random variables

with a cdf F that belongs to the domain of attraction of an extreme value cdf G
with normalizing constants A, >0, B, € R, i.e.

lim P(An-(Xn:n—Bn)gx): lim F" [Ai—l-Bn]:G(x) for all x € C(Q).

n—oo n—oo

Then for every fixed k € {1,---,n}, it holds

n—i

Fi
n—oo n—oo . i
i=n—k

limP(A, (X, «, —B,) < x)=lim Z [7

X
__|_Bn
A ]

n

1-F| X
A

n

5]

— G(x;:K) = Glx )2 '”G(")

for all x € C(G).
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Smirnov’s Theorem II: Let {X,} = be an i.i.d. sequence of random variables

and let{k,} . be asequence of real numbers with lim Jn-

n—oo

ﬁ— [3] =0 for some
n

B> 0. If there exist normalizing constants A, (5) >0, B,(5) € R such that

im P(A,(8):(X, .0 —B,(8)) < x) =G"(x) forall xeC(G"),

then G” corresponds exactly to one of the following four (!) types (with &
denoting the cdf of the standard normal distribution, as usual):

0, if x<O0 d(—c(—x)*), ifx<O0
G1,a,c (X) = a . GZ,G',C (X) = ( ) .
<I>(cx ) if x>0 1, if x>0
@(—c(—x)(’), ifx<0 0, ifx<-—1
G, 4(X)= G,(x)=11/2, if —1<x<1 (o, c,d >0)
(cx”) ifx >0 1, ifx>1
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Remark: For a calculation of the normalizing constants A, (3) >0, B.(3)eR in

Smirnov’s Theorem Il we can potentially make use of the following result:

——+B,(3)|, neN,x €R there holds

Suppose that with p (x):=1-F
pp p A (ﬂ)

I|m pn(x)_O and lim fw 7(x) for x € R, then we have

nee B0 5)

lim P(A,(8)-(X, 0 —B.(3) < x) = B(r(x)) for all x € R.

If F has a density f with f(F‘1(1—ﬁ))>O, then 7(x)=x, and a possible choice

for the normalizing constants is

f(F'(1-9))

A (B)=+/n (6(1—6) and B,(8)=—F '(1-3) for 0<3<1and neN.

[Il. Order Statistics and Extreme Value Theory
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Example 15: Let {X,} . be an ii.d. sequence of random variables with an

E(1)-exponential distribution. Then with
k,=|8-n|, A(B):= / ﬁﬁ B (3):=—Inp for 3>0, neN we obtain

lim P(A,(3):(X, .0 —B,(8)) < x) = @(x) forall x€R.

Proof: We have

n—oo

—X /ﬂ] with
ng
Ilmpn(x)_O and Ilmfﬂ Py (X) lim+/n|1
e B0= B) \11—ﬂn~w

[Il. Order Statistics and Extreme Value Theory

——6‘ — and hence lim+n-

——ﬁ] 0. Further,
n

—-B (ﬂ)] pexp

p”(X):eXp[ A

—exp = X.

I
ng
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Example 15: Let {X,} . be an ii.d. sequence of random variables with an

E(1)-exponential distribution. Then with
k,=|8-n|, A(B):= /% B (3):=—Inp for 3>0, neN we obtain
lim P(A,(8)- (X, . —B,(8)) < x) = ®(x) forall xeR.

Alternatively,

f(F'(1-p) o 7 ng
_ (- - -
T a0 SP-Ine) ﬁ\/m—m \/1—ﬂ

and B,(8)=—F '(1-8)=—(-In(8))=Ing for 0<3<1 and neN,

as before.

[Il. Order Statistics and Extreme Value Theory
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Remark: Smirnov’s Theorem Il is related to a statistical estimate of the Value at
Risk on the basis of i.i.d. risks X,---, X, distributed as X by

VaR,(X):= X, , , with k,:=|a-n|.
Also, in this case,

P-lim X, , ., =VaR (X).

n—oo

[Il. Order Statistics and Extreme Value Theory
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Multivariate extremes:

If for d>2 {X,} , is an ii.d. sequence of d-dimensional random vectors

X, = (X1 Xy,) with marginal cdf's F,---,F, and Copula C, then the copula
C., with

Comy (Upyee-,uy) = C”( u", 1’”) for 0<u,,---,u, <1
is the copula of the random vector

X = (max{X,,,---, X;, },---,max{ Xy, -+, X, }) for neN.
Proof: For x,,---,x, € R we have
d n
P(max{X, -, Xy, } < Xy, smax{ Xy, -+, Xgp } < Xy ) = [ N{x; < x}
i=1j=1

—p[ﬁ

Jj=11i

DD.

{X; <x}

= €7 (R (x)uro By () = € ({E )Y o {7 ()

[Il. Order Statistics and Extreme Value Theory 116
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Corollary: If an extreme value limit copula C,(u,,,u,)=limC" (S

exists and each F, is in the domain of attraction of some extreme value cdf G,

for k =1,---,d, then there exist normalizing vector constants A, >0 and B, € R
such that

nn

limP(A, (X

n—oo

—B,) <x)=C., (G,(x,),--,G,(x,)) forall x =(x,,--,x,)€R’.

Remark: If the original copula is max-stable, i.e.

Coy (Uyse- Uy ) =C" (u}’”,---,u;’”):C(u1,---,ud) forall 0<u,,---,u, <1,

then the condition F, € D(G,) for k=1,---,d is already sufficient for the weak

convergence of normalized vector maxima A, -(X,,, —B,), neN.

[Il. Order Statistics and Extreme Value Theory
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Record values and record times:

Let {X,} , be ani.id. sequence of random variables with a continuous cdf F.

The sequence {U, } of (upper) record times is recursively defined by

nezZ*

Uy=1, U, ==inf{k >U, | X, > X, } forneN.

The {Xun }HET are called (upper) record values.

Essential properties:

e U ismeasurable and a.s. finite for all ne N

n

e X, ismeasurable and a.s. finite for all ne N

e {U,},_,. isahomogeneous Markov chain with transition probabilities

PU,=k|U,,=j)= k(kj—1) for 1<j<keN, neN.

[Il. Order Statistics and Extreme Value Theory
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Record values and record times:

Let {X,} . be ani.id. sequence of random variables with a continuous cdf F.

The sequence {U, } of (upper) record times is recursively defined by

nezZ*

Uy=1, U, ==inf{k >U, | X, > X, } forneN.

The {Xun }HET are called (upper) record values.

Essential properties:
. {(Un,XU )} ., is a homogeneous Markov chain with transition probabilities
n ne aF
P(U, =k, Xy >y|U, =, X, =x)=F7x)-(1-F(y)) as,1< j<keN,x<yeR

o {XUn}n€Z+ is a homogeneous Markov chain with transition probabilities

_1-=Fy)
1—F(x)

P(X,, >ylX,  =x) , X<y€eR

[Il. Order Statistics and Extreme Value Theory
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Limit relations for record times:

limE(InU,)—(n+1-~)=0 (v =Euler's constant)
2

limVar(InU,)— n+1—%]=0

: InU,—n

[imP|—2—<x|=®(x), xR

n—oo [ \/;

IimlInUn =1 as.

n—oo N

Sketch of proof: Let {Yn} N be an i.i.d. sequence of &(1)-distributed random

variables. Define V,:=1, V,:=|V, ,-e"|, n€N(rounding up). Then {V,} . is a

homogeneous Markov chain with transition probabilities

P(V, = kIVys = )= P(Vos-€" | = K1V, = ) = P([j-€"] = k) = Pk 1< j-e" <K)
:P[In[k—f‘I <Y, <lIn

n —

k= .
KWL S ] _ qcjckeN
/]] k-1 k k-1 —ITFC

J

[Il. Order Statistics and Extreme Value Theory
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Limit relations for record times:

limE(InU,)—(n+1-~)=0 (v =Euler's constant)
2

limVar(InU,)— n+1—%]=0

: InU,—n

[imP|—2—<x|=®(x), xR

n—oo [ \/H

IimlInU,, =1 as.

n—oo N

which means that {V,} . has the same distribution as {U,} Now

nezt *

e
forall neN

V, ,-e"<V <V  .e" «[1 +

<V, -e” ‘[1+l
n

n—1

implying that InV,_,+Y, <InV, <InV,_,+Y, +In[1+% for all k €N, hence

iYk <InV, = i(lnvk —Indq)giYk +iln[1+%]:iYk +Inn for all neN.
k=1 k=1 k=1 k=1 k=1

[Il. Order Statistics and Extreme Value Theory 121
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Limit relations for record times:

limE(InU,)—(n+1-~)=0 (v =Euler's constant)
2

limVar(InU,)— n+1—%]=0

: InU,—n

[imP|—2—<x|=®(x), xR

n—oo [ \/H

IimlInU,, =1 as.

n—oo N

The last two limit relations now follow from the Central Limit Theorem and the

Law of Large Numbers, applied to the sequence {Y,}

neN *

For the first two relations, a more sophisticated estimation for the difference

In[V, ,-e"]-InV, ,, neN is need.

[Il. Order Statistics and Extreme Value Theory
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Resnick’s Theorem: Let G* be a non-degenerate cdf and {X,}  be an i.i.d.

sequence of random variables with cdf F. If there exists A, >0, B, € R such that

lim P(An -(Xun —Bn)gx) = G*(x) for all x € C(G"),

then G* is necessarily of the form
G (x) =®(-2In(-InG(x))), x€R,
where G is one of the three extreme value cdf’s of the Extremal Types Theorem.

A necessary and sufficient condition for weak convergence of normalized

record values is

F =1 —exp(—\/—ln(1—F)) € D(G).

[Il. Order Statistics and Extreme Value Theory
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Random Number Generation: random numbers {u,} . (should) imitate the

stochastic behaviour of a sequence of i.i.d. random variables from a continuous
uniform distribution over the interval [0,1]. Critical aspects:

e uniformity (also in higher dimensions)
e independence (also of blocks built form disjoint sections).

A computer oriented generation of {u,} is usually done by recursion.

nez*

Example: multiplicative congruential method:
u, ===, z,,=a-z, modm for neZ*

with appropriate natural numbers a,me N and a positive seed 0<z, <m. In

order to exclude zero from the sequence, m is typically a prime or power of a
prime; also, a and m must not have a common divisor.

IV. Monte Carlo Methods
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Example 16: Choose z,=1, hence z, =a" mod m. For the case m=13 we
obtain the following results:

a |n 11 2| 3| 4| 5| 6| 7| 8| 91011 | 12| period length
1 4 s T e R e s O O I A O 1
2 |z, | 2| 4| 8| 3] 61211 9| 5[10] 7| 1 12
3 |z, | 3] 9| 1| 3] 9] 1| 3] 9| 1| 3] 9| 1 3
4 |z, | 4] 3|12 9|10| 1| 4| 3[12] 9|10| 1 6
5 |z, | 5(12| 8| 1| 5|12 8| 1| 5|12 8| 1 4
6 |z,| 6[10| 8| 9| 2[|12| 7| 3| 5| 4|11 1 12

IV. Monte Carlo Methods
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Example 16: Choose z, =1, hence z, =a”" mod m. For the case m=13 we
obtain the following results:

a |n 11 2| 3| 4] 5| 6| 7| 8| 910|111 |12 | period length
7 z, 7110 5|1 9111|112 6| 3| 8| 4| 2| 1 12
8 z, 8|12 5| 1| 8|12 5| 1| 8|12| 5| 1 4
9 |z, | 9 3| 1 9| 3| 1| 9| 3 1| 9| 3| 1 3
10|z, |10 9(12| 3| 4| 1{10| 9|12| 3| 4| 1 6
M|z [11| 4 5] 3| 7(12| 2| 9| 8|10| 6| 1 12
12|z, |12 112 112 112 112 1]12] 1 2

IV. Monte Carlo Methods



cart Quantitative Risk Management
l.lnIVoesIS’I&'EITTZC'I'E;l OLDENBURG

Remark:

e The number ,1” occurs in every sequence at some time.

e The period length correponds to the number of elements in the
sequence until ,1" is reached, and is a divisor of m—1.

e The maximal period length is m—1.

e In case of a=m—1 the period length is always identical to 2 (since
a=m*-2m+1=m(m-2)+1, i.e. there is a remainder of 1 when
dividing by m).

The background of these observations is a fundamental Theorem of Euler /
Fermat / Lagrange in number theory in case that m is a prime. More
precisely, the period length corresponds to the order of the cyclical group
generated by a.

IV. Monte Carlo Methods




cart Quantitative Risk Management
unI\/Oesls’j‘iElTl'ZC'llfIl OLDENBURG

Consequences:

e In order to avoid too short period lengths and local dependencies the
parameters of the multiplicative congruential method must be chosen very
carefully.

e In case of m =2, it is necessary to choose a=3mod8 or a=5mod 8 in
order to achieve the maximal period length of 2? =m/4.
A drawback of such simple generation methods is the fact that consecutive

pairs, or more general, m-tuples built of such a sequence can concentrate on
low-dimensional subspaces.

The quality of random numbers should generally be checked by statistical tests.
The following graphs show Q-Q-plots for 100 and 1000 random numbers, resp.,
generated with EXCEL (German command ZUFALLSZAHL()).

IV. Monte Carlo Methods
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Q-Q-Plot Q-Q-Plot

0 0

04 04

0 0

02 02

o 01

T T s e
100 random numbers 1000 random numbers
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100 pairs of random numbers generated by EXCEL

Ideally, these points should be uniformly distributed over the unit square.
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1000 pairs of random numbers generated by EXCEL

Ideally, these points should be uniformly distributed over the unit square.

IV. Monte Carlo Methods
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Random number generation for general distributions: Inversion Method:

Reminder: Let F denote the cdf of an arbitrary random variable X and F' the
corresponding quantile function

F'(u):=inf{x e R|F(x) >u}, O<u<1,

then it holds:

e U:=F(X) isarandom number, if F is continuous;

e Z:=F'U) is — without restriction — distributed as X, if U follows a
continuous uniform distribution over the interval [0, 1].

Note that U and 1—U have the same distribution.

Application: Generate random numbers {u,} . and use {F‘1(un)}n€Z+ or

{F‘1 (1—un)}n€Z+ as i.i.d. “realizations” of the random variable X.

IV. Monte Carlo Methods
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The Inversion Method is particularly suited for the generation of random
numbers from discrete distributions and can be easily implemented in EXCEL.

Example 17: The following graph shows how the method works, for a random
variable X with values in the set {0,1,---,6}.

1 F(6) . F(x)
LF(5) .
F(a)t .
U -
Fa)} .
o g | Z=F'(U)=4
Fof
0 f f f Y } f X
0 1 2 3 4 5 6

IV. Monte Carlo Methods
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FO) F()  FB)  F(4) F(6)

Here the value of U generates the discrete random value ,,4”. If U falls into the
intervall (F(k —1),F(k)] with F(—1) =0, then let Z := k; in this case, we have

P(Z =k)=P(F(k—1)<U <F(k)) = F(k)— F(k —1).

IV. Monte Carlo Methods
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Example 18: discrete uniform distribution over {1, 2,---,n}: here we have

Fk) =X, k=0,-n
n
. . k—1 k . . D
with Z =k iff —— < U <—. The inversion method here simplifies to
n n

Z=[n-U|l or Z=|n-U|+1, resp,

where

[z]:=min{m e Z |z < m} (rounding up)

|z|:==max{meZ|z>m} (rounding down).

IV. Monte Carlo Methods
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The inversion method works in general very well in all cases where the quantile

function Q = F ' has a closed form. Examples:

e Exponential distribution £(\): X = —%In(U) for A\>0
e Cauchy distribution C: X = cot(nU)

e Pareto distribution Pa(«): X=U"" -1 for a>0
e Logistic distribution L: X=In : UU]

e Loglogistic distribution LL: X = %

e Fréchet distribution F(a): X = {—In(U)}fV“ for a>0
e Gumbel distribution G: X =—In(-=In(V))

e Weibull type min distribution W(a): X = {—In(U)}”“ for a>0.

IV. Monte Carlo Methods
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In case that the quantile function Q =F " cannot be simply determined, it
might be useful to discretize the (continuous) cdf F in an appropriate way. E.g.,
if X denotes the underlying random variable, we can alternatively consider the

rounded random variable X, :
X : . :
X, =A- {Z} with a (typically small) step size A > 0.
Then we have

FXA(X):F[A-\g , xR and P(X, =kA)=F(kA)—F((k —DA), k € Z.

IV. Monte Carlo Methods
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The inversion method for discrete distributions can easily be implemented in
EXCEL using the (German) command SVERWEIS. We first discuss the case that
the random variable X takes only the values 0,1,2,...,M, with

f(k)=P(X =k) and F(k)=P(X <k)= Xk:f(i) for 0<k <M.

i=0
Construction:

1. Create a spreadsheet T (for Table) with the following entries:

A B C
F(k) | k+1 | f(k)
0 0 0

F(0) 1 1(0)
F(1) 2 f(1)

AR WIN| =

M.—i—3 F(M) M.—i—1 f(M)

IV. Monte Carlo Methods
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The inversion method for discrete distributions can easily be implemented in
EXCEL using the (German) command SVERWEIS. We first discuss the case that
the random variable X takes only the values 0,1,2,...,M, with

f(k)=P(X =k) and F(k)=P(X <k)= Xk:f(i) for 0<k <M.

i=0
Construction:

2. Create a spreadsheet S (for Simulation) with the following output:

A B
V) z
=ZUFALLSZAHL() | =SVERWEIS(A2;T!$A$2:T!$BS$[M +3],2)
=ZUFALLSZAHL() | =SVERWEIS(A3;T!$A$2:T!$B$[M +3];2)
=ZUFALLSZAHL() | =SVERWEIS(A4;TI$A$2:TI$B$[M +3],2)

D W N =

IV. Monte Carlo Methods
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Remarks:

e In case that the random variable X is unbounded (examples: Poisson
distribution, negative binomial distribution), the distribution of X can be
truncated for a sufficiently large M, say if P(X > M) is small in comparison
with the number of simulations performed.

e |n case that the random variable X is distributed over an arithmetic set
M={a+kAlk=0,---,M} for some acR and A>0, then the random

variable Y = A=E is again distributed over the set {0,---,M}. Y can hence

be simulated by the procedure described above, and X can finally be
simulated using the transformation X =a-+ AY. (This is e.g. of importance
when using the discretization method.)

e The procedure described above is also suited to simulate multi-dimensional
discrete distributions by using an appropriate denumeration technique.

IV. Monte Carlo Methods
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Example 19: The following table describes the joint distribution of a discrete
random vector (X,Y):

X
0 50 100 | P(Y=y) | P(Y<Y)
0 | 0.100 | 0.340 | 0.000 0.440 0.440
y 40 | 0.454 | 0.100 | 0.001 0.555 0.995

50 | 0.000 | 0.001 | 0.004 0.005 1.000
P(X = x) | 0.554 | 0.441 | 0.005
P(X <x) | 0.554 | 0.995 | 1.000

PX=x,Y=y)

The random variables X and Y are not stochastically independent; their
correlation is given by p(X,Y)=—0.5536.

IV. Monte Carlo Methods
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Construction:

1. We denumerate the 9 entries in the table above in the following way:

z x|y F(k) | k+1| f(k)
1 0 0 0 0
21 50| O 0 1 0
31100| O 0.1 2 0.1
4 040 0.44 3| 0.34
5| 50140 0.44 4 0
6 (100 | 40 0.894 510.454
7 0|50 0.994 6 0.1
8| 50|50 0.995 7 10.001
91100 | 50 0.995 8 0
0.996 910.001

1 10 | 0.004

table R table T

IV. Monte Carlo Methods
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Construction:

2. Using the command SVERWEIS again we obtain the following output table:

A C D
11U X Y
2 =SVERWEIS(B2;R!$A$2:$C$10;2) | =SVERWEIS(B2;R!$A$2:$C$10;3)
3 =SVERWEIS(B3;R!$A$2:$C$10;2) | =SVERWEIS(B3;R!$A$2:$C$10;3)
4 =SVERWEIS(B4;R!$A$2:$C$10;2) | =SVERWEIS(B4;R!$A$2:$C$10;3)
9 =SVERWEIS(B9;R!$A$2:$C$10;2) | =SVERWEIS(B9;R!$A$2:$C$10;3)

IV. Monte Carlo Methods
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Acceptance-Rejection Method: In case that X has a density f which is
concentrated on some (finite) interval [a,b} and which is bounded by some

positive constant M >0, then the so called acceptance-rejection method is

applicable. It is based on two jointly i.i.d. sequences {U,}, . and {V,} = where

neN

U, follows a continuous uniform distribution over the interval [a,b] and V,

follows a continuous uniform distribution over the interval [0,M] for all neN.

Consider the stopping time
N:=inf{neN|V, <f(U,)}.
Then

Z=U,

is distributed as X.

IV. Monte Carlo Methods
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Remarks:

Quantitative Risk Management

N is a.s. finite and follows a geometric distribution over N with

P(N = k) = p(1— p) for k e N where p = ; (the acceptance rate)
M-(b—a)

E(N) = = M.(b_a).
p

The random variable U,, is a.s. well-defined.
The random variables U, and V, can be obtained from i.i.d. random

variables U, and V, which follow a continuous uniform distribution over

the interval [0,1] each by the following positive-linear transformations:
U =a+(-a)-U, V=MV, for neN.

In practical applications, U. and V, are replaced by random numbers.

IV. Monte Carlo Methods
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Explanation:

1,4 M

1 /N
o [N :
i / \
i [ - N

, / Y

1 ] 3 4 U 5

n

green points: (U,,V,) with V, <f(U,): acceptance; Z =U,
red points:  (U,,V,) with V, > f(U,): rejection

IV. Monte Carlo Methods
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Explanation:

1.4 - M

1.2

1

08

0,6

0.4

02

0 1
1 z 3 4 U 5

r3

P(U<z V <f())

P(Z<z)=P(U<z|V<f(U))=

P(V <)) .
f(x)dx
B green area/{(b—a)-M} _ __ Qreenarea [ =F(z), a<z<b
~ (green + blue area)/{(b—a)-M}  green + blue area ]f(x)dx T
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Remarks:

e Instead of the density f itself also an arbitrary multiple g:=c-f of the

density can be used with ¢ >0. This avoids the (sometimes tedious)
calculation of the norming constant for the density f (e.g. in case of a beta
distribution).

e The acceptance-rejection method is not restricted to the one-dimensional
case, but can be generalized to the multivariate case: let X be a d-
dimensional random vector with a density f that is concentrated on the

interval D =|a,, b,|x[a,,b,]x...x[ay,b,| and is bounded by some positive
constant M >0. Let further {U,} = and {V,}  be jointly i.i.d. sequences
where U, follows a continuous uniform distribution over the interval D and
V, follows a continuous uniform distribution over the interval [0, M] for all
neN. Consider again the stopping time N:=inf{neN|V, <f(U,)}. Then
Z:=U, is distributed as X.

IV. Monte Carlo Methods
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Remarks:

e Nis a.s. finite and follows a geometric distribution over N with

P(N = k) = p(1— p)* for k € N where p = (the acceptance rate)

M-ﬁ(b,—a,)

i=1

. Ew_l_M

p_ c 1 (b, —a).

d
=1
e The random vector U, is a.s. well-defined.

e The acceptance-rejection method can - also in arbitrary dimensions - be
generalized to cases where the underlying density f is not concentrated on a
finite interval or is unbounded.

IV. Monte Carlo Methods
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Example 20: The (bounded) density of the Beta-distribution B(a,b) for a,b>1is
given by

Xa—1 (1 _ X)b—1

F)=—an

for 0< x <1

with the inverse norming constant (Beta function)

I'(a)l'(b)

0 a-1¢q b—1 —
B(a,b)._[x (1— x)*"dx R

For an application of the acceptance-rejection method it suffices to consider just
the function g(x)=x""(1—x)*" for 0<x<1. Its maximum is attained for

x=a—_1, if a+b>2. For a=3 und b=6 the minimal upper bound M is
atb-2
2 5
given by M= 275" _ 12500 < 0.0152. The acceptance rate here is 39%.

77 823543

IV. Monte Carlo Methods
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empirical cdf I:',, (red) and true cdf F (blue)

09 /f
07 /

0.6 /

e /

0.3 f

0,2 /

., I

0.0 0.1 0.2 03 0.4 0.5 0.6 07 0.8 0.9 1.0

Simulation with EXCEL on the basis of 1,000 pairs of random numbers;
the empirical acceptance rate is 39.9%

IV. Monte Carlo Methods
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Example 21: Comparison of three simulation methods:

Consider a random variable X with density
) =@+ 1)-(a+b+1)-x"(1-x*) for 0<x <1 and a,b>0.

The corresponding cdf is given by

a+1
Xb -((a+b+1)—(a+1)-x") for 0<x<1and a,b>0.

F(x)=

For a=1 and b =2 we obtain:

Method 1 (inversion): Here we have
F(x)=2x*>—x* for 0<x <1

with the quantile function

Qu)=1-v1—u for 0<u<1.

IV. Monte Carlo Methods
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Example 21: Comparison of three simulation methods:

Consider a random variable X with density
) =@+ 1)-(a+b+1)-x"(1-x*) for 0<x <1 and a,b>0.

The corresponding cdf is given by

a+1
X

F()==—((a+b+10—(a+1):x") for 0<x<1and a,b>0.

For a=1 and b =2 we obtain:

Method 2 (acceptance-rejection): Here we have

f(x)=4x-<1—x2) for 0< x <1

with a maximal value of gﬁ <1.54 =M and an acceptance rate of 64.9%.

IV. Monte Carlo Methods
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Example 21: Comparison of three simulation methods:

Consider a random variable X with density
) =@+ 1)-(a+b+1-x"(1-x*) for 0<x <1 and a,b>0.

The corresponding cdf is given by

a+1
X

F()==—((a+b+10—(a+1)-x") for 0<x<1and a,6>0.

For a=1 and b =2 we obtain:

Method 3 (discretization): With A =0.0005 we obtain
f(kA) = F(kA) — F((k = 1)A) for k=1,2,---,2000.

IV. Monte Carlo Methods
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52 —emp. cdf /
0.8 —cdf

07 /
0.8 /

05 //

04 /

03 /

0.1 /

0.0 /

inversion
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— emp. cdf
—cdf

07

06

05

04

03

0.2

0.1

0.0

0.2

0.4 06

08

acceptance-rejection
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LA —emp. cdf /
08 —cdf

0.7

06 /

05 /

0.4 /

=

02

0.0 / . : .

0 02 0.4 06 0.8 1

discretization
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Example 22: Simulation of a two-dimensional random vector (X,Y) with a
radial symmetric density:

2 )
f(x,y)= ;<1_X2_y2> X+ y? <1 for 0< x,y <1.
0 otherwise

Graph of the density f(x,y)

IV. Monte Carlo Methods
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The density reaches its unique maximum in the origin with a value of

M = 2 = 0.6366... The acceptance rateis 7/8 =39.27%.

s

1.0 9

0.8

0.8

04

0,2

D ety

-0 -08 -06 -04 -02 00 02 04 06 08 10

Simulation with 10000 triples of random numbers; emp. acceptance rate: 39.6%
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EXCEL also provides special commands for the cdf and quantile function of the
beta-, normal-, lognormal and other distributions so that simulations can be

performed directly on the basis of random numbers.

Normal distribution A (y1,07):

cdf F(x) quantile function Q(u)

NORMVERT(x; 11;0;WAHR) NORMINV/(u;1;0)

Lognormal distribution LA (11,0°):

cdf F(x) quantile function Q(u)

LOGNORMVERT(x; 11;0) LOGINV(u; 11;0)

IV. Monte Carlo Methods
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EXCEL also provides special commands for the cdf and quantile function of the
beta-, normal-, lognormal and other distributions so that simulations can be

performed directly on the basis of random numbers.

Beta distribution B(c, 3):

cdf F(x) quantile function Q(u)
BETAVERT(x; «; B) BETAINV(u; a; 3)

Gamma distribution T'(a, \):

cdf F(x) quantile function Q(u)
GAMMAVERT(x; o;1/ \; WAHR) | GAMMAINV(u; o;; 1/ )

IV. Monte Carlo Methods
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EXCEL also provides special commands for the cdf and quantile function of the
beta-, normal-, lognormal and other distributions so that simulations can be
performed directly on the basis of random numbers.

t distribution t; (with d degrees of freedom):

cdf F(x)

quantile function Q(u)

WENN(x > 0;1 — TVERT(x;d;1);TVERT(- x;d;1)) | =WENN(u < 0,5; — TINV(2*u;d); TINV(2-2*u;d))

X’ distribution x; (with d degrees of freedom):

cdf F(x)

quantile function Q(u)

1 - CHIVERT(x;d)

CHIINV(1-u;d)

IV. Monte Carlo Methods
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Particular methods: Let througout {U,}  be an i.i.d. sequence of random

variables with a continuous uniform distribution over the interval [0, 1].

1. Binomial distribution B(n,p) for neN, p<(0,1):

Z:= Zn:[Uk L
k=1

2. Negative binomial distribution NB(n,p) for ne N, pe(0,1):
3. Poisson distribution P()\) for A >0:

n+1
[Tu. < e*} = inf{n €z
k=1

In(1—

:infinez+

—%niln(uk)>1}

k=1

IV. Monte Carlo Methods
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Johnk’s beta method: Let U and V be i.i.d. random variables with a
continuous uniform distribution over the interval [0,1] and «, 3 > 0. Define

U1/o¢ U1/a
U‘I/a +V1/6 = T

T:=U" +V" and S:= . )

Then we have
P (+|T <1)=B(a, ).

This relation can be used to simulate a B(«,3) distribution by a modified

acceptance-rejection method: Let {U,}  and {V,}  be jointly i.i.d. where U,

and V, both follow a continuous uniform distribution over the interval [0,1].
Define T, and S, according to (*) for ne N and let

N:=inf{neN|T, <1}.

Then S, follows a B(«,3) distribution.

This method is appropriate for “small” values of «, 3 > 0.

IV. Monte Carlo Methods
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Johnk’s gamma method to simulate a I'(a, \) distribution for a, A >0:

Case I: a<1: Let X and Y be independent with X following a B(a,1—«)

distribution and Y following a T'(1,\) = £()\) distribution. Then Z:= X-Y follows
a I'(o, )\) distribution.

(o]

Case ll: a>1: If « is integer then Z:= —%ZIn(Uk) follows a T'(a, \) = E(a, \)

k=1
distribution (Erlang distribution). If « is not integer consider m:= [aJ and
B:=a—-m<1. Let X and Y be independent with X following a T'(m,)\)

distribution and Y following a T'(5,)\) distribution. Then Z:= X +Y follows a
I'(a, A) distribution.

Simulation of a B(«,3) distribution with “large” values of «,3>0: Let Xand Y
be independent with X following a I'(«,1) distribution and Y following a T'(3,1)

distribution. Then Z :=

XY follows a B(«, 3) distribution.

IV. Monte Carlo Methods
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Particular topic: Estimation of VaR (X) by simulation (continuous case):

Method 1:
e Simulate neN independent copies X,,---, X, of X
e form the order statistics X,,,---, X,,,, by sorting

e choose X, ., as an estimate for VaR (X) with k, := |- n| (cf. slide 114).

Method 2:

e Fix neN and simulate a B(n—k,, k, +1)-distributed random variable U

nt™™*n

e choose Q,(U) = F,'(U) as an estimate for VaR_(X).

Remark: Q,(U) from method 2 has the same distribution as X, ,, from

n

method 1 (cf. slide 84), but requires only 1 simulation instead of n.

IV. Monte Carlo Methods
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Example 23a: The following graphs show empirical densities (red, with a manual
fit to a Gumbel density, green) for 10000 estimates each for VaR,,s(X) after

2
method 2 where X follows a £/\/[—%,az] -distribution (cf. slide 26, Example 4).

n=200, k, =1

/ ' "
DR |- E— | g7

[ 1 2 3 Il s & 0z 4 & T W 1 W 1w 1| 0| 0 2 4 6 B 10 12 W 16 18 30 32 M M 18 W |

c=0.5 c=1.0 c=1.5
VaR, 405 (X) =3.1992 VaR, 4s(X) =7.9711 VaR, ,0s(X) = 15.4675

IV. Monte Carlo Methods
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Example 23a: The following graphs show empirical densities (red, with a manual
fit to a Gumbel density, green) for 10000 estimates each for VaR,,;s(X) after

2
method 2 where X follows a £/\/[—%,az] -distribution (cf. slide 26, Example 4).

n=1000, k, =5

A

I\ A A

;’ 'i - [\ i =

Unl..: F \ 004 / \ 2018 & [ k

[\ / \ oo I L

e J \ b 0.008 + f \

; B - L J P | | o
c=0.5 c=1.0 c=15
VaRO_OOS(X) =3.1992 VaR o5 (X)=7.9711 VaRO_OOS(X) =15.4675

IV. Monte Carlo Methods
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Particular topic: Estimation of ES_(X) by simulation (continuous case):

Method 1:
e Simulate neN independent copies X,,---, X, of X

e form the order statistics X,,,---, X,,,, by sorting

kn
> X, 1, asan estimate for ES_(X) with k, :=|a-n|.

e il ey

e choose

Method 2:

e Fix neN; simulate k,+1 independent random variables Ugii Uy with a

continuous uniform distribution over the interval [0, 1]

+ ZQX [Hu1/(n 5)

k=0

e choose

as an estimate for ES_(X).

IV. Monte Carlo Methods
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2ol

Remark1: The random variable from method 2 has the

k=0

same distribution as the random variable

kn
> X, ., from method 1, but
k7

requires only k_ -+ 1 simulations instead of n. This is due to the Markov property
of order statistics in the continuous case (cf. slide 84).

Remark 2: The random variables U} from method 2 follow a B(n—j,1) beta
distribution for j=0,---,k,. This corresponds to the fact that for i.i.d. random
variables V,,---,V, distributed as V with a continuous uniform distribution over
the interval [0,1],the conditional distribution of an order statistic V., given
V., =v,, fora fixed v,, €(0,1) is identical with the distribution of the maximum
of r—1 independent copies of v,,-V, for 1<r <n.

IV. Monte Carlo Methods
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Example 23b: The following graphs show empirical densities (red, with a
manual fit to a Gumbel density, green) for 10000 estimates each for ES; . (X)

2

after method 2 where X follows a £/\/[—%,az]—distribution (cf. slide 26,

Example 4).
n=1000, k, =5

A A .Y

’ \ 003 ] k o018 £ f \\

[\ . B . I
7 N o I A
/. LS S I e
0c=0.5 c=1.0 =125

ES, 0ps(X) = 3.7910 ES, 0ps(X) = 11.5065 ES, 05 (X) = 18.4896
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Simulation of d-dimensional random vectors X = (X,,---, X, :

Multivariate normal distribution:

P* = N(0,%) with a non-negative definite variance-covariance matrix X :

e decompose Y= A-A’ with a suitable dxd matrix A (Cholesky or spectral
decomposition)

e generate a random vector Y with PY = N(0,1) (independent components)

e generate X via X = AY.

IV. Monte Carlo Methods
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Simulation of d-dimensional random vectors X = (X,,--, X, :

Multivariate normal distribution:

Special case d = 2: Box-Muller transformation:

If U and V are independent continuous uniformly distributed over the interval
[0,1] and

X =+-2In(U) cos(27V)
Y =./-2In(U) cos(27V + a)

with a €[0,7], then Z =(X,Y)" follows a N(0,X)-distribution with

22[1

:)] where p = cos(a) (cf. also Chapter II).
P

IV. Monte Carlo Methods
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Simulation of d-dimensional random vectors X = (X,,--, X, :

Multivariate t, -distribution:

P* =t,(0,%) with a non-negative definite matrix ¥:

e decompose ¥ =A-A" with a suitable dxd matrix A (Cholesky or spectral
decomposition)

e generate a random vector Y with PY = N(O,E)

e generate a random variable W, independent of Y, with P" = ?

e generate Xvia X = /%AY.

By linear transformations, general normal and t-distributions can be simulated.
Correspondingly, also GauB3- and t- copulas can be simulated (cf. Chapter II).

IV. Monte Carlo Methods
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Simulation of a d-dimensional random vector U=(U,,--,U,) with a GauB

copula C¢ with a positive definite correlation matrix X :

e decompose Y= A-A" with a suitable dxd matrix A (Cholesky or spectral
decomposition)

e generate a random vector Y with PY = N(O,I)

e generate a random vector Z via Z = AY

e generate the random vector U by U, := ®(Z,) for i =1,---,d.

IV. Monte Carlo Methods
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Simulation of a d-dimensional random vector U= (U,,---,U,)" with a t-copula

CY with a positive definite correlation matrix X:

e decompose ¥ =A-A" with a suitable dxd matrix A (Cholesky or spectral
decomposition)

e generate a random vector Y with PY = A/(0,1)

e generate a random variable W, independent of Y, with P = \?

e generateZvia Z = ‘/LAY
w

e generate the random vector U by U,:=F, (Z;) for i=1---,d, where F,
denotes the cdf of a univariate t -distribution.

Note that in EXCEL, a matrix multiplication function exists which allows for an
easy calculation of Z =AY both for the GauB3 as well as for the t-copula.

IV. Monte Carlo Methods
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Example 24: Simulation of a GauB3 and t-copula with a given correlation matrix

0.85 0.80
0.80 0.70
1.00 0.50|
0.50 1.00

1.00
0.90
~l0.85
0.80

0.90
1.00
0.80
0.70

The Cholesky decomposition ¥ = A- A’ gives (rounded to two decimal places)

1.00
0.95
~10.90
0.85

0.00
0.44
0.08
—0.05

0.00
0.00
0.52
—0.34

0.00
0.00
0.00|
0.49

The following graphs show the pairwise simulated copula random vectors
(U,.,Ul.) with 1</ < j <4, from a sample of size 2000:
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GaulB copula:

Py =0.80 Py =0.70 p3s = 0.50
IV. Monte Carlo Methods
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t;-copula:
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t;-copula:

Py = 0.80 P =0.70 p3a = 0.50

IV. Monte Carlo Methods
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Simulation of a d-dimensional random vector U=(U,--,U,) with an

Archimedean copula with generator ¢:

General approach:

e Simulate d independent copies Y,,---,Y, of a random variable Y following a
continuous uniform distribution over the interval [0, 1]

e simulate a positive random variable Z whose distribution has the Laplace
transform ¢ ', independent of Y,,---,Y,

—In(Y})

for i=1,---,d.
Z

e generate the random vector U by U, = 901[

IV. Monte Carlo Methods
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Example 25: Simulation of a Clayton copula with 6 =7 (cf. slide 49):

Here Z has a F[%,%]-distribution. The following graphs show the pairwise

simulated copula random vectors <U,.,Uj) with 1<i< j<4, from a sample of

size 2000:

IV. Monte Carlo Methods
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Example 25: Simulation of a Clayton copula with 6 =7 (cf. slide 49):

Here Z has a F[%,%]-distribution. The following graphs show the pairwise

simulated copula random vectors <U,.,Uj) with 1<i< j<4, from a sample of

size 2000:

IV. Monte Carlo Methods
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Example 26: Simulation of a Gumbel copula with =3 (cf. slide 49): A
simulation of the required random variable Z following a stable distribution

with parameter « :l<1 can be performed using the representation

_sin(anV) '[Sih((‘l—oz)ﬂ'V)]g_1
(sin(@V)) | —In(w)

with V,W being independent and continuous uniformly distributed over the
interval [0, 1] (modified after MAI AND SCHERER (2012), Section 6.13).

The following graphs show the pairwise simulated copula random vectors
(U,,U,) with 1<i< j <4, from a sample of size 2000:

IV. Monte Carlo Methods
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Example 26: Simulation of a Gumbel copula with 6 =3 (cf. slide 49):

08

uw

08

pairwise simulated copula random vectors (U, U;) with 1<i<j<4

IV. Monte Carlo Methods
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Particular methods:
generator o:

Simulation of bivariate Archimedean copulas with

Generate independent random variables U,, V with a continuous uniform
distribution over the interval [0, 1]
e put

wi= (o) (£, i (W) - ()

(see NELSEN (1999), Exercise 4.16).
Then (U,,U,) has the desired copula as cdf.

IV. Monte Carlo Methods
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Example 27: Simulation of a bivariate Clayton copula (cf. slide 49):

Here we have

Plt) = %(t_a —1), ') =", (") (s) = (=5) VM, o (s) = (1+ 6s) "
giving

W =U,-v"", U, =(1-U; +w ) "

The following graphs show simulated bivariate copula random vectors (U,,U,)
from a sample of size 2000, with different parameters 6 >0:

IV. Monte Carlo Methods
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Example 27: Simulation of a bivariate Clayton copula (cf. slide 49):

of
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Simulation of a d-dimensional random vector U=(U,,--,U,) with a

checkerboard copula:

Let V=(V,,---,V,) be a random vector whose components V; follow a discrete
uniform distribution over the set T:={0,1,---,m—1} with meN for i=1,---,d.
Let further denote

pa k) i=P| YV = k)

for all (k,,---,ks) €T

the joint probabilities of V (forming a d-dimensional contingency table) and

k; k;+1
m' m

TS X for (k- ky) €T’

giving all possible subcubes of (0,1}”’ with edge length 1/ m.

IV. Monte Carlo Methods
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Simulation of a d-dimensional random vector U=(U,,--,U,) with a
checkerboard copula:

The simulation works in the following steps:

e Convert the contingency table into a matrix with m° rows and m+1
columns, where the first column contains the entries of the contingency
table in a suitably denumerated way (so called vectorization), and the
remaining columns contain the indices of the attached subcube

e generate a d-tuple (k, -, k,)eT? as a realization of V by the inversion
method for discrete distributions

e generate a random vector U independent of V which follows a continuous

k; k; +1‘

uniform distribution over the subcube /, , = X[
m' m

IV. Monte Carlo Methods
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Example 28a: Simulation of a bivariate checkerboard copula with the following
contingency table:

0.00|{ 0.02| 0.05] 0.18 0.25
0.06| 0.05| 0.10| 0.04 0.25
0.07| 0.10{ 0.06| 0.02 0.25
0.12] 0.08| 0.04| 0.01 0.25

0.25 0.25 0.25 0.25

The numbers in the shaded area are supposed to indicate the indices of the
subsquares; note that this notation is consistent with the position of subsquares

in the plane, i.e. the pair (i,j) with i,j€{0,1,2,3} denotes the subsquare

= [é% ><[£j—jL1 (this notation differs from the one used earlier, see e.qg.
slide 51).

IV. Monte Carlo Methods
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Example 28a: Simulation of a bivariate checkerboard copula with the following
contingency table:

F(k—1) k| f(k-1)

Vectorization step: 0.00 1| 0.00
0.12 2| 0.12

0.20 3| 0.08

0.24 4, 0.04

0.25 5/ 0.01

0.32 6| 0.07

0.42 7| 0.10

0.48 8| 0.06

0.50 9] 0.02

0.56 10| 0.06
0.61 11| 0.05
0.71 12| 0.10
0.75 13| 0.04
0.75 14| 0.00
0.77 15| 0.02
0.82 16| 0.05

vectorization

contingency table

IV. Monte Carlo Methods
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Example 28a: Simulation of a bivariate checkerboard copula with the following

contingency table:

Simulation step:

0.00{ 0.02| 0.05

1.00

0,75 1%

0.06| 0.05| 0.10

0.04

0.07| 0.10 0.06

0.02 S 050 il

0.12| 0.08| 0.04

0.01

contingency table

simulated bivariate copula random vectors (U,,U,) from a sample of size 10000

IV. Monte Carlo Methods
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Example 28b: Simulation of a bivariate checkerboard copula with the following
alternative contingency table:

. . 1,00 g
Simulation step:

contingency table 0.2

0,00
0,00 0.25 0,50 0,75 1,00

simulated bivariate copula random vectors (U,,U,) from a sample of size 10000
IV. Monte Carlo Methods 199
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Particular methods: Simulation of a d-dimensional random vector
U= (U1,---,Ud)T with a rook copula (cf. slide 54):

Let
Oo1 On2 "t Ogd Ood
O 012 041 014
M—|: . .
Om21 Om22 " Om2d1 Om2d
Oma1 Oma2 " Omaad—1 Omad
denote a matrix of transposed permutations of
the set T:={0,1,---,m—1} for k=1,---,d. For the

non-zero probabilities of a rook copula there
holds

d
pm(k“---,kd):P[ﬂ{U, :k,}]:% & (ky- ky)=(041,003,+,0,4) for some teT.

i=1

IV. Monte Carlo Methods pl0[0]
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Particular methods: Simulation of a d-dimensional random vector
U= (U1,---,Ud)T with a rook copula (cf. slide 54):

The simulation works in the following steps:

e choose an index t according to a discrete
uniform distribution over T:={0,1,---,m—1}

e generate U from a continuous uniform
distribution over the subcube /

Ot1:0¢2: 40t d "

IV. Monte Carlo Methods
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Example 29a (cf. Example 8, slide 55):

Here M =

N o ol b WN - O

N UuToy W NN B~ =2 O

- [ TN S LS o

(ki k;) = (7. 7)

(kwkz) =(4,3)

-h [V TR £y [ I = oo

(ki k;)=(0,0)

IV. Monte Carlo Methods
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Example 29a (cf. Example 8, slide 55):

1.000 . i
vk
-a.\h.’
2
0,875 . 2 2
s
i
."hl\l
0.750 B X
£
0,625 e ;
L
S o0.500 ey -
A
urp
0.375 — N
b
l.&?ﬁ"
s W &
0.250 @5
. e
&
0125 et
125 fergg
3 5k
N o
0000 LAz .
0000 0125 0250 0375 0500 0625 0750 0875 1,000
ut

simulated rook copula random vectors (U,,U,) from a sample of size 1000

IV. Monte Carlo Methods
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Particular methods: Simulation of a d-dimensional random vector

U= (U1,---,Ud)T with a Bernstein copula derived from a rook copula (cf. slide 56):

Let M= [a,j] denote the underlying matrix of transposed permutations for the

rook copula.

The simulation works in the following steps:

e choose an index t according to a discrete uniform distribution over
T:={0,1---,m—1}
e generate U :(U1,---,Ud) with independent components where U, follows a

B(oy +1.m—o,) beta distribution for k =1,---,d.

IV. Monte Carlo Methods
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Example 29b (continuation of Example 29a):

1.000 4 - 1,000
[
0,875 .m 0.876
g
[
0,750 S iss 0.750
Ty
e 2

0,625 L 0.625

S 0500 s & 0,500
".!#—'
o
0375 S 0,375 Hettate
e

0,250 (722 0,280

0,125 0,125 45

0,000 0,000 et i

0,000 0125 0250 0375 0500 0625 0750 0875 1,000 0000 0125 0250 0375 0500 0625 0750 0875 1,000
um W1
simulated rook copula simulated Bernstein copula

IV. Monte Carlo Methods
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From data to non-parametric copula models: General approach for a given
matrix x =[x,.j] of data, where i=1,---,n is the i-th out of n (independent) d-

dimensional obervation row vectors and j=1---,d is the corresponding
component (dimension) index:

e For each j, calculate the rank r; of the observation x; among x,,---, x,; for
i=1--,n

e form the matrix M= [(r, —1)] of transposed permutations for the empirical

rook copula (possibly after a suitable re-ordering of the rows).

IV. Monte Carlo Methods
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Example 30: From data to copula models:

original data:

-

Xi1 Xi2
0.468 | 0.966
9.951 | 2.679 j
0.866 | 0.897 ”
6.731 | 2.249
1.421 | 0.956 .
2.040 | 1.141 2
2.967 | 1.707
1.200 | 1.008 1
0.426 | 1.065 X,
1.946 | 1.162 .
0.676 | 0.918 o |2, 2
1.184 | 1.336 Yd *
0.960 | 0.933 .
1.972 | 1.077
1.549 | 1.041
0.819 | 0.899
0.063 | 0.710 0
1280 1_118 0 1 2 3 4 5 B 7 8 g 10 11
0.824 | 0.894 X,

0.227 | 0.837

XNV WIN|—

O

—-
o

—_
—_

—_
N

—_
w

—_
i

05

N
(8]

_
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[e]

_
o

N
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Example 30: From data to copula models:

ranks:

-

ri1 riz Xi1 Xi2
4] 9] 0.468 | 0.966
20 | 20 | 9.951 | 2.679 o
8| 4] 0.866 | 0.897 "
19 | 19 | 6.731 | 2.249
13| 8] 1.421 | 0.956 O
17 | 15 | 2.040 | 1.141 2
18 | 18 | 2.967 | 1.707
11 | 10 | 1.200 | 1.008 4
3[12]0.426 | 1.065 X, 5
15| 16 | 1.946 | 1.162
5| 6]0.676 | 0.918 .
10 | 17 | 1.184 | 1.336
9| 70960 | 0.933 .
16 | 13 | 1.972 | 1.077
14 ] 11 [ 1.549 | 1.041
6| 5]0.819 ] 0.899
1] 1]0.063]0.710 0
12 14 1.280 1.118 1] 1 2 3 4 5 B 7 8 2] 10 11
7| 3] 0.824] 0.894 X,
2| 20227 0.837

XNV WIN|—

O

.
o

—_
—_

ty ©
.
Y 3
-

—_
N

—_
w

—_
S

05

N
(8]

—_
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Y
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-
[e]

_
©

N
o
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Example 30: From data to copula models:

M-matrix:
i M Xi1 Xi2
1 0 0 | 0.063 0.71
2 1 1] 0.227 | 0.837
3 2|11 ] 0.426 | 1.065
4 3 8 | 0.468 | 0.966
5 4 51 0.676 | 0.918
6 5 4 | 0.819 | 0.899
7 6 2 | 0.824 | 0.894
8 7 3 | 0.866 | 0.897
9 8 6 0.96 | 0.933
10 916 | 1.184 | 1.336
11| 10 9 1.2 | 1.008
12 111 | 13 1.28 | 1.118
13 ] 12 7 | 1.421 | 0.956
14 | 13 | 10 | 1.549 | 1.041
15114 | 15| 1.946 | 1.162
16 | 15| 12 | 1.972 | 1.077
17 | 16 | 14 2.04 | 1.141
18 | 17 | 17 | 2.967 | 1.707
19| 18 | 18 | 6.731 | 2.249
20| 19| 19 | 9.951 | 2.679

simulated rook copula:
- | B4

0%

050
08
080 m

1)
P

B
1A

0
B
010 1

0o 4 |

000 —t
000 005 0,10 0,15 020 0.25 0,30 0,35 0,40 045 050 055 050 DES 070 0.75 080 085 0,20 095 1,00
m

IV. Monte Carlo Methods
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Example 30: From data to copula models:

M-matrix: simulated Bernstein copula:
i M Xi1 Xi2 1,0
1] 0] 0]0.063| 0.71
2] 1] 102270837 09
3] 2110426 1.065
4| 3| 80468 | 0.966 o
5] 4| 50676 | 0.918
6| 5| 40819 0.899
7] 6| 2]0.824 ] 0.894
8| 7| 30866 | 0.897
9| 8| 6| 096 0933
10| 916 1.184 | 1336
1M1[10] 9 1.2 | 1.008
1211 13] 1281118
13 [ 12| 7] 1.421]0.956
14 [ 1310 | 1.549 | 1.041
15 | 14 | 15 | 1.946 | 1.162
16 | 15 | 12 | 1.972 | 1.077
17 [ 16 | 14 | 2.04 | 1.141
18 | 17 | 17 | 2.967 | 1.707 o
19 | 18 | 18 | 6.731 | 2.249 = '
20 | 19 | 19 | 9.951 | 2.679

IV. Monte Carlo Methods
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Simulations of Stochastic Processes of importance in Finance:

Standard brownian motion (or Wiener process) {Bt}tZo :

1. {B}., hasindependentincrements B, —B, for 0<t, <t <t,<--<t,
2. {B,}, , has stationary increments, i.e. the distribution of B, —B, for 0<s<t

depends only of t—s
3. {B,},, has Gaussian increments, i.e. the distribution of B, —B, for 0<s<t

isa N(0,t —s) normal distribution

IS

. {B.},., has a.s. continuous paths

B, =0 as.

Z

Note that conditions 3 and 4 are equivalent, i.e. one of these can be cancelled
w.l.o.g.

IV. Monte Carlo Methods
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Simulations of Stochastic Processes of importance in Finance:

Properties of a standard brownian motion (Wiener process) {Bt}f>0

e Each B, follows a A(0,t) normal distribution for t >0

o each path of {B},_, is as. nowhere differentiable and of unbounded

variation in any finite time interval
e for every increasing sequence {1‘,(}::1 of positive time points the random

vector (Bt1,Bt2,~~-,Btn) follows a multivariate A (0,X) normal distribution
with

oy =min{t,t;}, 1<i,j<neN

e the process {%Bct} also is a standard brownian motion for every ¢ >0
t>0

(fractal self-similarity).

IV. Monte Carlo Methods
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Simulations of Stochastic Processes of importance in Finance:

Paley-Wiener-construction (1934) of standard brownian motion:

— sinn—ﬂ
Bt:%w iTE nT Y, 0<t<T
n=1

where {Y,}

variables.

is an i.i.d. sequence of standard normally distributed random

neN

IV. Monte Carlo Methods
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Simulations of an approximate Paley-Wiener-construction
for T =1 with 1000 summands und time steps At =0.005

IV. Monte Carlo Methods




cart Quantitative Risk Management
l.lnlVoesIS’I‘SEITTZC';;l OLDENBURG

Simulations of Stochastic Processes of importance in Finance:

Alternative approximate simulation:

e Diskretization of time: choose a uniform step size A = r >0
n

k
e put B, :ZY,. for k=1,2,---,n with i.i.d. random variables Y; following a
i=1

N (0,A) distribution (i.e. o =vA 1)

e plot the pairs (0,0) and (kA,B,,) for k =1,2,---,n.

IV. Monte Carlo Methods
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1.6 7

14
1.2
1

08

0.6

04

0.2 44

0 $e
0.2 40064
0.4

0.6

-0,8

=12

-14 U-.

-1.6

Approximate simulations for T =1 with n=1000, i.e. A =0.001

IV. Monte Carlo Methods
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Simulations of Stochastic Processes of importance in Finance:

A general brownian motion (Wiener process) {B;""}DO is obtained from the

standard Wiener process {B.}, = by a linear transformation:

t>0
B/” =By +oB,+ut, t=20 (0>0, pER)

with an arbitrary real starting value B)” € R. we call

e o the diffusion coefficient or volatility (particularly in financial applications)
e 4 the drift

of the process.

IV. Monte Carlo Methods
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Simulations of Stochastic Processes of importance in Finance:

Properties of a general brownian motion (Wiener process):

e Each B! follows a N(B/” + ut,o’t) normal distribution for t >0

e each path of {B{""}Do is a.s. nowhere differentiable and of unbounded

variation in any finite time interval
e for every increasing sequence {t,(}'k’=1 of positive time points the random

vector (Bg'”,B;:"’,---,Bt’:'”) follows a multivariate N(M,E) normal distribution

with

)
p=(By" +ty, By +t,u) and

oy =o’min{t,t;}, 1<i,j<neN.

IV. Monte Carlo Methods
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Simulations of Stochastic Processes of importance in Finance:

Stochastic differential equations (SDE's) are formally given by
dX, = u(t, X, )dt +o(t, X,)dB,

with a standard brownian motion {Bt}t suitable (generally continuous)

>0 '
functions u,0:RxR" — R and a known starting value X, € R. Strictly speaking,

a SDE is not a differential equation, buth rather a (It6-)integral equation of the
form

t t
X, = [u(s.X,)ds+ [ (s, X,)dB,.
0 0

IV. Monte Carlo Methods
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Simulations of Stochastic Processes of importance in Finance:
Simulation of a solution of a SDE:

Heuristically, we have

t+h

[o(s.X,)dB, ~ o (t,X,):(B.., ~B;) = o(t.X,)-Vh-Z for small h>0,

t

where Z is standard-normally distributed (remember that B,,,—B, follows a

N(0,h) distribution with a standand deviation of ~/h).

IV. Monte Carlo Methods
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Simulations of Stochastic Processes of importance in Finance:

Simulation of a solution of a SDE:

e Divide [0,T] into n equidistant subintervals [t t,] with t,=kA and

P
n

e define recursivlely

— X, = A pte, X, )4 VA -0 (X, ) Zps k=01, —1

tep

with i.i.d. standard normally distributed Z,,---,Z

n

e plot the pairs (0,X,) and (kA, X,,) for k=1,2,---,n.

IV. Monte Carlo Methods
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Simulations of Stochastic Processes of importance in Finance:

A particular SDE is given by

dX, = pX,dt+ o X, dB,

with constants © € R, o> 0. The solution with the It6-integral is different from
intuition, namely

X, = X, -exp =0

2
[,u—%]t-l—aBt

This stochastic process is also called geometric brownian motion (— Black-
Scholes-model for the stock market).

IV. Monte Carlo Methods
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Simulations of Stochastic Processes of importance in Finance:

Short rate models deal with stochastic changes of interest rates on financial
markets on the basis of a random function r(t), 0 <t <T which describes the

growth of a bank account with initial capital K, according to the formula

t

fr(u)du

0

K, =exp far 0<t<T.

IV. Monte Carlo Methods
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Simulations of Stochastic Processes of importance in Finance:

Popular short rate models are:

e The Vasicek model:
dr(t) = a[b—r(t)]dt + odB,
e The Cox-Ingersoll-Ross model:
dr(t)=a[b—r(t)]dt +o4/r(t) dB,
e The Black-Karasinski model:
dinr(t)=alb—Inr(t)|dt + cdB,

The Black-Karasinski model is an exponential Vasi¢ek-Modell, i.e. Inr(t) is
the solution of a usual Vasi¢ek model.

IV. Monte Carlo Methods
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Simulation of a Black-Karasinski model over a time period of 10 years
with a=0.20 b=-3.02 ¢=0.19 and an initial interest rate of 3%

(formerly suggested as a model for interest rate risk in Solvency II)

IV. Monte Carlo Methods
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The total risk capital RC of a company (bank or insurance company) is in general
a function of the aggregated risk

RC = RC(X),

where X is additively composed of individual risks of ne N sub-entities (e.g.,
lines of business):

X=3X.
i=1

For what follows we shall assume that all risks are evaluated according to a
common risk measure R, for instance Value at Risk or Expected Shortfall.

The quantities
RC(X;), i=1--,n

are called stand-alone risk capital.

V. Principles of Capital Allocation
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A Capital Allocation Principle is a method to attribute (allocate) the total risk

R[zn:x,.

i=1

to the individual sub-entites in an economically “reasonable” way.

Remember that in case that the risk measure is coherent (for the class of
underlying risk distributions), we have

R[znj X,
i=1

< R(X),

and the resulting difference

n

D, (X, X,) =SS R(X) R $2X,

>0

(=i

is called diversification gap. This implies in particular that the allocated capital
must be less than the value of its risk measure for at least one sub-entity if the
diversification gap is positive.
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According to Denault, a capital allocation principle RC is called coherent, if it
satisfies the following four conditions:

> RC(X,)=R|>_X; [total allocation]
i=1 i=1

> RC(X;)<R|>_X,| for all subsets J C{1,---,n} [no undercut]
iel iel

RIX 4+ > X |=R| D X [=R| X, + > X |—R| > X, | forall

keMij keM,-j keM,j keM,j

M; C{1--,n}\{i,j} = RC(X;)= RC(Xj) forall 1<i<j<n [symmetry]
RC(c)=R(c) =c for constant risks c € R [riskless allocation]

V. Principles of Capital Allocation
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Remark 1: The assumption of a total allocation implies that

ZH;RC(X,)zR[IZn;X,]:RC[’ZD;X,]

(for the equality on the r.h.s., consider the case n=1).

This means that the part that is allocated to the k-th sub-entity x, (allocation

factor) can be expressed as

RELX) _ REO4) i §, o

RC[ZX,] R[’i:x,] k=

i=1

X, =

V. Principles of Capital Allocation
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The condition of a riskless allocation is not crucial, because
constant risks can w.l.o.g. be excluded from the portfolio in advance.

Remark 2:
Remark 3: The property of symmetry is obviously equivalent to the condition

—R X,-+ZX/< forall M; C{1,---,n}\{i,j} =

keMj;

RIX. + > X,

keM;;

RC(X;)=RC(X;) forall 1<i<j<n.

Remark 4: The condition of no undercut is in most cases difficult to achieve in
general. If it is fulfilled only for J={i} with ieN, the we speak of the

individual no undercut condition.

V. Principles of Capital Allocation
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Remark 5: A drawback of most of the proposed allocation concepts in practice
is that they do not pay attention to the (individual or collective) default
probabilities

P(X;>RC(X,)) for i=1,--,n or P[IQ{X,>RC(X;)}]

that risk X, or at least one of the X, exceeds its allocated capital. This is in
particular important when VaR or ES is the underlying risk measure.

V. Principles of Capital Allocation
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Commonly used allocation principles:

I. Stand-Alone proportional allocation:

The allocation factors are here given by

R(X,)

SRk

X or RC(Xk):xk-RC[ZX,]:R(Xk)-—
i=1
This principle fulfils the conditions of

e total allocation
e symmetry

e individual no undercut.

It does in general not fulfil the conditions of no undercut or riskless allocation.
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Commonly used allocation principles:

Il. Covariance-based allocation:
In case that the individual risks possess second moments we have

= ZH:ZH:COV(X“XJ) = ZH:COV X,-'Zn:xf] = ZH:COV(XHX)-
i = P

i=1 j=1

Var(X) = Var[ZX,
i=1

The allocation factors are here given by

_ Cov(X,,X)

. Cov(X,,X)
T Var(X)

=— <" 7 .R(X) for k=1,---,n.

RC(X,)=x, -RC X;

In the case of stochastic independence this simplifies to

B Cov (X, X) B Var (X,) fo

X, = = rk=1--,n.
Var(X) Var(X)

V. Principles of Capital Allocation
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Commonly used allocation principles:

Il. Covariance-based allocation:
The allocation factors are here given by

_ Cov(X,,X)

N Cov (X, X)
T Var(X)

=— < 7.R(X) for k=1,---,n.

RC(X,)=x, -RC X,
or Pl=% [; ' Var(X)

This principle fulfils in general only the condition of

e total allocation.

It does in general not fulfil the conditions of symmetry or no undercut or
riskless allocation.

V. Principles of Capital Allocation
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Commonly used allocation principles:

Il. Covariance-based allocation:
Counterexample: Let n=3 and assume that the underlying risk measure is
expectation. Assume further that the risks are independent and that £(X,)=6
. . Var (X, j . . .
and Var(X;)=i for i=1,2,3. Then x,=M=L for i=1,2,3, i.e. all risk
Var(X) 6

allocations are different. But trivially, for 1<i<j<3 and M; C{1,---,n}\{i,j},

we have
RIXi+ > Xe|-RI DD X |=E| X+ D> X |—E[ D X |=E(X))
keM;; keM;; keM;; keMm;;
=E(X;))=E|X;+ > X, |-E| > X, |=R|X;+ > X, |-R Zxk].
keM;; keM;; keM;; keMm;;
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Commonly used allocation principles:

Il. Covariance-based allocation:

Remark: It is potentially possible that some of the individual risks have a
negative correlation with the total risk. This would lead to a negative allocation
factor which might not be desirable. In order to avoid such cases, the

covariance-based allocation is sometimes modified in the following way:

_ Cov(X,,X)

RC(X,) = E(X,)+ X (RO —EQX) with x, == 2565 for k=1,-n.

Note that this allocation principle also fulfils the condition of total allocation,
but does not generally avoid negative capital allocations.

V. Principles of Capital Allocation
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Example 31: Let the joint distribution of the risks X and Y be given by the
following table (where a =0.005 (Solvency Il standard); cf. also Example 1):

PX=x,Y=y) *
0 50 100 | P(Y=y) | P(Y<Vy)
0 B | 0.441—3 | 0.000 0.441 0.441
40 | 0.553—3 | 0.001+ 3 | 0.000 0.554 0.995
50 0.000 0.000 | 0.005 0.005 1.000
P(X = x) 0.553 0.442 | 0.005
P(X < x) 0.553 0.995 | 1.000

with 0 < 8 <0.441, giving VaR_(X) =50, VaR_(Y) = 40.

The range of possible correlations is given by [-0.9484; 0.7921], independence is
obtained for = 3, :=0.239733.

V. Principles of Capital Allocation
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The following table shows the distribution of the aggregated risk S=X+Y

s| O 40 50 90 100 140 150
P(S=s) | B | 0.553—-3 | 0.441—-3 | 0.001+ 3 | 0.000 | 0.000 | 0.005

P(S<s) | B 0.553 | 0.994 -3 0.995 | 0.995 | 0.995 | 1.000

with
VaR_(S) =90 = VaR_(X)+ VaR_(Y),

independent of the parameter 3 and hence also independent of the possible
correlations between X and Y.

V. Principles of Capital Allocation
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Stand-Alone proportional allocation:

. VaR, (X) 5 o o VaR, (Y) _4_,z
" VaR, (X)+VaR,(Y) 9 T "* VaR (X)+VaR (Y) 9

RC(X) = x, 'RC(X+Y)=g'90=50, RC(Y)=X2'RC(X+Y)=3'9O=4O,

i.e. the stand-alone-proportional allocation attributes exactly the individual risk
measures to the risks (due to the fact that there is a non-strict diversification
effect in the portfolio), independent of the joint correlation.

V. Principles of Capital Allocation
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Covariance-based allocation:

(s COVXXEY) | Var(X)+CoviX.Y)  __3+0.082387
! Var(X +Y) Var(X)+ Var(Y)+2-Cov(X,Y) 23+ 0.04099995
x,(5) = COV(Y,X + Y) - Var(Y)+ Cov(X,Y) ~ [—0.04138705
L(3) =

Var(X+Y)  Var(X)+Var(Y)+2-Cov(X,Y) 23+0.04099995

RC(X, 8) = x,(8)-RC(X +Y) = x,(3)-90, RC(Y,B) = x,(8)-RC(X +Y) = x,(8)-90

For the extreme choices of 3, we obtain:

x,(0) = 2.009441475 x,(0) = —1.009441475
x,(0.441) = 0.5670498682  x,(0.441) = 0.4329501318

x,(5,) = 0.6189069621 x,(5,) =0.3810930379

V. Principles of Capital Allocation
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Covariance-based allocation:

Note that the allocation factor x,(3) remains negative as along as

B < B :=0.04138705.

Especially, we obtain
RC(X,37)=90 RC(Y,57)=0
RC(X, 3,) =55.702 RC(Y,(3,) =34.298

RC(X,0.441) =51.034 RC(Y,0.441) = 38.966.

In all three cases, the Lob connected to the risk X is allocated more money than
necessary, i.e. the condition of no undercut is violated.

V. Principles of Capital Allocation
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Covariance-based allocation:

For the modified covariance-based allocation, we obtain instead
RC,0q(X) = E(X) + x,(8)(VaR,(X) — E(X))
RC,0a(Y) = E(Y) + x,(8)(VaR (Y) — E(Y))

with

RC,.,(X,0)=113.005 RC,.,(Y,0) = —23.005 (!)
RC. ,(X,37)=67.59 RC. . (Y,37)=22.41
RC,.,(X,3,) = 50.445 RC,.,(Y,3,) = 39.555

RC,.,(X,0.441)=48.112 RC,_,(Y,0.441) = 41.888.

Also here, the condition of no undercut is violated in all four cases.

V. Principles of Capital Allocation
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Commonly used allocation principles:

lll. The Shapley value allocation:

The mathematical foundations of the Shapley value go back to the theory of
coalition games. There one considers a set N={1,---,n} of ,players”, who can
form coalitions K C N, which are rated by a “value” that is given by a suitable
mapping

W : PBy(N) == PN\ {2} — R.
Typically W is assumed to be super-additive, i.e.
W (K, &K,)>W(K,)+W(K,) (*)

for disjoint coalitions K,,K, C N.

V. Principles of Capital Allocation
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Commonly used allocation principles:

lll. The Shapley value allocation:

This condition enforces the players to form coalitions (rather than playing
alone), because by induction, we get from (*)

W[éK;]ZZ;W(K,’)

for pairwise disjoint coalitions K;,---,K, C N. As a special case we obtain

W(N) > anw({i}).

V. Principles of Capital Allocation
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Example 32: Majority game:
1, #K >ﬂ

W(K) = #ZN for KCN;
0, #KgT

note that for two arbitrary disjoint coalitions K;,K, CN we cannot have

W (K,)=W (K,)=1 simultaneously, otherwise #(K,®K,)>#N, a contradiction

to K,®K,CN. The inequality (*) hence is fulfilled, if W(K,®K,)=1; for

W (K, ®K,)=0, (*) is always fulfilled.

V. Principles of Capital Allocation
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Commonly used allocation principles:

lll. The Shapley value allocation:

In the sequel we denote with W the set of all functions defined on 3, (N)
which fulfil the condition (*). Obviously, W is a convex cone, i.e.

WeWw forall WeW and v >0 and

aW,+(A—a)W, e W for all W,,W, €W and 0 <a <.
We call a coalition K C N support of W e W, if

W(H) =W(K NH) for all HepB,(N).
Further, for any permutation o € 3(N), we set

W, (K):=W (o (K)), K< Fy(N).

V. Principles of Capital Allocation
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Commonly used allocation principles:

lll. The Shapley value allocation:

Definition: A mapping ¢: W — R" is called Shapley value (function), if

. Z¢i(W) = W(K) for every support K of W cW

iek
o (W)= (W,) for all permutations o € %(N) and all ie N

o o (W+Wy) = W)+ (W,) forall W, W, e W.

It can be proven that these conditions specify the mapping ¢ uniquely, with

W(H)—-W (H\{i
90,-(W):l () ( {}) forall WeW and ieN.
N jeHepy(N) n—1
#H—1

V. Principles of Capital Allocation
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Commonly used allocation principles:

lll. The Shapley value allocation:

Interpretation: ¢,(W) corresponds to an average increment of the value of a

coalition H € W that player i contributes through joining the coalition.

Note that for every player i, there exist exactly n coalitions of varying size h
from 1 (solo player) to n (full coalition) that player i can belong to, and that
n—1
h-1
(including player i).

is the number of possible choices for coalitions with h members

V. Principles of Capital Allocation
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Commonly used allocation principles:

lll. The Shapley value allocation:

Interpretation: This idea can be used to make the notion of an "average
increment of the value of a coalition” more rigorous:

Define, for every i € N, a random set , in two steps:

1. Choose a number he N according to a Laplace distribution over N.

2. Choose a set £ C N\{i} with exactly h—1 elements at random (Laplace

n—1
distribution over the set of all subsets of N\{i} with [h 1] elements).

3. Let H, ==K ®{i}.

Then ¢ (W) = E[W(H,) - W (H,\{i})].

V. Principles of Capital Allocation
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Commonly used allocation principles:
lll. The Shapley value allocation:
Application to the risk capital allocation problem:

Let

W(K):= R[ZX,.], KCN,

ieK

then W €W for every coherent risk measure R because of

W (K, &K,)=—R ——R >R ~R

> X

ickyK,

SOX+ X,

icky €Ky

2%

ieky

zx,-]=w<K1>+vv<Kz>.

iek,

V. Principles of Capital Allocation
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Commonly used allocation principles:

[ll. The Shapley value allocation:

Application to the risk capital allocation problem:
Corollary: For a coherent risk measure R,

2 X

keH\{i}

R[Zxk}—R

keH

=E

RC (X;):=—
( ) N jeHeg, (N)

> X |l ieN
n—1 keH\ i}

#H-1

R[zxk]_R

keH;

defines a capital allocation principle, called Shapley value principle.

V. Principles of Capital Allocation
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Commonly used allocation principles:

lll. The Shapley value allocation:

Application to the risk capital allocation problem:

Theorem: For a coherent risk measure R, the Shapley value allocation principle
fulfils Denault’s conditions of total allocation, individual no undercut, symmetry

and riskless allocation. In particular, if R is additive for a risk vector (X1,---,Xn),

then
RC,(X;)=R(X;) for i=1,--,n.

The Shapley value allocation also fulfils Denault’s general condition of no
undercut (and is hence coherent), if additionally there holds

Z (_ 1)(#/—#J)R [Z X/'

Jcl jel

<0 forall ICN. (**)

V. Principles of Capital Allocation
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Commonly used allocation principles:

lll. The Shapley value allocation:

Application to the risk capital allocation problem:

Note that the last condition (**) is always fulfilled for any subset /= {i,i,} CN
with two elements, since then

SR S| =R (x4, )~ R(x,) (X, ) <0

il jel

by the coherence property of R. Condition (**) is, however, not a consequence
of the coherence property of R in general.

In case that R is throughout additive, condition (**) is trivially fulfilled in
general, but then there is no strict diversification effect in the risk portfolio.

V. Principles of Capital Allocation
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Solvency Il

The three pillar approach to Solvency I

SCR: Solvency Capital Requirement
MCR: Minimum Capital Requirement

VI. Risk Management under Solvency Il and Basel Il
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Quantitative Risk Management

Assets covering
Technical Provisions,
the MCR and the SCR

\

ass%ts

J

> Solvency Capital Requirement

—  Minimum Capital Requirement

— Risk Margin
... for non - hedgeable risks

— Best Estimate

> Technical Provisions

market - consistent valuation
for hedgeable risks

The economic balance sheet approach to Solvency Il
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Adj op
I | _I l ] |
Market Health Default Life Non-life Intang
A c—| | y |
Interest SLT CAT Non-SLT Mortality | Premium
rate Health Health [ Reserve
Equi i Longevi
quity Mortality [ = gevity . T
| Reserve I
| Property " __ Disability
Longevity | Morbidity
— Lapss L ear
| Spread Disability __ Lapse
Morbidity
| Currency Lapse . Expenses
= included in the
Con- Revision adjustment for the loss-
| centration Expsraerq | w absarbing capacity of
technical provisions
L Wiquidity Revision | | | CAT under the modular
approach

Risk modules considered under Solvency II
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Basic definition of the Solvency Capital Requirement (SCR) per risk module on
the liability side, based on a yearly time horizon:

SCR(X) = VaR, s (X) — P(X)

where X denotes the risk of the module (potential random payments to the
clients) and P(X) essentially the premium income.

The SCR for the market risk is mainly calculated by scenarios / factor models.

For both sides of the economic balance sheet, the volatility of the net asset
value due to changes in the interest rate curve has to be taken into account,
too.

The aggregation of the individual SCR’s is performed with a covariance formula,
based on given correlations p; between the different modules i and j:

SCR,y = \/Z p;-SCR; -SCR,
1

VI. Risk Management under Solvency Il and Basel Il
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i\j Market | Default Life | Health | Non-life
Market 1 0.25 0.25 0.25 0.25
Default 0.25 1 0.25 0.25 0.5
Life 0.25 0.25 1 0.25 0
Health 0.25 0.25 0.25 1 0
Non-life 0.25 0.5 0 0 1

Example of a given correlation matrix from the Directive 2009/138/EC, Annex IV

Motivation: Standard Deviation Principle:

Suppose that the risks X,,---, X, have a pairwise correlation p; for 1</,j<n. If

we identify the underlying risk measure with the SDP and the premium with the
expectation, we obtain an individual SCR(X;) accordingly as

SCR(X,)=SDP(X,)—E(X,) for 1<i<n, with

VI. Risk Management under Solvency Il and Basel Il
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Motivation: Standard Deviation Principle:

SCR[iX,]:SDP[iX,]— > E(X)=

i=1 i=1

:\/ZEpU \/7Var 7Var(X)

i=1 j=1

P
)
NIE
X
I
2
=0
NIE
S
=
X
X

=1 j=1

:Jii:p,j.{SDP(X,.)—E(X,-)}-{SDP<X/)—E(X/->}

\/ZZpU -SCR(X,)-SCR(X;)

i=1 j=1

Warning: A simple application of this calculation scheme to the risk measure
VaR is inconsistent in general!
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Example 33: In what follows we consider Beta distributed risks X with densities
n+m

f,(x;n,m)=(n+m+1) x"(1—=x)", 0<x<1, nnmeZ".

F.(x;n,m) will denote the corresponding cdf. Since the densities above are
polynomials the convolution density for the aggregated risk S=X+Y for
independent summands with parameters n,,m,,n,,m, is piecewise polynomial
and can easily be calculated via the following formula:

ffx(y;n1,m1)-fy(x—y;nz,mz)dy, 0<x<1
fs(x;n1:m1:n2:m2): o

1
ffX(y;n1,m1)-fY(x—y;nz,mz)dy, 1< x<2.

x—1
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Example 33: In what follows we consider Beta distributed risks X with densities

n+m

f,(x;n,m)=(n+m+1) X"(1-=x)", 0<x<1, nmeZ".

Likewise, the cdf F, for the aggregated risk S is also piecewise polynomial and
can be calculated via

ffs(u;n“m“nz,mz)du, 0<x<1

Fs(x;ny,my,ny,m,) = ’

Fs(1)+fﬂ(u;n1,m1,n2,m2)dU. 1<x<2.
1
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Example 33: In what follows we consider Beta distributed risks X with densities

n+m

f,(x;n,m)=(n+m+1) X"(1-=x)", 0<x<1, nmeZ".

With the help of these formulas, it is possible to calculate (in the final step
numerically) the true SCR’s with P(X) = E(X), for the individual risks as well as
for the aggregated risk. Note that for a risk X with density given above, we

have
n+1
E(X)=————
n+m+2
and hence

SCR(X) = VaR, o5 (X) — E(X) = F'(0.995;n, m) —— 11
' n+m+2
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Example 33: In what follows we consider Beta distributed risks X with densities

n+m

f,(x;n,m)=(n+m+1) x"(1-x)", 0<x <1, nmeZ" =NuU{0}.

The following tables show some selected results.

(n,m) (0,0) (1,0) (2,0) (3,0) 0,1 (0,2) | (0,3)
SCR(X) | 0.4950 | 0.3308 | 0.2483 | 0.1987 | 0.5959 | 0.5790 | 0.5340
(n.m ((1,2) |(1,3) |14 |@1) |G |@&1
SCR(X) | 0.4891 | 0.4816 | 0.4603 | 0.3706 | 0.3105 | 0.2670
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Example 33: In what follows we consider Beta distributed risks X with densities

n+m

f,(x;n,m)=(n+m+1) x"(1-x)", 0<x <1, nmeZ" =NuU{0}.

The following tables contain the true SCR values for the aggregated risk
S=X+Y, with independent Beta distributed risks X and Y, in comparison to

the values SCRY obtained via the covariance formula.

(n,,m,,n,,m,) | Density £ | SCR(S) | SCRY (S) | Errorin %
(0,0,0,0) | 0.9000 | 0.7000 -22.21
(1,0,1,0) ‘_ 0.6158 | 0.4678 | -24.02
2,0,2,0) ’ J | 0.4658 | 0.3511 -24.61
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Example 33: In what follows we consider Beta distributed risks X with densities

n+m

f,(x;n,m)=(n+m+1)

x"(1-x)", 0<x <1, nmeZ" =NU{0}.

(n,,m,,n,,m,) | Density £ | SCR(S) | SCRY (S) | Errorin %
(3,0,3,0) ’ / | |0.3743 |02810 |-24.91
(0,1,0,1) l_ 09171 |0.8428 |-8.10
(0,2,0,2) l 08187 |0.8188 | 0.01
03,0,3) \ . |07229 |07553 | 447

Example 33: In what follows we consider Beta distributed risks X with densities
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x"(1-x)", 0<x <1, nmeZ" =NuU{0}.

fX(X:n.m)z(n+m+1)[n;m

(n,,m;,n,,m,) | Density £ | SCR(S) | SCRY (S) | Errorin %
0.1.1.0) 0.8008 | 0.6816 | -14.89
(0,2,2,0) _ | 07056 | 06300 |-10.71
(0,3,3,0) - » 0.6239 | 0.5698 | -8.66
(1,2,2,) ) 0.6851 [0.6136 |-10.44

Example 33: In what follows we consider Beta distributed risks X with densities
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n+m
fx(x;n,m):(n-l-m+1)[ J’; x"(1-x)", 0<x <1, nmeZ" =NuU{0}.

(n,,m;,n,,m,) | Density £ | SCR(S) | SCRY (S) | Errorin %
(1,3,3,1) ’ _ 0.6276 | 0.5729 -8.70
(1,4.4,1) ’ 0.5760 |0.5321 |-7.62
(4,8,8,4) 1)\ |o3816 |04251 | 11.41

Similar examples can be presented for correlated risks.

VI. Risk Management under Solvency Il and Basel Il




cart Quantitative Risk Management
unll;)eS;;EthZg; OLDENBURG

The Calculation of the individual SCR in the non-life module is based on the
assumption that the risk X is of the form X =Z-V where V is the (deterministic)
premium volume of the following business year and Z is a lognormally
distributed random variable with expectation m=E(Z)=1 and variance

s>=Var(Z)>0. In terms of the usual parametrization of the lognormal

distribution as ,CN(,u,JZ> with ;€ R and ¢° >0, this means

2

1=m= E(Z):exp[/ht%], s’ :exp(2M4—(yz).<e”Z —1):m2 .<e"Z —1)

from which we obtain

2

o :,/In(1+52), m :—%:—%In(ﬂ-sz) =In

1

V1+5°
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By the definition of the SCR, we thus get the following formula:

SCR(X) = VaR s (X) — E(X) = (VaRo.oos(z) — E(Z))'V
<I>"(0.995)-exp( In(1+sz))

—1|-v
J1+ 82

= (exp(n+0-©7(0.995)) 1)V =

for each non-life module.
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Internal and partial models:

- -

. Frequency
Correlation 5
» Fois ‘ and Severity

Distributions l

Reserve Severity
Adjustments Distributions
» Reinsurance Credit Ratings
Default Recoveries
Catastrophe Aggregated
Event Tables Losses

- —

Scheme of a fully implemented Internal Model

(source: Guy Carpenter & Company, LLC 2007)
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Internal and partial models: Directive 2009/138/EC addresses the following

topics:

Test and Standards

e Subsection 1: Use Test

e Subsection 2: Statistical Quality Standards

e Subsection 3: Calibration Standards

e Subsection 4: Integration of partial Internal Models
e Subsection 5: Profit and Loss Attribution

e Subsection 6: Validation Standards

e Subsection 7: Documentation Standards

e Subsection 8: External Models + Data
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Internal and partial models: Directive 2009/138/EC Article 120: Use Test:

Insurance and reinsurance undertakings shall demonstrate that the internal
model is widely used in and plays an important role in their system of
governance, ... in particular:

(a) their risk-management system ... and their decision-making processes;

(b) their economic and solvency capital assessment and allocation processes,
including the assessment ...

In addition, insurance and reinsurance undertakings shall demonstrate that the
frequency of calculation of the Solvency Capital Requirement using the internal
model is consistent with the frequency with which they use their internal model
for the other purposes covered by the first paragraph.

The administrative, management or supervisory body shall be responsible for
ensuring the ongoing appropriateness of the design and operations of the
internal model, and that the internal model continues to appropriately reflect
the risk profile of the insurance and reinsurance undertakings concerned.
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Internal and partial models: Article 121: Statistical Quality Standards:

... The methods used to calculate the probability distribution forecast shall be
based on adequate, applicable and relevant actuarial and statistical techniques
and shall be consistent with the methods used to calculate technical provisions.

The methods used to calculate the probability distribution forecast shall be
based upon current and credible information and realistic assumptions.

...Data used for the internal model shall be accurate, complete and appropriate.

Insurance and reinsurance undertakings shall update the data sets used in the
calculation of the probability distribution forecast at least annually.

No particular method for the calculation of the probability distribution forecast
shall be prescribed.

Regardless of the calculation method chosen, the ability of the internal model
to rank risk shall be sufficient to ensure that it is widely used in and plays an
important role in the system of governance of insurance and reinsurance
undertakings, in particular their risk-management system and decision-making
processes, and capital allocation in accordance with Article 120.
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Internal and partial models: Article 121: Statistical Quality Standards:

The internal model shall cover all of the material risks to which insurance and
reinsurance undertakings are exposed. ...

As regards diversification effects, insurance and reinsurance undertakings may
take account in their internal model of dependencies within and across risk
categories, provided that supervisory authorities are satisfied that the system
used for measuring those diversification effects is adequate.

Insurance and reinsurance undertakings may take full account of the effect of
risk-mitigation techniques in their internal model, as long as credit risk and
other risks arising from the use of risk-mitigation techniques are properly
reflected in the internal model.
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Internal and partial models: Article 122: Calibration Standards:

Insurance and reinsurance undertakings may use a different time period or risk
measure ... for internal modelling purposes as long as the outputs of the
internal model can be used by those undertakings to calculate the Solvency
Capital Requirement in a manner that provides policy holders and beneficiaries
with a level of protection equivalent to [99.5% over a one-year-period].

Where practicable, insurance and reinsurance undertakings shall derive the
Solvency Capital Requirement directly from the probability distribution forecast
generated by the internal model of those undertakings, using the Value-at-Risk
measure ...
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Internal and partial models: Article 122: Calibration Standards:

Where insurance and reinsurance undertakings cannot derive the Solvency
Capital Requirement directly from the probability distribution forecast
generated by the internal model, the supervisory authorities may allow
approximations to be used in the process to calculate the Solvency Capital
Requirement, as long as those undertakings can demonstrate to the supervisory
authorities that policy holders are provided with a level of protection
equivalent to [99.5% over a one-year-period].

Supervisory authorities may require insurance and reinsurance undertakings to
run their internal model on relevant benchmark portfolios and using
assumptions based on external rather than internal data in order to verify the
calibration of the internal model and to check that its specification is in line
with generally accepted market practice.
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Internal and partial models: Article 123: Validation Standards:

Insurance and reinsurance undertakings shall have a regular cycle of model
validation which includes monitoring the performance of the internal model,
reviewing the ongoing appropriateness of its specification, and testing its
results against experience.

The model validation process shall include an effective statistical process for
validating the internal model which enables the insurance and reinsurance
undertakings to demonstrate to their supervisory authorities that the resulting
capital requirements are appropriate.

The model validation process shall include an analysis of the stability of the
internal model and in particular the testing of the sensitivity of the results of
the internal model to changes in key underlying assumptions. It shall also
include an assessment of the accuracy, completeness and appropriateness of the
data used by the internal model.
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Internal and partial models: Article 123: Validation Standards:

Controls
13 »
Processes
“ | Solvencyll | —  Risk Management
: Balance —_—
Shest
- g —* Business Decision # 1
| calculation Model :
—+ Parameterisation -—>I Karnal —F Output —L . = )
= - | Business Decision # 2

Risk Data —
¥ Business Decision # 3
External Model |

L [e.g.Cat models, f
ESG) L%  Regulatory Capital

- " p- I . p s - p - 1

(source: KPMG Europe LLP, 2011)
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Basel II/11l

The three pillar approach to Basel II/lll

ICAAP: Internal Capital Adequacy Assessment Process
SREP: Supervisory Review and Evaluation Process
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Risk Categories in Pillar I:

Credit Risk:

e relates to those assets and activities that a bank employs that have credit
risk associated with them and do not form part of the trading activities of
the bank. Otherwise it is part of the market risk.

e Credit risk capital requirements can be calculated in one of three ways:

1. standardized approach: attaches a specific risk weight to each credit-
related instrument, depending on the credit quality of the assets on the
bank's balance sheet.

VI. Risk Management under Solvency Il and Basel Il



cart Quantitative Risk Management
unIVOeSIS’ISEITtZ('IlE; OLDENBURG

Risk Categories in Pillar I: Credit Risk: standardized approach:

Risk weights for sovereigns
. . AAA to BBB+ to
Credit rating AA- A+ to A- BBE- B+ toB- | BelowB- | unrated
Risk weight 0% 20% 50% 100% 150% 100%
Risk weights for banks and securities companies
. . AAA to BBB+ to
Credit rating AA- A+ to A- BBB- B+ to B- Below B- | unrated
Risk weight 20% 50% 100% 100% 150% 100%
Risk weights for corporates
. . AAA to BBB+ to
Credit rating AA- A+ to A- BB- Below BB- unrated
Risk weight 20% 50% 100% 150% 100%

(source: F. de Weert)
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Risk Categories in Pillar I:

Credit Risk:

o relates to those assets and activities of the bank employs that have credit
risk associated with them and do not form part of the trading activities of
the bank. Otherwise it is part of the market risk.

e Credit risk capital requirements can be calculated in one of three ways:

2. Foundation International Rating-Based (FIRB) approach: uses internal
models for estimating the one-year probability of default (PD); requlator
prescribed loss-given defaults (LGD’s) and exposures at default (EaD’s).
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Risk Categories in Pillar I:

Credit Risk:
e relates to those assets and activities that a bank employs that have credit
risk associated with them and do not form part of the trading activities of

the bank. Otherwise it is part of the market risk.

e Credit risk capital requirements can be calculated in one of three ways:

3. Advanced International Rating-Based (AIRB) approach: uses internal
models for estimating all of the one-year horizon parameters (PD’s,

LGD's, EaD’s).
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Risk Categories in Pillar I:

Credit Risk:

e relates to those assets and activities that a bank employs that have credit
risk associated with them and do not form part of the trading activities of
the bank. Otherwise it is part of the market risk.

e Credit risk capital requirement formulas:

Expected Loss: EL = PD x LGD x EaD
Unexpected Loss: VaR,,,,(X)—EL = VaR,,(X)—PD x LGD x EaD

(similar to the SCR formula in Solvency I1)
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Risk Categories in Pillar I:

Market Risk:
e relates to the trading activities of the bank and comprises

* interest rate risk

» foreign exchange rate risk
= equity price risk

» commodity price risk

» option price risk.

e Market risk capital requirements can be calculated in different ways based
on variants of the Value at Risk (parametric approach with a lognormal
distribution for returns, Historic VaR, Monte Carlo VaR).
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Risk Categories in Pillar I:

Operational Risk:

e relates to risks in executing the business, in particular

= fraud risk (internal and external)
= clients, products and business practice risk
» business disruption and system failure risk

= execution, delivery, and process management risk.

e Operational risk capital requirements can be calculated in different ways
based on a simple gross factor approach or a more detailed consideration of
eight specified lines of business, or a full internal model.
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- The End -
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