Survey on exterior algebra and differential forms

Daniel Grieser

16. Mai 2013

Inhaltsverzeichnis

1	\mathbf{Ext}	erior algebra for a vector space	1
	1.1	Alternating forms, wedge and interior product	1
	1.2	A scalar product enters the stage	3
	1.3	Now add an orientation: Volume element, Hodge *	4
	1.4	Formulas in an arbitrary basis	5
	1.5	Modifications for not positive definite inner product	6
2 Dif		ferential forms	7
	2.1	Pointwise ('tensorial') constructions	7
	2.2	Integration	8
	2.3	Derivative operations	9

1 Exterior algebra for a vector space

Let V be an n-dimensional real vector space. Whenever needed, we let e_1, \ldots, e_n be a basis of V and e^1, \ldots, e^n its dual basis.

At first reading you may leave out the parts on Hodge * and non-positive definite metrics.

1.1 Alternating forms, wedge and interior product

1. Let $k \in \mathbb{N}_0$. A k-multilinear form on V is a map $\omega : V^k \to \mathbb{R}$ which is linear in each entry, i.e.

 $\omega(av_1 + bv'_1, v_2, \dots, v_k) = a\,\omega(v_1, v_2, \dots, v_k) + b\,\omega(v'_1, v_2, \dots, v_k)$

for all $v_1, v'_1, v_2, \ldots, v_k \in V$ and $a, b \in \mathbb{R}$, and similarly for the other entries. The form is called **alternating** if it changes sign under interchange of any two vectors:

 $\omega(v_1,\ldots,v_i,\ldots,v_j,\ldots,v_k) = -\omega(v_1,\ldots,v_j,\ldots,v_i,\ldots,v_k)$

Equivalent conditions (to alternating) are: $\omega(v_1, \ldots, v_k) = 0$ if any two of the v_i are the same. Or:

$$\omega(v_{\sigma(1)},\ldots,v_{\sigma(k)}) = \operatorname{sign}(\sigma)\omega(v_1,v_2,\ldots,v_k)$$

for all permutations σ of $\{1, \ldots, k\}$.

The space of alternating k-multilinear forms on V is denoted $\Lambda^k V^*$. This is a vector space with basis $\{e^I : |I| = k\}$, where I runs over subsets of $\{1, \ldots, n\}$ with k elements and

$$e^{I} := e^{i_1} \wedge \dots \wedge e^{i_k}$$
 for $I = \{i_1 < i_2 < \dots < i_k\},\$

with \wedge defined below, or explicitly:

$$e^{I}(e_{j_{1}}, \ldots, e_{j_{k}}) = \delta^{I}_{J}$$
 for $J = \{j_{1} < \cdots < j_{k}\}$

For example, $e^{\{1,2\}} = e^1 \wedge e^2$ satisfies $(e^1 \wedge e^2)(e_1, e_2) = 1$, and this implies that $(e^1 \wedge e^2)(e_2, e_1) = -1$ and all other $(e^1 \wedge e^2)(e_{j_1}, e_{j_2})$ are zero, hence for $v = \sum v^i e_i, w = \sum w^j e_j$ we get $(e^1 \wedge e^2)(v, w) = v^1 w^2 - v^2 w^1$.

It follows that $\Lambda^k V^*$ has dimension $\binom{n}{k}$, in particular dim $\Lambda^n V^* = 1$, and $\Lambda^k V^* = \{0\}$ if k > n. Also $\Lambda^1 V^* = V^*$ and $\Lambda^0 V^* = \mathbb{R}$.¹ We also write

$$k = \deg \omega$$
 if $\omega \in \Lambda^k V^*$

and call k the **degree** of the form ω .

2. Wedge (or exterior) product: For $\omega \in \Lambda^k V^*$, $\nu \in \Lambda^l V^*$ define $\omega \wedge \nu \in \Lambda^{k+l} V^*$ by

$$(\omega \wedge \nu)(v_1, \dots, v_{k+l}) = \sum_{\sigma} \operatorname{sign}(\sigma) \,\omega(v_{\sigma(1)}, \dots, v_{\sigma(k)}) \nu(v_{\sigma(k+1)}, \dots, v_{\sigma(k+l)})$$

where the sum runs over all permutations σ of $\{1, \ldots, k+l\}$ preserving the order in the first and second 'block', i.e. satisfying $\sigma(1) < \cdots < \sigma(k)$, $\sigma(k+1) < \cdots < \sigma(k+l)$. For example, for k = l = 1

$$(\omega \wedge \nu)(v, w) = \omega(v)\nu(w) - \omega(w)\nu(v)$$

Rule:

$$\omega \wedge \nu = (-1)^{\deg \omega \cdot \deg \nu} \nu \wedge \omega$$

For this property one says that \wedge is 'graded commutative' (in the physics literature also 'super commutative'). Also, \wedge is bilinear and associative.

Remark (Relation to cross product in \mathbb{R}^3):

The wedge product generalizes the cross product in the following sense. If $V = \mathbb{R}^3$ then $\dim \Lambda^1 \mathbb{R}^3 = \dim \Lambda^2 \mathbb{R}^3 = 3$. So we have identifications (isomorphisms)

$$\begin{split} \Lambda^1 \mathbb{R}^3 \to \mathbb{R}^3, & \omega = \omega_1 e^1 + \omega_2 e^2 + \omega_3 e^3 \mapsto (\omega_1, \omega_2, \omega_3) \\ \Lambda^2 \mathbb{R}^3 \to \mathbb{R}^3, & \mu = \mu_1 e^2 \wedge e^3 + \mu_2 e^3 \wedge e^1 + \mu_3 e^1 \wedge e^2 \mapsto (\mu_1, \mu_2, \mu_3) \end{split}$$

Now for $\omega, \nu \in \Lambda^1 \mathbb{R}^3$ with $\omega = \sum \omega_i e^i$, $\nu = \sum \nu_j e^j$ we have

$$\omega \wedge \nu = (\omega_2 \nu_3 - \omega_3 \nu_2)e^2 \wedge e^3 + (\omega_3 \nu_1 - \omega_1 \nu_3)e^3 \wedge e^1 + (\omega_1 \nu_2 - \omega_2 \nu_1)e^1 \wedge e^2$$

so if ω, ν are identified with vectors as in the first line, then $\omega \wedge \nu$ corresponds (as in the second line) to the cross product of these vectors.

3. Let $v \in V$. The interior product with v is the linear operator

$$\iota_v: \Lambda^k V^* \to \Lambda^{k-1} V^*, \quad \omega \mapsto \omega(v, \dots)$$

that is, $(\iota_v \omega)(v_2, \ldots, v_k) = \omega(v, v_2, \ldots, v_k)$ ('plug in v in the first slot'). Here $k \in \mathbb{N}$, but we also define $\iota_v = 0$ on $\Lambda^0 V^*$.

Clearly, ι_v depends linearly on v. With wedge products it behaves as follows (as a 'super derivation'):

$$\iota_{v}(\omega \wedge \nu) = (\iota_{v}\omega) \wedge \nu + (-1)^{\deg \omega} \omega \wedge (\iota_{v}\nu)$$
(1)

For example, in \mathbb{R}^3 , if $v = \sum_i v^i e_i$ then

$$\iota_v(e^1 \wedge e^2 \wedge e^3) = v^1 e^2 \wedge e^3 + v^2 e^3 \wedge e^1 + v^3 e^1 \wedge e^2$$
(2)

(of course one could write $-v^2e^1 \wedge e^3$ for the middle term)

4. Behavior under maps: A linear map $A: V \to W$ defines the pull-back map

$$A^*: \Lambda^k W^* \to \Lambda^k V^*, \quad (A^*\omega)(v_1, \dots, v_k) := \omega(Av_1, \dots, Av_k)$$
(3)

¹By definition, $V^0 = \mathbb{R}$, and a linear map $\mathbb{R} \to \mathbb{R}$ is determined by its value at 1.

where $\omega \in \Lambda^k W^*$, $v_1, \ldots, v_k \in V$. For k = 1 this is also called the dual (or transpose) map $A^* : W^* \to V^*$.

Pullback behaves naturally with wedge product

$$A^*(\omega \wedge \nu) = A^*\omega \wedge A^*\nu$$

and with interior product: $\iota_v(A^*\omega) = A^*(\iota_{A(v)}\omega)$, as follows directly from the definitions. For V = W and k = n pullback relates to the determinant as follows: $A^* = (\det A)$ Id on $\Lambda^n V^*$. Explicitly, this means

$$\omega(Av_1,\ldots,Av_n) = (\det A)\omega(v_1,\ldots,v_n)$$

which follows directly from the facts that ω is multilinear and alternating, and the Leibniz formula for the determinant.

1.2 A scalar product enters the stage

From now on assume that a scalar product is given on V, that is, a bilinear, symmetric, positive definite² form $g: V \times V \to \mathbb{R}$. We also write $\langle v, w \rangle$ instead of g(v, w). This defines some more structures:

1. Basic geometry: The scalar product allows us to talk about **lenghts** of vectors and **angles** between non-zero vectors:

$$|v| = \sqrt{g(v, v)}, \quad \angle(v, w) = \arccos \frac{g(v, w)}{|v| \cdot |w|}$$

2. Using the scalar product on V we get a map

$$g^{\#}: V \to V^*, v \mapsto g(v, \cdot)$$

Since g is non-degenerate, this map is injective, hence bijective (since dim $V = \dim V^* < \infty$). The inverse of $g^{\#}$ is called

$$g^{\flat}: V^* \to V$$

Therefore, we may identify vectors and linear forms (but we do this only when necessary).³

3. Using this identification, we get a scalar product on V^* , which we also denote by \langle , \rangle :

$$\langle \alpha, \beta \rangle := \langle g^{\mathfrak{p}}(\alpha), g^{\mathfrak{p}}(\beta) \rangle$$

for $\alpha, \beta \in V^*$.

4. More generally, we get a scalar product on $\Lambda^k V^*$ for each k. It is easiest to define it by the property:

If e_1, \ldots, e_n are orthonormal then the basis $\{e^I : |I| = k\}$ of $\Lambda^k V^*$ is orthonormal.

In other words, $\langle \sum_{I} a_{I} e^{I}, \sum_{J} b_{J} e^{J} \rangle := \sum_{I} a_{I} b_{I}$. Then for arbitrary $v^{1}, \dots, v^{k}, w^{1}, \dots, w^{k} \in V^{*}$ one has⁴ $\boxed{\langle v^{1} \wedge \dots \wedge v^{k}, w^{1} \wedge \dots \wedge w^{k} \rangle = \det(\langle v^{i}, w^{j} \rangle)}$ (4)

This formula also shows that one obtains the same scalar product if one uses a different orthonormal basis in the definition.

²Everything can be done in the more general case that g is only non-degenerate, but one needs to be careful with the signs, see Section 1.5.

³The fact that $g^{\#}$ is surjective, i.e. that every linear form on V can be represented by a vector using the scalar product, is sometimes called the *Riesz lemma*. It holds more generally when (V,g) is a Hilbert space, that is, if V is allowed to be infinite-dimensional but required to be complete with the norm defined by g.

⁴Proof: By definition this holds if all v^i , w^j are taken from the basis vectors e^1, \ldots, e^n . Then it holds in general since both sides are multilinear in the 2k entries $v^1, \ldots, v^k, w^1, \ldots, w^k$.

1.3 Now add an orientation: Volume element, Hodge *

Now assume that on V a scalar product and an orientation is given.

1. The **Hodge** * operator is the unique linear map (for each k)

$$*: \Lambda^k V^* \to \Lambda^{n-k} V^*$$

with the property that⁵

$$* (e^1 \wedge \dots \wedge e^k) = e^{k+1} \wedge \dots \wedge e^n \quad \text{for any oONB},$$
(5)

that is, for any oriented orthonormal basis (oONB) e_1, \ldots, e_n with dual basis e^1, \ldots, e^n . Intuition: k-forms $e^1 \wedge \cdots \wedge e^k$ correspond to k-dimensional subspaces $W = \text{span}\{e^1, \ldots, e^k\}$ of V^* . Then $*(e^1 \wedge \cdots \wedge e^k)$ corresponds to the orthogonal complement of W.

Of course not every form can be written in this way, but using linearity * is defined when it is defined on forms of this type.

So one can say:⁶

- Alternating multilinear forms are a 'linear extension' of the notion of vector subspace.
- Then * corresponds to orthogonal complement.
- 2. Define the **volume element** (or volume form) of V as

$$\operatorname{dvol} = *1, \quad \operatorname{dvol} \in \Lambda^n V^*.$$

Why is this reasonable? Because for any oONB e_1, \ldots, e_n we have, by definition of *, dvol = $e^1 \wedge \cdots \wedge e^n$ and therefore

$$\operatorname{dvol}(e_1, \dots, e_n) = 1$$
 for any oONB. (6)

So the volume of a 'unit cube' is one, as it should be.

3. Properties of *:

$$\omega \wedge *\nu = \langle \omega, \nu \rangle \operatorname{dvol} \quad \text{for } \omega, \nu \in \Lambda^k V^*$$
(7)

Also, if ν is fixed then the validity of (7) for all ω defines $*\nu$.

(7) can easily be checked on basis elements, and then extends by linearity.⁷

$$* (e^{i_1} \wedge \dots \wedge e^{i_k}) = \operatorname{sign}(\sigma) e^{j_1} \wedge \dots \wedge e^{j_{n-k}} \quad \text{for oONB}$$
(8)

where $\{j_1, \ldots, j_{n-k}\} = \{1, \ldots, n\} \setminus \{i_1, \ldots, i_k\}$ and σ is the permutation sending $(1, \ldots, n) \mapsto (i_1, \ldots, i_k, j_1, \ldots, j_{n-k})$. From this one gets easily⁸

$$** = (-1)^{k(n-k)}$$
 on $\Lambda^k V^*$ (9)

That is, if $\omega \in \Lambda^k V^*$ then $*\omega \in \Lambda^{n-k} V^*$, and $*(*\omega) \in \Lambda^k V^*$ equals $(-1)^{k(n-k)} \omega$.

⁷This assumes we know the existence of the linear map *. A logically more sound way of introducing * is this:

- (a) Define dvol $\in \Lambda^n V^*$ by equation (6) for a fixed oriented ONB, and check that (6) must then hold for any oriented ONB (this follows from (11)). Since dim $\Lambda^n V^* = 1$, {dvol} is a basis of dim $\Lambda^n V^*$.
- (b) Consider the map $P : \Lambda^k V^* \times \Lambda^{n-k} V^* \to \mathbb{R}$, $(\omega, \mu) \mapsto$ (the coefficient a in $\omega \wedge \mu = a$ dvol). This is easily seen to be bilinear and (e.g. using a basis) non-degenerate. Therefore, by Riesz' lemma, for any linear form $q : \Lambda^k V^* \to \mathbb{R}$ there is a unique element $\mu \in \Lambda^{n-k} V^*$ so that $P(\omega, \mu) = q(\omega)$ for all $\omega \in \Lambda^k V^*$.
- (c) Now given $\nu \in \Lambda^k V^*$, apply the Riesz lemma to the form $q(\omega) = \langle \omega, \nu \rangle$. This determines an element $\mu \in \Lambda^{n-k} V^*$. Define $*\nu := \mu$. Then (7) holds by definition, and from this (5) follows.

⁸From sign $(k + 1, ..., n, 1, ..., k) = (-1)^{k(n-k)}$

 $^{{}^{5}}$ Uniqueness of such a linear map is clear, existence is less obvious. See footnote 7.

⁶As an exercise, you might try to make these somewhat vague ideas more precise. For example: To what extent does a subspace of dimension k determine a 'pure' form of degree k (i.e. one which can be written as wedge product of one-forms) uniquely?

4. As an exercise, use the previous properties to prove: If $v \in V$ then

$$*g^{\#}(v) = \iota_v \mathrm{dvol} \tag{10}$$

Also check this in the example (2), where e_1, e_2, e_3 is the standard basis und g the standard scalar product.⁹

1.4 Formulas in an arbitrary basis

For the application in the manifold setting we need formulas in terms of any basis e_1, \ldots, e_n of V (not necessarily orthonormal), for the objects defined by a scalar product.

1. The scalar product determines (and is determined by) the $n \times n$ matrix (g_{ij}) where

$$g_{ij} := \langle e_i, e_j \rangle$$

2. The maps $g^{\#}$, g^{\flat} are given as follows: Suppose $v \in V$, $\alpha \in V^*$ satisfy $\alpha = g^{\#}(v)$, or equivalently $v = g^{\flat}(\alpha)$. Then

$$\alpha_j = \sum_i g_{ij} v^i, \quad v^i = \sum_j g^{ij} \alpha_j$$

Here (g^{ij}) is the inverse matrix of (g_{ij}) . These operations (going from the coefficients v^i to the α_j , and vice versa) are called **lowering and raising indices** using the scalar product g^{10} .

3. From this it easily follows that the scalar product on V^* is given by the matrix (g^{ij}) :

$$\langle e^i, e^j \rangle = g^{ij}$$

More generally, (4) gives for k-forms

$$\langle e^{I}, e^{J} \rangle = \det(g^{ij})_{i \in I, j \in J}$$

(where the indices on the right are listed in increasing order).

4. Now assume that V is oriented with oriented basis e_1, \ldots, e_n (still not necessarily orthonormal). Then¹¹

$$dvol = \sqrt{\det(g_{ij})}e^1 \wedge \dots \wedge e^n \tag{11}$$

⁹Hint for (10): By the statement after (7) this follows if we show that for all $\omega \in \Lambda^1 V$

 $\omega \wedge (\iota_v \mathrm{dvol}) = \langle \omega, g^\#(v) \rangle \mathrm{dvol}$

Now by definition of $g^{\#}$, we have $\langle \omega, g^{\#}(v) \rangle = \omega(v) = \iota_v \omega$. Now use the product rule (1) for ι_v .

- Alternative proof of (10): By linearity it suffices to prove this for unit vectors v. Set $e_1 = v$ and extend to an oONB e_1, \ldots, e_n . Then check equality of both sides when applied to any (n-1)-tuple out of e_1, \ldots, e_n .
- Explicitly in an oONB, both sides are $\sum v^i (-1)^{i-1} e^1 \wedge \cdots \wedge \widehat{e^i} \wedge \cdots \wedge e^n$, where the hat means omission. ¹⁰Conventions often used in physics:
- A vector is denoted by its components: (v^i) , or simply v^i (rather than $\sum v^i e_i$). Similarly a covector (element of V^*) is denoted v_i (instead of $\sum v_i e^i$).
- The summation sign is omitted (Einstein summation convention).
- The same letter is used for a vector and the corresponding covector (i.e. element of V^*). Thus, one writes $v_i = g_{ij}v^j$.

¹¹Proof: Choose an oONB $E_1, \ldots E_n$ and write $e_i = \sum_k a_i^k E_k$. Then, using $\langle E_k, E_l \rangle = \delta_{kl}$ we get

$$g_{ij} = \langle \sum_{k} a_i^k E_k, \sum_{l} a_j^l E_l \rangle = \sum_{k,l} a_i^k a_j^l \langle E_k, E_l \rangle = \sum_{k} a_i^k a_j^k$$

which is the ij entry of the matrix A^tA , where A is the matrix (a_i^k) . Therefore $\det(g_{ij}) = (\det A)^2$, so $\det A = \sqrt{\det(g_{ij})}$ since $\det A > 0$ (both bases e_1, \ldots, e_n and E_1, \ldots, E_n are oriented). Therefore, $\operatorname{dvol}(e_1, \ldots, e_n) = \det A \operatorname{dvol}(E_1, \ldots, E_n) = \det A$, and $\operatorname{dvol} = \operatorname{dvol}(e_1, \ldots, e_n)e^1 \wedge \cdots \wedge e^n$ gives the claim.

5. For the Hodge * operator we have: Let $\omega = \sum_{I} \omega_{I} e^{I}$, then $*\omega = \sum_{J} (*\omega)_{J} e^{J}$ with

$$(*\omega)_J = \omega^I \sqrt{\det(g_{ij})} \operatorname{sign}(\sigma)$$

where σ is the permutation $(1, \ldots, n) \mapsto (I, J)$ with I, J listed in increasing order. Here, ω^{I} is obtained by raising indices from the ω_{I} , that is

$$\omega^{i_1,\dots,i_k} = \sum g^{i_1l_1}\cdots g^{i_kl_k}\omega_{l_1,\dots,l_k}$$

where $\omega_{l_1,...,l_k} := \omega(e_{l_1},...,e_{l_k}).$

1.5 Modifications for not positive definite inner product

If the bilinear form g on V is not positive definite (but still symmetric and non-degenerate) then we need to modify some of the formulas slightly.

Define the **index** of g as the dimension of a maximal subspace on which g is negative definite. Equivalently¹², it is the number of negative eigenvalues of the matrix of g with respect to any basis. We denote the index of g by ν .

1. First, g(v, v) may be negative, so the length of a vector is defined as

$$|v| := \sqrt{|g(v,v)|}$$

2. A standard basis of V is a basis e_1, \ldots, e_n for which

$$\langle e_i, e_j \rangle = \varepsilon_i \delta_i$$

where 13

$$\varepsilon_1 = \dots = \varepsilon_{\nu} = -1, \varepsilon_{\nu+1} = \dots = \varepsilon_n = 1$$

Standard bases replace orthonormal bases in this context.

- 3. The scalar product on $\Lambda^k V^*$ is still characterized by property (4).
- 4. The volume form is still defined by the property (6) (for an oriented standard basis), so that¹⁴

$$\operatorname{dvol} = \sqrt{|\operatorname{det}(g_{ij})|} e^1 \wedge \dots \wedge e^n$$
 (any oriented basis)

5. The Hodge * operator is defined by property (7). Then in (5) and (8) there is an extra factor $(-1)^{\nu'}$ on the right, where ν' is the number of vectors e^i , $i \in \{i_1, \ldots, i_k\}$, with $\langle e^i, e^i \rangle = -1$. Then (9) gets replaced by

$$** = (-1)^{k(n-k)+\nu} \quad \text{on } \Lambda^k V^*$$

Example: Minkowski space is \mathbb{R}^4 with the standard scalar product of index 1 and standard orientation. Coordinates are usually denoted t, x, y, z (in this order), so¹⁵

$$\langle \partial_t, \partial_t \rangle = -1, \langle \partial_x, \partial_x \rangle = \langle \partial_y, \partial_y \rangle = \langle \partial_z, \partial_z \rangle = 1.$$

Then $dvol = dt \wedge dx \wedge dy \wedge dz$ and

etc. (cyclically permute x, y, z). Note ** = 1 on Ω^1 and Ω^3 and ** = -1 on Ω^2 .

¹²This fact is called Sylvester's law of inertia.

 $^{^{13}\}textsc{Sometimes}$ a different convention is used, where the last ν elements are negative.

¹⁴Sometimes a different convention is used, where dvol gets an extra factor $(-1)^{\nu}$, so that dvol = $(-1)^{\nu}\sqrt{\det(g_{ij})}e^1 \wedge \cdots \wedge e^n$. ¹⁵This is one of the common conventions, mostly used by mathematicians and graviational physicists. Particle

¹⁵This is one of the common conventions, mostly used by mathematicians and graviational physicists. Particle physicists mostly use a different convention, where all the signs are turned around.

2 Differential forms

Let M be a manifold of dimension n.

2.1 Pointwise ('tensorial') constructions

The constructions of the previous section can be done on each tangent space $V = T_p M$. In this way we obtain, for example:

- A differential form ω of degree k (or differential k-form, or k-form) is given by $\omega_p \in \Lambda^k T_p^* M$ for each p, smoothly depending on p. The space of differential forms of degree k is denoted $\Omega^k(M)$. In particular, 0-forms are functions, $\Omega^0(M) = C^\infty(M, \mathbb{R})$.
- Wedge product defines a bilinear map $\wedge : \Omega^k(M) \times \Omega^l(M) \to \Omega^{k+l}(M)$. (For k = 0 this is simply multiplying a form by a function.)
- Interior product with a vector field $X \in \mathcal{X}(M)$ defines a linear map $\iota_X : \Omega^k(M) \to \Omega^{k-1}(M)$,¹⁶ more precisely a $C^{\infty}(M, \mathbb{R})$ -bilinear map $\iota : \mathcal{X}(M) \times \Omega^k(M) \to \Omega^{k-1}(M)$.
- Any smooth map $F: M \to N$ defines a pullback map

$$F^*: \Omega^k(N) \to \Omega^k(M), \quad (F^*\omega)_p(v_1, \dots, v_k) := \omega_{F(p)}(dF_{|p}(v_1), \dots dF_{|p}(v_k))$$

for $\omega \in \Omega^k(N)$, $p \in M$ and any vectors $v_1, \ldots, v_k \in T_pM$ (apply (3) with $A = dF_{|p}$).

- A Riemannian metric on M is given by a scalar product g_p on T_pM for each p. It defines linear maps $g^{\#} : \mathcal{X}(M) \to \Omega^1(M), g^{\flat} : \Omega^1(M) \to \mathcal{X}(M)$ and a scalar product on $\Lambda^k T_p^* M$ for each p.
- An orientation of M is given by an orientation on each T_pM , varying continuously with p. Given a scalar product and an orientation, we get the Hodge * operator

$$*: \Omega^k(M) \to \Omega^{n-k}(M)$$

and the volume form $dvol \in \Omega^n(M)$.¹⁷

All the rules from before still hold since they hold pointwise at each p.

Formulas in local coordinates

Given local coordinates x^1, \ldots, x^n on a coordinate patch $U \subset M$, one can express all these concepts and operations in terms of the basis $\partial_1, \ldots, \partial_n$ of T_pM and its dual basis dx^1, \ldots, dx^n of T_pM^* , for $p \in U$. That is, in the formulas of Section 1 (especially 1.4)¹⁸ one sets¹⁹

$$e_i = \partial_i, \ e^i = dx^i, \ i = 1, \dots, n$$

Some examples of this are:

- Fix $p \in M$. Then local coordinates can be chosen near p so that $\partial_1, \ldots, \partial_n$ form an ONB at p.
- Local coordinates can be chosen with $\partial_1, \ldots, \partial_n$ an ONB for *each* $p \in U$ if and only if (U, g) is locally isometric to \mathbb{R}^n with the Euclidean metric (or, equivalently, if the curvature of g is identically zero on U).

¹⁶For the case k = 0, i.e. functions f, we define $\iota_X f = 0$. In this way the iddi formula below, see (18), holds on forms of any degree, including functions. Also $\Omega^{-1}(M) := \{0\}$.

¹⁷Note that dvol is *not* d applied to an (n-1)-form – at least not globally. Locally it is (by the Poincaré Lemma). ¹⁸Note that when considering (semi-)RIemannian manifolds, one should use the formulas for an arbitrary basis, not for an ON basis. Why? Because usually one cannot choose local coordinates for which the ∂_i form an ONB at each $p \in U$. To be precise:

Proof as exercise. (The statement about curvature is harder, will be proved in lecture.)

¹⁹More precise notation would be $\partial_{i|p}$, $dx^i_{|p}$, but often the p is left out for better readability.

• A differential k-form in local coordinates is of the form

$$\omega = \sum_{I} a_{I}(x) dx^{I}, \quad dx^{I} := dx^{i_{1}} \wedge \dots \wedge dx^{i_{k}} \text{ if } I = \{i_{1} < \dots < i_{k}\}$$

with smooth functions $a_I: U \to \mathbb{R}$.

• Pull-back is just plugging in: Let $F: M \to N$ be a smooth map. Suppose F is given in local coordinates x^1, \ldots, x^n for M and y^1, \ldots, y^m for N as $y(x) = (y^1(x), \ldots, y^m(x))^{20}$. Then for $\omega = \sum a_I(y) \, dy^I \in \Omega^k(N)$, we have

$$F^*\omega = \sum_{I = \{i_1 < \dots < i_k\}} a_I(y(x)) \, dy^{i_1} \wedge \dots \wedge dy^{i_k}$$

where each y^{i_j} is considered as function of x, so one should write $dy^{i_j} = \sum_l \frac{\partial y^{i_j}}{\partial x^l} dx^l$ and then multiply out.

• The volume form on an oriented Riemannian manifold is

$$dvol = \sqrt{\det(g_{ij})} \, dx^1 \dots dx^n \tag{12}$$

in oriented local coordinates, where $g_{ij} = g(\partial_i, \partial_j)$.

2.2Integration

One of the motivations for considering differential forms is that they are the objects that can be integrated invariantly over a manifold. More precisely, if (M, \mathcal{O}) is an oriented manifold and $\omega \in \Omega_0^n(M)$ ²¹ where $n = \dim M$, then

$$\int_{(M,\mathcal{O})} \omega \tag{13}$$

is well-defined²². Instead of (13) one usually writes $\int_{M} \omega$, if \mathcal{O} is fixed in the context. The definition

proceeds in two steps:

1. First assume supp $\omega \subset U$ for an orientation preserving local chart $\varphi : \tilde{U} \to U$. The local coordinate representation $\varphi^*\omega$ can be written as $\varphi^*\omega = a(x) dx^1 \wedge \cdots \wedge dx^n$ for some function a on \tilde{U} . Define

$$\int_{M} \omega = \int_{\tilde{U}} a(x) \, dx \tag{14}$$

Note that dx here stands for *n*-dimensional Lebesgue measure.

One then checks that the result is independent of the choice of coordinates. This is due to the way that differential forms transform under coordinate transformations: A det $d\kappa$ factor appears, and this corresponds precisely to the $|\det d\kappa|$ factor in the transformation formula for integrals – if the determinant is positive, which is true if both charts are orientation preserving.

2. Any $\omega \in \Omega_0^n(M)$ can be integrated by summing over coordinate patches and applying the first part. In practice, often one or two coordinate systems $suffice^{23}$. For theoretical purposes

²⁰That is, for any $p \in M$, if p has coordinates x_0 and F(p) has coordinates y_0 then $y_0 = y(x_0)$.

²¹The 0 in $\Omega_0^n(M)$ means compact support, i.e. elements of $\Omega_0^n(M)$ are zero outside of some compact set. This is

The o in $\mathcal{U}_{\tilde{U}}(M)$ means compact support, i.e. elements of $\mathcal{U}_{\tilde{U}}(M)$ are zero outside of some compact set. This is assumed for simplicity to avoid problems with integrability. Of course weaker conditions would suffice. ²²In contrast, $\int_M f$ would not be well-defined for a function f. Naively, one might try to define this, if f is supported in a coordinate patch $U \subset M$ with coordinates $x : U \to \tilde{U}$, as $\int_{\tilde{U}} \tilde{f}(x) dx$, where \tilde{f} is f in coordinates x; however, this would depend on the choice of coordinates: If $y : V \to \tilde{V}$ is a different coordinate system then $\int_{\tilde{V}} \tilde{\tilde{f}}(y) \, dy = \int_{\tilde{U}} \tilde{f}(x) \, |\det d\kappa| dx \text{ with } \kappa = y \circ x^{-1} \text{ the coordinate change.}$

A different way to overcome this difficulty is to choose a measure μ on M and consider $\int_M f \mu$. The advantage of *n*-forms over measures is that they are part of the exterior calculus (i.e. \wedge , *d* etc.).

 $^{^{23}}$ However, the restriction to the patch will usually not be compactly supported, and one possibly misses a set of measure zero, which does not affect the integral

(for example the proof of Stokes' theorem) it is better to use a partition of unity, which means splitting up ω smoothly into pieces which are compactly supported in coordinate patches. That is, choose a cover of M by orientation preserving charts $(U_i)_{i \in I}$ and a corresponding partition of unity $(\rho_i)_{i \in I}$. Then set

$$\int_{M} \omega := \sum \int_{U_{i}} \omega_{i}, \quad \omega_{i} := \rho_{i} \omega$$

This makes sense since $\sum_i \rho_i = 1$, so $\sum_i \omega_i = \omega$. Also $\omega_i \in \Omega_0^n(U_i)$.

One then checks that the result is independent of the choice of the U_i and of the ρ_i .

2.3 Derivative operations

There are several different operations in which derivatives are taken: Exterior derivative and Lie derivative (and later also covariant derivative).

The exterior derivative is defined only on differential forms (alternating \mathcal{T}_k^0 -tensors). Lie derivative and covariant derivative are defined for all tensors.

Both d and Lie derivative are defined for a manifold, without scalar product.

1. The **exterior derivative** $d: \Omega^k(M) \to \Omega^{k+1}(M)$ is defined for k = 0 (functions) as the usual differential $d: f \mapsto df$ (in coordinates $df = \sum_i \frac{\partial f}{\partial x^i} dx^i$) and for any k in local coordinates by the formula

$$d\left(\sum_{I} a_{I} \, dx^{I}\right) = \sum_{I} da_{I} \wedge \, dx^{I}$$

Rules for d: d is linear, obeys the product rule²⁴

$$(\omega \wedge \nu) = (d\omega) \wedge \nu + (-1)^{\deg \omega} \omega \wedge (d\nu)$$

commutes with pullback by a smooth map $F: M \to N$:

$$F^* \circ d = d \circ F^*$$

(this implies that d is well-defined on a manifold, independent of the choice of coordinates) and

$$\underline{d^2 = 0} \tag{15}$$

(this will be essential for cohomology).

One of the main reasons to consider the exterior derivative is that the general **Stokes' theorem** holds (see below for more on this): If M is an oriented manifold with boundary and ∂M is equipped with the induced orientation and $\omega \in \Omega_0^{n-1}(M)$ where $n = \dim M$ then

$$\int_{M} d\omega = \int_{\partial M} \omega \tag{16}$$

2. The **Lie derivative** along a vector field $X \in \mathcal{X}(M)$. As for general tensors this is defined as

$$L_X: \Omega^k(M) \to \Omega^k(M), \quad L_X \omega = \frac{d}{dt} \mathop{|}_{t=0} \Phi_t^* \omega$$

where Φ is the flow of X. So L_X measures how ω changes ('deforms') under the flow of X. In particular,

$$L_X \omega = 0 \iff \Phi_t^* \omega = \omega \quad \forall t \tag{17}$$

²⁴So d is a 'graded derivation', just like the interior product ι_v , see (1). The $(-1)^{\deg \omega}$ factor comes from 'pulling d past ω ' in the second summand, and similarly for ι_v . If ω is a product of 1-forms, then pulling d past each 1-form produces a -1 factor. A general ω is a sum of such products.

Note that both d and ι_v change the degree of a form by one. The Lie derivative does not, and its product rule has no \pm in front of the second term.

The right side expresses a symmetry (invariance) property of ω .

Rules for the Lie derivative: Most importantly the 'iddi-formula':

$$\boxed{L = \iota d + d\iota} \tag{18}$$

that is, $L_X = \iota_X d + d\iota_X$, that is $L_X \omega = \iota_X (d\omega) + d(\iota_X \omega)$. This makes calculating $L_X \omega$ much easier than the original definition.²⁵

Also there is a product $rule^{2627}$

$$L_X(\omega \wedge \nu) = (L_X\omega) \wedge \nu + \omega \wedge (L_X\nu) \tag{19}$$

and L_X commutes with d:²⁸

$$L_X \circ d = d \circ L_X$$

3. Comparison of Lie derivative and exterior derivative.

Recall that Lie derivative and exterior derivative agree on functions, in the sense that

$$L_X f = df(X) \tag{20}$$

For forms of higher degree this is no longer $true^{29}$.

Lie derivative and exterior derivative generalize two different ideas connected to the derivative of a function. To see this, consider for simplicity a function of one variable $f : \mathbb{R} \to \mathbb{R}$.

- Derivative as rate of change \rightarrow Lie derivative: The formula $f'(x) = \lim_{t \to 0} \frac{f(x+t) - f(x)}{t}$ can be written $f'(x) = \frac{d}{dt}|_{t=0} (\Phi_t^* f)(x)$ for $\Phi_t(x) = x + t$ the flow of the unit vector field ∂_x .
- Derivative as inverse of integration → exterior derivative: The fundamental theorem of calculus

$$\int_{a}^{b} f'(x) \, dx = f(b) - f(a)$$

is the special case M = [a, b] (where $\partial M = \{a, b\}$ and standard orientation is used) of Stokes' theorem since the left side is $\int_M df$ and the right is $\int_{\partial M} f$. The exterior derivative is defined in such a way that this generalizes to higher dimensions. More precisely: There is a unique way to define linear maps $d : \Omega^{k-1}(M) \to \Omega^k(M)$ for any $k \in \mathbb{N}$ and any manifold M which is natural (i.e. commutes with pull-back by smooth maps) and so that Stokes' theorem (16) holds for all oriented manifolds M with boundary and all compactly supported forms $\omega \in \Omega_0^{\dim M-1}(M)$.³⁰³¹

4. grad, div, rot. These are really special cases of the exterior derivative d. But to define them on a manifold, one needs a (semi-)Riemannian metric (for d one doesn't). In this sense d is the more basic (and more general) operation.

 $^{^{25}}$ The formula is also the central piece in proving homotopy invariance of de Rham cohomology.

²⁶So L_X is a 'derivation'. Note that this is different from the product rule for d because there is no \pm sign in front of the second summand.

²⁷Proof: Use $\Phi_t^*(\omega \wedge \nu) = (\Phi_t^*\omega) \wedge (\Phi_t^*\nu)$ and differentiate both sides in t.

²⁸Follows directly from the definition of L_X and $\Phi_t^* \circ d = d \circ \Phi_t^*$.

²⁹More precisely, one could write $df(X) = \iota_X f$ and then ask if $L_X f = \iota_X df$ holds with f replaced by a k-form. The iddi formula $L_X \omega = \iota_X d\omega + d(\iota_X \omega)$ shows that this is not the case, and shows that the correction term is $d(\iota_X \omega)$. Recall that $\iota_X f = 0$ by definition, so this term disappears for functions.

³⁰Proof of uniqueness: Let $\omega \in \Omega^{k-1}(M)$. First, if dim M = k then $d\omega$ is uniquely determined since (16) must also hold for any open subset of M with smooth boundary – then use (14) and the corresponding fact for the Lebesgue integral. Next, if dim M = n with n > k arbitrary then apply this argument for any k-dimensional submanifold Nof M. It shows that $d(i_N^*\omega)$, with $i_N : N \hookrightarrow M$ the inclusion, is uniquely determined. By naturality $d(i_N^*\omega) = i_N^* d\omega$. Finally, a k-form is uniquely determined by its pull-backs to arbitrary k-dimensional submanifolds (use coordinate subspaces in a local coordinate system), so $d\omega$ is determined.

³¹As an exercise, try to derive the formula for $d\omega$ from this condition!

grad : $C^{\infty}(M) \to \mathcal{X}(M)$ and div : $\mathcal{X}(M) \to C^{\infty}(M)$ are defined on semi-Riemannian manifolds of any dimension, but rot : $\mathcal{X}(M) \to \mathcal{X}(M)$ is defined only in three dimensions. Let q be a (semi-)Riemannian metric on M.

grad: The map $g^{\#} : \mathcal{X}(M) \to \Omega^1(M)$ identifies vector fields with one-forms. We define the gradient of a function f to be the vector field corresponding to the one-form df. That is, $g^{\#}(\operatorname{grad} f) = df$,³² or explicitly, for $p \in M$,

$$\langle \operatorname{grad} f(p), w \rangle = df_{|p}(w) \quad \text{for all } w \in T_p M$$
(21)

div: On the other hand, a vector field can also be identified with an (n-1)-form, by first applying $g^{\#}$ and then *. A function, i.e. 0-form, can be identified with an *n*-form using *. Explicitly, the function f corresponds to the *n*-form f dvol. Then the divergence of a vector field is defined by first transforming the vector field to an (n-1)-form, applying d, then transforming the resulting *n*-form to a function. That is

div
$$X = *^{-1}d(*g^{\#}(X))$$
 or equivalently $(\operatorname{div} X) \operatorname{dvol} = d(*g^{\#}(X))$

rot: If n = 3 then n-1 = 2, so using the identifications above we can translate $d : \Omega^1(M) \to \Omega^2(M)$ into a map $\mathcal{X}(M) \to \mathcal{X}(M)$. This is the 'rotation' rot.³³

It is easiest to understand and remember this if we put it all in a diagram:

(the dashed arrows only make sense if n = 3). The identity $d^2 = 0$ then translates into

div rot = 0, rot grad = 0 (n = 3)

There are two useful identities for the divergence. $First^{34}$

$$(\operatorname{div} X)\operatorname{dvol} = d(\iota_X \operatorname{dvol}) \tag{23}$$

The geometric meaning of the divergence is 'volume change under the flow'

$$L_X \operatorname{dvol} = (\operatorname{div} X) \operatorname{dvol}$$

(proof: use iddi-formula and (23)). The meaning of this may become clearer after integration over any open set U^{35}

$$\frac{d}{dt}_{|t=0} \operatorname{vol} \Phi_t(U) = \int_U \operatorname{div} X \operatorname{dvol}$$

Then (17) says in this context

 $\operatorname{div} X = 0 \iff$ the flow of X preserves volume

i.e. vol $\Phi_t(U) = \operatorname{vol} U \ \forall t \ \forall U$.

The geometric meaning of the gradient is (for $df_{|p} \neq 0$):

- grad f(p) points in the direction of steepest increase of f
- $|\operatorname{grad} f(p)|$ is the rate of that increase

This follows easily from (21).

³²Sometimes we write $\nabla f = \operatorname{grad} f$.

 $^{^{33}}$ Sometimes this is called curl.

 $^{^{34}}$ Use (10).

³⁵Use $\int_U \Phi_t^*(\text{dvol}) = \int_{\Phi_t(U)} \text{dvol} = \text{vol}\,\Phi_t(U).$

Local coordinate formulas for $\operatorname{grad},\operatorname{div}$

Since g^\flat is pulling up indices, we have

grad
$$f = \sum (\operatorname{grad} f)^i \partial_i$$
 with $(\operatorname{grad} f)^i = \sum g^{ij} \frac{\partial f}{\partial x^j}$ (24)

Also, using (23) and (12) one gets

div
$$X = \frac{1}{\sqrt{\det(g_{jk})}} \sum_{i} \frac{\partial \left(X^i \sqrt{\det(g_{jk})} \right)}{\partial x^i} \quad \text{for } X = \sum X^i \partial_i$$
 (25)