
Prof. Dr. Daniel Grieser 11.12.2020

Third problem set ’Singular Analysis’

(Mellin transform, regularized integrals and push-forward theorem)

We will talk about these on Wednesday, December 16. Please think about them and present
your thoughts. If you want to write up and turn in solutions please do, I will read them!

1. (Change of variables in regularized integrals)

(a) Let u ∈ C∞0 (R+). For c > 0 define uc(x) = u(xc ). Show that

−
∫ ∞
0

uc(x)
dx

x
= −
∫ ∞
0

u(x)
dx

x
+ u(0) log c (1)

and for α > 0

−
∫ ∞
0

u(xα)
dx

x
=

1

α
−
∫ ∞
0

u(x)
dx

x

Remark: Thus, substitution x
c 7→ x produces an extra term (while xα 7→ x does not).If

u is polyhomogeous then there will be an additional term in (1) for each x0 logkx term
in the asymptotics of u.

(b) Show that

−
∫ ∞
0

e−ax
dx

x
= −γ − log a

for a > 0, where γ = −Γ′(1) = −
∫∞
0
e−x log x dx = 0.57721 . . . is the Euler-Mascheroni

constant.

(c) (Regularized integral on manifolds with boundary)
Let X be a manifold with boundary and ρ a boundary defining function. For an index
set E and α ∈ AE0 (X, |Ωb|) define

−
∫
X,ρ

α := the s0 term in the Laurent expansion of (Mρα)(s) :=

∫
X

ρsα .

Convince yourself that the things done in the lecture (for X = R+, ρ = x) carry over
to this case, that is:

• Mρα is defined in some right half plane and has a meromorphic continuation to C,
so that the definition makes sense.

• The function v(ε) =
∫
ρ>ε

α (for ε > 0) is polyhomogeneous on R+ and

−
∫
X,ρ

α = FPε=0

∫
ρ>ε

α

(where FP – finite part – denotes the coefficient of ε0 in the polyhomogeneous
expansion).

Important: −
∫
X
α is not defined invariantly unless inf E > 0. Explain why this follows

from (a).

So −
∫
X,ρ

α depends on the choice of boundary defining function. Show (m ∈ N0):

inf E > −m, ρ, ρ̃ agree to order m at ∂X =⇒ −
∫
X,ρ

α = −
∫
X,ρ̃

α

The condition means ρ̃ = ρ + O(ρm+1). For m = 1, e.g. smooth b-densities, the
condition is dρ = dρ̃ at ∂X.



2. (Polyhomogeneity at ∞)

(a) Show: If u ∈ L1
loc(R>) vanishes near 0 and satisfies u(x) = O(xM ) then Mu(s) is

defined and holomorphic in the left half plane Re s < −M .

(b) We make [0,∞] into a manifold with corners by taking x 7→ x−1 as local chart near ∞.
This means that a function is E-smooth for an index family E = {E0, E∞} if x 7→ u(x)
is E0-smooth near x = 0 and z 7→ u(z−1) is E∞-smooth near z = 0.

For u ∈ AE([0,∞]) define

Mu =M(uχ(0,C]) +M(uχ[C,∞))

for C > 0, where χ are the characteristic functions and M on the right denotes the
meromorphic continuations to all of C.

Show thatMu is independent of the choice of C (and equal to the analogous expression
where smooth cutoffs are used instead of χ) and has a meromorphic function with poles
determined by E0 ∪ (−E∞) as in the theorem of the lecture.

Remark: This is not a special case of 1(c).

(c) Show that
M(xz logkx) ≡ 0

for any z ∈ C, k ∈ N0.

3. (Resolving a b-map to a b-fibration, and polyhomogeneity) Consider the b-map

f : R3
+ → R2

+ , f(x, y, z) = (xy, xz)

(a) Show that f is not a b-fibration.

(b) Show that f can be ’resolved’ to a b-fibration by blowing up (0, 0) in the range and the
x-axis in the domain. That is, with X = [R3

+,R+ × {(0, 0)}], Y = [R2
+, (0, 0)] there is a

lift f̃ making the diagram

X

βX

��

f̃
// Y

βY

��

R3
+

f
// R2

+

commute, and f̃ is a b-fibration.

(c) Conclude that if u ∈ C∞0 (R3
+) (or polyhomogeneous) and

v(t, t′) =

∫ ∞
0

u(x,
t

x
,
t′

x
)
dx

x

then β∗Y v is polyhomogeneous. Find its index sets. Show that v itself is not polyhomo-
geneous in general.

4. (Some formulas involving logarithms) Formulas for phg functions having logarithmic
terms often become simpler when written in terms of

Lk(x) =
logkx−1

k!
, k ∈ N0,

instead of logkx. Note that the generating function of the Lk(x) is
∑∞
k=0 Lk(x)rk = x−r.

Using this, or otherwise, show:

(a) −x∂xLk = Lk−1 (where L−1 := 0)

(b) Lk(xy) =
∑k
m=0 Lm(x)Lk−m(y)

(c) Let u ∈ AE0 (R+) for an index set E and u(x) ∼x→0

∑
(z,k)∈E az,k x

zLk(x). Then the

terms of the Laurent series of (Mu)(s) at s = −z are:



• az,k(s+ z)−k−1 for k ≥ 0

• Iz,m(s+ z)m for m ≥ 0 where

Iz,m = −
∫ ∞
0

u(x)x−zLm(x−1)
dx

x
(2)

(d) (General coefficient formula)

Let E,F be index sets, u ∈ AE,F0 (R2
+) and

u(x, y)
x→0∼

∑
(z,k)∈E

az,k(y)xzLk(x) (3)

u(x, y)
y→0∼

∑
(w,l)∈F

bw,l(x)ywLl(y)

with corner expansion1

u(x, y)
x,y→0∼

∑
(z,k)∈E

∑
(w,l)∈F

ck,lz,w x
zLk(x) ywLl(y) (4)

Then for the push-forward under the map f : R2
+ → R+, (x, y) 7→ xy,

v(t)
dt

t
= f∗(u(x, y)

dx

x

dy

y
), that is v(t) =

∫ ∞
0

u(x,
t

x
)
dx

x
(5)

we have

v(t) ∼
∑
z,k,l:

(z,k)∈E,(z,l)∈F

cklzz t
zLk+l+1(t)

+
∑

(z,k)∈E

k∑
m=0

(
−
∫ ∞
0

az,k(y) y−zLm(y−1)
dy

y

)
tzLk−m(t)

+ . . .

(6)

where the dots mean the same as the previous term, with E, y, a replaced by F, x, b
respectively.

Can you find a better (less messy) way to write this?

5. What does the push-forward theorem yield for the map f : R3
+ → R+, f(x, y, z) = xyz? Find

coefficient formulas for f∗µ where µ = u(x, y, z) dxx
dy
y
dz
z with u smooth.

6. Let σ ∈ C∞(R2
+), with σ(x, ζ) = 0 for x > C and having a polyhomogeneous expansion as

ζ →∞, uniformly in x. Show that

v(z) =

∫ ∞
0

σ(x, xz) dx

has a polyhomogeneous asymptotic expansion as z → ∞. (And find it, if you really like
calculating.)

1This is short notation for az,k(y)
y→0∼

∑
(w,l)∈F ck,lz,w ywLl(y) and a similar expansion for bw,l(x) as x→ 0, with

the same coefficients ck,lz,w.


