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Chapter 1

Introduction

Let Ω be a smooth, compact Riemannian manifold with boundary ∂Ω, of
dimension n ≥ 2. Let ∆Ω be the Laplace-Beltrami operator acting on func-
tions that vanish at the boundary. For λ ≥ 1 write χλ = χ[λ−1,λ](

√
−∆Ω),

where χI is the characteristic function of the set I. Our main result is:

Theorem 1 Let n = 2 and 2 ≤ p ≤ ∞. If K ⊂ Ω̄ is a compact set for
which all points in K ∩ ∂Ω are concave then for all f ∈ C∞0 (Ω) and λ ≥ 1

‖χλf‖Lp(K) ≤ CKλε(p)‖f‖L2(Ω)

where

ε(p) =


1
2

(
1
2
− 1
p

) if 2 ≤ p ≤ 6

1
2
− 2
p

if 6 ≤ p ≤ ∞.

We call a point x ∈ ∂Ω concave if all geodesics through x tangent to
∂Ω are tangent to first order only and, near x, contained in Ω̄. See figure
1.1.

It is known ([S3]) that these estimates are true in any dimension n if
K ∩ ∂Ω = ∅ with

ε(p) =


n− 1

2

(
1
2
− 1
p

)
if 2 ≤ p ≤ pn = 2n+1

n−1

n

(
1
2
− 1
p

)
− 1

2
if pn ≤ p ≤ ∞,

1
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K

Ω

Figure 1.1: Concavity of K ∩ ∂Ω
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and sharp if the interior of K is not empty. We conjecture that the same
ε(p) works also if K is as in the theorem, for any n. We will prove this for
p =∞ but obtain only slightly weaker bounds for n ≥ 3, p ∈ (2,∞).
Denote the eigenvalues of −∆Ω by λ2

1 ≤ λ2
2 ≤ . . . and let e1, e2, . . . be

a corresponding sequence of orthogonal L2-normalized eigenfunctions. We
call λj the frequency of ej . Taking f = ej , λ = λj in the theorem one gets

Corollary 1.1 With K as above, ‖ej‖Lp(K) ≤ CKλ
ε(p)
j .

The theorem is stronger than the corollary as it gives also bounds for func-
tions which are superpositions of eigenfunctions whose frequencies lie in a
band of width one.
The restriction to convex boundary points is important:

Theorem 2 Let K = Ω = {|x| ≤ 1} be the unit disk in R2.

a) There is a sequence of eigenfunctions (fk) of ∆Ω with frequencies
µk →∞ and a positive constant C so that

‖fk‖L6(Ω) > Cµ
2/9
k ‖fk‖L2(Ω)

for all k. Thus, Theorem 1 is not valid here.

b) The L∞ bound of Theorem 1 still holds, i.e.

‖χλ‖L2(Ω)→L∞(Ω) ≤ C
√
λ.

Thus, the L6 estimate is sensitive to the geometry of ∂Ω while the L∞

estimate is not, in this case.
Why does the presence of a boundary lead to additional difficulties, and

why does the geometry of the boundary matter?
As we will see below, the growth of the operator norm ‖χλ‖ = ‖χλ‖L2(Ω)→Lp(K)

is closely connected with the propagation of waves in Ω. The key to the
above questions lies in the peculiar behavior exhibited by waves hitting the
surface of an obstacle (the boundary): For a concave obstacle (viewed from
the wave) diffraction occurs, while for a convex obstacle one has multiple
reflections which may degenerate into ’gliding rays’, i.e. waves traveling
inside the boundary surface only.
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We proceed to give an outline of the proof of Theorem 1.
The relationship between χλ and the ’wave operator’ eit

√
−∆Ω is fundamen-

tal:

χλ = χ[0,1](λ−
√
−∆Ω) =

∫ ∞
−∞

χ̌[0,1](t)e−itλeit
√
−∆Ω dt,

writing χ[0,1] as the Fourier transform of its inverse Fourier transform. From
this it is easy to see (cf. Lemma 2.6) that

∃C ∀λ > 1 ‖χλ‖ ≤ Cλε(p) ⇐⇒ ∃C ∀λ > 1 ‖ρλ‖ ≤ Cλε(p)

where

ρλ =
∫
ρ(t)e−itλUt dt,

ρ is any Schwartz function whose Fourier transform does not vanish on
[0, 1], and Utf = cos(t

√
−∆Ω)f is the solution to the problem

(
∂2

∂t2
−∆)Utf = 0 in Rt × Ωx

U0f = f

(
∂

∂t
Utf)|t=0 = 0

Utf|R×∂Ω = 0.

(1.1)

This has the following consequences if we choose ρ supported near 0, say
in (−ε, ε):

• The problem is local, i.e. the growth of ‖χλ‖ only depends on what
Ω looks like in an ε-neighborhood of K. This is an immediate con-
sequence of the finite propagation speed property of Ut, see section
2.1. Thus, if K ⊂ Ω, ε ≤ dist (K, ∂Ω) for example, this growth is
independent of the shape of ∂Ω, and if Ω is a domain in Rn, we can
replace Ω by a cube containing it, not changing ‖ρλ‖, and check the
estimates for the cube by direct calculation. In fact, instead of a cube
we might even take all of Rn (limiting case as the cube gets large),
where now χλ is the multiplier operator f 7→ [χ[λ−1,λ](|ξ|)f̂(ξ)]∨, and
the calculation is easier as integrals are easier to handle than sums.
Also, even for a nonflat metric the word ‘manifold’ could be avoided
altogether, as no global phenomena occur. Therefore, without loss
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of generality one may think of domains Ω ⊂ Rn only, with a sym-
metric (with respect to some measure that is smooth with respect to
Lebesgue measure) variable coefficient second order elliptic operator
instead of ∆.

• The growth of ‖ρλ‖, and thus of ‖χλ‖, reflects non-smoothness of the
map R → L(L2(Ω), Lp(K)), t 7→ Ut near 0. In particular, Ut may
be replaced by an approximation if the error is sufficiently smooth in
t. Such approximations (parametrices) for the solution of the wave
equation near t = 0, in the form of superpositions of oscillating func-
tions, are known for the ’free’ problem (no boundary condition) and
for the initial boudary value problem near concave or convex bound-
ary points.

For the proof of Theorem 1 we analyze the integral kernel of ρλ, using the
parametrices for Ut. Recall the identities

‖ρλ‖L2(Ω)→Lp(K) = ‖ρ∗λ‖Lp′ (K)→L2(Ω) = ‖ρλρ∗λ‖
1/2

Lp′ (K)→Lp(K)

where p′ is the dual of p, 1
p′ + 1

p = 1, and

‖A‖L1(K)→L∞(K) = sup
x,y∈K

|A(x, y)|

for any operator A (we always use the same letter for operators and their
integral kernels). Thus, the L∞ bound amounts to a uniform estimate on
the kernel of A = ρλρ

∗
λ. In section 2.2 we present a lemma reducing the

Lpn bound to certain decay estimates of this kernel away from the diagonal
x = y. Note that ε(p) is linear in p−1 on the intervals [2, pn] and [pn,∞],
so by linear interpolation we only need to prove the theorem for p = 2, pn
and ∞, with

ε(pn) = p−1
n and ε(∞) =

n− 1
2

.

In chapter 2 we present the proof for the interior case K ∩ ∂Ω = ∅. First,
we consider a flat metric, taking a domain Ω ⊂ R2 for simplicity. The L∞

estimate is elementary, while for Lpn the stationary phase method is used.
Using the free parametrix for a variable coefficient wave equation, there is
little difficulty in extending the results to an arbitrary metric. Essentially,
it is the stability of the methods under small perturbations that makes this
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Figure 1.2: ε(p) for n = 2
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possible. Some geometric explanations and a proof of sharpness for Ω ⊂ R2

conclude chapter 2. All the ideas in chapter 2 have been known for some
time, see [S3], also for further references.

What happens if K∩∂Ω 6= ∅? This is the topic of chapters 3, 4 and 5. In
chapter 3 we present the parametrix for the wave equation near a concave
boundary point. Analogous to a light ray hitting a surface transversally,
tangentially or not at all, the parametrix is the sum of ’transversal’, ’graz-
ing’ and ’interior’ parts. The transversal and interior parts are operators
like those dealt with in chapter 2, and the estimates are easily obtained.
The grazing part is a quantification of the diffraction phenomenon men-
tioned above. It is more difficult to construct (see [MT]) and also harder to
estimate. This estimation is the core of this work and contained in chapter
4.

We prove Theorem 2 in chapter 5, using asymptotic properties of Bessel
functions. A short list of open problems and appendices about Airy func-
tions and stationary phase conclude the work.

For the sake of orientation, we remark that the weaker estimate

‖χλf‖L∞(Ω) ≤ Cλn/2‖f‖L2(Ω),

for any smooth domain Ω, can be obtained easily from an appropriate form
of Sobolev’s inequality (see [H1, Thm. 17.5.3], for example).

As usual, C will denote a constant that may be different at each oc-
curence. Generally, it may depend on Ω and other previously chosen quan-
tities like the function ρ above, but not on λ. Investigation of the depen-
dence of these constants on the geometry of Ω is a topic of interest, but not
part of this work.

Thanks to the Professors

C. Sogge, my advisor, who had always time and tried patiently to keep
my eye on what’s important,

J. Ralston and G. Eskin, from whom I learned a lot about PDEs,

R. Melrose, whose ’Introduction to Microlocal Analysis’ convinced me to
convert to PDEs, after I had focussed on combinatorics before,

M. Aigner, my former advisor in Berlin, who supported, encouraged and
challenged me in what he thought I was best at,

and to Marianne Hübner for the pictures, proofreading and moral support
in times of joy and in times of despair.
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Chapter 2

Basic Ideas

Here we will present special cases of Theorem 1, in order to introduce the
main ideas one by one. We will prove the estimates for the interior case,
K ∩ ∂Ω = ∅. For clarity, we will mostly deal with two dimensions. Gener-
alization to n dimensions is immediate. In sections 1 and 2 we consider the
case of a domain in R2. In section 3 we will show how the ideas in section
1 and 2, together with known parametrices for variable coefficient wave
equations, yield the result in the variable coefficient case, away from the
boundary (thus concluding the proof if Ω is a manifold without boundary).
In section 4 we will give geometric meaning to some of the manipulations
performed previously. Finally, in section 5 we show that the estimates are
optimal if K contains an open set.

2.1 Localization

To illustrate the localization idea, we prove the following special case of
Theorem 1:

Proposition 2.1 Let Ω ⊂ R2 be a smooth bounded domain, and consider
Dirichlet boundary conditions. Let K ⊂ Ω be a compact set in the interior
of Ω. Then

‖χλ‖L2(Ω)→L∞(K) ≤ CK
√
λ.

Proof: Let ε = dist(K, ∂Ω). The main point is that the solution of
the wave equation with initial data supported in K will not ”notice” the
boundary up to time t = ±ε. Therefore, we can express this solution in two
ways: Using the eigenfunctions ej of ∆Ω, and using the R2 “eigenfunctions”

9
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eixξ. As equality holds for all |t| < ε, we can extract information about the
ej .

Formally, for x ∈ Ω and y ∈ K write

∑
j

ej(x)ej(y) = δ(x− y) = (2π)−2

∫
R2
ei(x−y)ξdξ

with weak convergence.
Let u(x, t) = (Utδy)(x) be the solution of the wave equation (1.1) with

a point mass at y as initial data. It is well known (and not hard to prove
using energy inequalities) that

supp u(·, t) ⊂ {x : there is a path from y to x in Ω of length ≤ |t| }.
(2.1)

So if |t| < ε, u(x, t) equals the solution of the wave equation on R2, that is

∑
j

cos(λjt) ej(x)ej(y) = (2π)−2

∫
R2

cos(t|ξ|)ei(x−y)ξdξ if |t| < ε.
(2.2)

Write cos s = (eis + e−is)/2, multiply both sides by e−iλtρ(t), with
ρ ∈ C∞0 ((−ε, ε)) to be chosen later, and integrate over t to obtain

ρλ(x, y) :=
∫
R

ρ(t)e−iλtu(x, t) dt =
∑
j

1
2

[ρ̂(λ−λj)+ρ̂(λ+λj)]ej(x)ej(y) =

(2π)−2

∫
R2

1
2

[ρ̂(λ− |ξ|) + ρ̂(λ+ |ξ|)]ei(x−y)ξdξ. (2.3)

Clearly, ρλ(x, y) = 0 if |x−y| > ε. The following simple lemma is essential:

Lemma 2.2 If ρ ∈ S and ρ̂ does not vanish in [0, 1] then, for λ sufficiently
large,

‖χλf‖L2(Ω) ≤ Cρ‖ρλf‖L2(Ω).
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Therefore, the growth of ‖χλ‖Lp′ (K)→L2(Ω) can be controlled using only
information in a ε-neighborhood of K. In section 2.5 we will see that a

converse estimate is also true.

Proof: ‖χλf‖2L2(Ω) =
∑
j χ[0,1](λ− λj)|〈f, ej〉|2 ≤

C
∑
j |

1
2 (ρ̂(λ−λj)+ρ̂(λ+λj))|2 |〈f, ej〉|2 = C‖ρλf‖2L2(Ω) since ρ̂(µ)+ρ̂(2λ−

µ) 6= 0 for µ ∈ [0, 1] and λ large.. ♣

It is easy to get a ρ ∈ C∞0 ((−ε, ε)) as in the lemma: Take any ρ0 ∈
C∞0 ((−ε, ε)) with ρ̂0(0) =

∫
ρ0 6= 0. Then some dilation ρ(t) = αρ0(αt), α ≥

1 will do.

Now write ρλ = (ρ+
λ + ρ−λ )/2, ρ±λ = ρ̂(λ∓

√
−∆Ω). Then

‖ρ+
λ (ρ+

λ )∗‖L1(K)→L∞(K) = sup
x,y∈K

|(ρ+
λ (ρ+

λ )∗)(x, y)| =
∫
R2
|ρ̂(λ−|ξ|)|2dξ ≤ Cλ

whence

‖ρ+
λ ‖L2(Ω)→L∞(K) = ‖(ρ+

λ )∗‖L1(K)→L2(Ω) ≤ C
√
λ

using Hölder inequality and duality, and ρ−λ is negligible because

∫
|ρ̂(λ+ |ξ|)|2dξ ≤ CN

∫
1

(λ+ |ξ|)N
dξ ≤ C ′Nλ−N+2

for any N .

♣ (Proof of Proposition 2.1)
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Remarks

• The essential fact is that the ‘eigenfunctions’ eixξ are uniformly (in ξ)
bounded, and there are roughly λ = λn−1 of them with the relevant
frequencies, with respect to Lebesgue measure in ξ. In contrast, the
Lpn estimate will depend essentially on cancellation that occurs when
functions x 7→ eixξ for various nearby ξ are superimposed.

• Actually, the essential feature of cos(t
√
−∆Ω) is not the finite prop-

agation speed of supports (2.1), but of singularities. This allows to
generalize the method to certain nonlocal (but pseudolocal) elliptic
pseudodifferential operators instead of ∆, if we are dealing with man-
ifolds without boundary, see [S1].

• While above we thought of eixξ as ’eigenfunctions’ of ∆R2 , it will
be easier in the variable coefficient case and near the boundary to
use directly integral representations for the wave kernel which are
not necessarily given using eigenfunctions. This will correspond more
closely to eixξeiyξ = ei(x−y)ξ viewed as standing wave, ‘centered’ at
y.

2.2 Lp bounds

Recall that for an operator A, ‖A‖L1→L∞ = sup |A(x, y)|. There is no such
simple formula relating ‖A‖Lp′→Lp to the size of the kernel A(x, y), if p 6= 1.

The following lemma is often useful. The idea appeared for the first
time in [ST] and was subsequently used to prove various Lp boundedness
results (e.g. see [S3]).

Lemma 2.3 Let X ⊂ Rn be bounded, and let B ∈ C∞(X̄ × X̄). Assume
that the kernel of A = BB∗ satisfies:

|A(x, y)| ≤ α

|x1 − y1|(n−1)/2
for all x, y (2.4)

and

‖Ax1x1‖L2(Hx1 )→L2(Hx1 ) ≤ β (2.5)
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where Ht = {x ∈ X : x1 = t} and Ax1y1 is the operator with integral kernel
Ax1y1(x′, y′) = A(x1, x

′, y1, y
′). Then

‖Af‖Lpn (X) ≤ Cα2/(n+1)β(n−1)/(n+1)‖f‖
Lp
′
n (X)

where C only depends on the dimension n.

Proof: First we show that

‖Ax1y1‖Lp′n (Hy1 )→Lpn (Hx1 )
≤ C(α, β)|x1 − y1|−(n−1)/(n+1).

(2.6)

where C(α, β) = α2/(n+1)β(n−1)/(n+1). We use interpolation between L1 →
L∞ and L2 → L2 estimates:

1
pn

=
1
2
· 2
pn

+
1
∞
· (1− 2

pn
) =

1
2
· n− 1
n+ 1

+
1
∞
· 2
n+ 1

.

The L1 → L∞ estimate is easy from (2.4):

‖Ax1y1‖L1(Hy1 )→L∞(Hx1 ) = sup
x′,y′:x,y∈X

|A(x1, x
′, y1, y

′)| ≤ α|x1−y1|−(n−1)/2.

We now proceed to prove the L2 estimate

‖Ax1y1‖L2(Hy1 )→L2(Hx1 ) ≤ β.

If x1 = y1, this is assumption (2.5). For the general case, we need to
use the assumption A = BB∗. From A(x, y) =

∫
X
B(x, z)B(y, z) dz we see

Ax1y1 = Bx1 ◦B∗y1
where Bx1(x′, z) = B(x1, x

′; z). Now

‖Ax1y1‖2L2(Hy1 )→L2(Hx1 ) ≤ ‖Bx1‖2L2(X)→L2(Hx1 ) · ‖B
∗
y1
‖2L2(Hy1 )→L2(X)

= ‖Bx1B
∗
x1
‖L2(Hx1 )→L2(Hx1 ) · ‖By1B

∗
y1
‖L2(Hy1 )→L2(Hy1 )

= ‖Ax1x1‖L2(Hx1 )→L2(Hx1 ) · ‖Ay1y1‖L2(Hy1 )→L2(Hy1 ) ≤ β2.
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(2.6) is proved. The rest is ’functorialism’ together with the Hardy-
Littlewood-Sobolev inequality (see [S3]):

‖ 1
xr
∗ g‖Lp(R) ≤ C‖g‖Lq(R) if r = 1− 1

q
+

1
p
,

applied with p = pn, q = p′n and r = (n− 1)/(n+ 1).
By definition,

(Af)(x1, x
′) =

∫
R

Ax1y1 [f(y1, ·)](x′) dy1.

By Minkowski’s inequality and (2.6), this implies

‖(Af)(x1, ·)‖Lp(Hx1 ) ≤
∫
R

‖Ax1y1 [f(y1, ·)]‖Lp(Hx1 ) dy1

≤ C(α, β)
∫
R

|x1 − y1|−r‖f‖Lp′ (Hy1 ) dy1

Therefore,

‖Af‖Lp(X) = ‖ ‖(Af)(x1, ·)‖Lp(Hx1 )‖Lp(Rx1 )

≤ C(α, β) ‖
∫
R

|x1 − y1|−r‖f‖Lp′ (Hy1 ) dy1‖Lp(Rx1 )

≤ Cn · C(α, β) ‖ ‖f(y1, ·)‖Lp′ (Hy1 )‖Lp′ (Ry1 ) = Cn · C(α, β) ‖f‖Lp′ (X).

♣
Let us show how the lemma implies the Lpn estimate away from the

boundary, for a domain in R2, i.e.

‖χλf‖L6(K) ≤ Cλ1/6‖f‖L2(Ω).

As in section 2.1 this follows from

‖|ρ̂|2(λ−
√
−∆R2)f‖L6(K) ≤ Cλ1/3‖f‖L6/5(K).
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We show that the ’microlocalized’ kernel

ρ̃λ(x, y) = (2π)−2

∫
R2
ei(x−y)ξ|ρ̂|2(λ− |ξ|)σ(ξ)dξ

satisfies the estimates

|ρ̃λ| ≤

{
Cλ(λ |δ|)−1/2 if |δ2| ≤ 2γ|δ1|,
CNλ(λ |δ|)−N if |δ2| ≥ 2γ|δ1|, for any N ≥ 0. (2.7)

Here σ is a smooth conical cutoff near (1, 0), i.e.

σ ∈ C∞(R2 − 0), σ(tξ) = σ(ξ) if t > 0, and

σ(ξ1, ξ2) = 0 if |ξ2| ≥ γ|ξ1|, for a fixed γ > 0,

and we write δ = x− y, δi = xi − yi.
The second inequality in (2.7), combined with the L∞ estimate sup |ρ̃λ| ≤

Cλ, yields for x1 = y1

|ρ̃λ| ≤ Cλ (1 + λ|δ2|)−2.

Thus, Young’s inequality implies that the assumptions of the lemma are
satisfied with A(x, y) = ρ̃λ(xλ ,

y
λ ) and α = β = λ. Thus ‖A‖L6/5→L6 ≤ Cλ.

Rescaling shows that ρ̃λ satisfies the desired estimates, and so does ρ+
λ as

it can be decomposed into pieces which after a rotation in the ξ variables
look like ρ̃λ for some σ.

To prove (2.7), change variables α1 = |ξ|, α2 = ξ2 to obtain

ρ̃λ = (2π)−2

∫∫
eiψ(x,y;α)σ̃(α)dα2 ρ̂(λ− α1)dα1

where σ̃ is another conical cutoff function and

ψ(x, y;α1, α2) = δ1

√
α2

1 − α2
2 + δ2α2.
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As ρ̂ ∈ S implies |
∫
srρ̂(λ − s)ds| ≤ Cr,ρλ

r if r ≥ 0, we only need to
show, writing λ for α1 and α2 = λη, that

Iλ(x, y) = λ

∫
R

eiλψ(x,y,1,η)a(η)dη

satisfies the bounds (2.7) if supp a ∈ (−γ′, γ′), γ′ = (1 + γ−2)−1/2.
This is now a direct consequence of an investigation of the critical points

of the phase ψ: We have

ψ′η = 0⇔ δ2
δ1

=
η√

1− η2
=
ξ2
ξ1
.

Thus, ψ has a critical point on the support of the integrand only if |δ2| ≤
γ|δ1|. More precisely,

|ψ′η| > C|δ| if |δ2| ≥ 2γ|δ1|. (2.8)

Also, we have ψ′′ηη = −δ1(1− η2)−3/2, so

|ψ′′ηη| > C|δ| if |δ2| ≤ 2γ|δ1|. (2.9)

Therefore, if we write ψ = δ1ψ̃ for |δ2| ≤ 2γ|δ2| then a critical point of
ψ̃ is uniformly nondegenerate, and stationary phase, with parameter λδ1,
gives the first estimate in (2.7), and (2.8) gives the second, with repeated
integration by parts:

|Iλ(x, y)| = λ |
∫
eiλψa dη| = λ |

∫ [
(

1
iλψ′η

∂

∂η
)Neiλψ

]
a dη|

= λ |
∫
eiλψ

[
(
∂

∂η

1
iλψ′η

)Na
]
dη| ≤ CNλ(λ|δ|)−N .

Remark: The principal new ingredient here was the use of the stationary
phase method which quantifies the cancellation of ei(x−y)ξ when integrating
over ξ. Geometrically, nondegeneracy of the critical point of ψ is equivalent
to strict convexity of the ‘cospheres’ |ξ|2 = 1, where |ξ|2 arises as the symbol
of −∆. The improvement of the obtained L6 estimate over the result of
interpolation between L2 and L∞ estimates for χλ is closely connected with
the improvement, also obtained by stationary phase,

|
∫
|ξ|=1

eixξdσξ| ≤ C|x|−1/2 as |x| → ∞

over just obvious boundedness of this integral.
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2.3 Variable Coefficients

Equation (2.2) says that the wave equation in R2 with any initial data f can
be solved by finding ‘many’ wavelike solutions ei(x−y)ξ cos(t|ξ|), one for each
direction ξ/|ξ| and wavelength |ξ| and ’center point’ y, and superimposing
them, weighted by f(y). For the calculations it was convenient that these
were standing waves, i.e. of the form aξ,y(x)bξ,y(t). For the L∞ estimates it
was essential that the standing waves are bounded and for the Lp estimates
that cancellation occurs when integrating over ξ. Here it was also important
to microlocalize, i.e. to consider only values of ξ in some small cone at a
time.

We will see that the well-known construction of a parametrix (approx-
imate solution) for a variable coefficient wave equation, without boundary
conditions, as oscillatory integral has the same basic properties.

In this section, we will consider a second order elliptic differential oper-
ator P (x,Dx), defined in some neighborhood of a point x0 ∈ R2. We will
consider the associated wave equation

(
∂2

∂t2
+ P (x,Dx))Ut(x, y) = 0

U0(x, y) = δ(x− y)

(
∂

∂t
Ut)|t=0(x, y) = 0

(2.10)

for x, y ∈ ω, some neighborhood of x0, and |t| < ε. To simplify the notation
later on, we will also assume that the principal symbol p of P (x,Dx) satisfies

p(x0, η) = |η|2. (2.11)

This can be achieved by a linear change of coordinates.

Proposition 2.4 For ω and ε sufficiently small, there exist C∞ functions
φ±(x, y, ξ) (the phases) and a±(x, y, t, ξ) (the amplitudes), ξ ∈ R2−0, such
that:

a) φ± is homogeneous of degree one in ξ, dx,y,ξφ 6= 0 and a± ∈ S0(ω×ω×
Rt;R2) is supported near x = y = x0, t = 0.
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b) With the oscillatory integrals in

Kt(x, y) =
∑
±

∫
R2
ei(φ±(x,y,ξ)±t

√
p(x,ξ))a±(x, y, t, ξ)dξ

thus defined as distributions, we have

Kt(x, y)− Ut(x, y) ∈ C∞(ω × ω × (−ε, ε)).

c) For each y, ξ, φ± satisfy the differential equation in x:

p(x, (φ±)′x) = p(y, ξ), (eikonal equation) (2.12)

and (φ±)′x|x=y = ξ, φ|x=y = 0. (2.13)

This form of the parametrix appeared first in [H2].
The local L∞ estimate is now immediate, just using boundedness of the
integrand and smoothness in t: We only need to check

|ρλ(x, y)| = |
∫
e−iλtρ(t)Ut(x, y)dt| ≤ Cλ.

We replace Ut by Kt, introducing an error O(λ−∞), and carry out the
t-integral. We obtain

ρλ(x, y) ≡
∑
±

∫
eiφ±(x,y,ξ)ã±(x, y, λ∓

√
p(y, ξ), ξ)dξ mod λ−∞

where ã is the Fourier transform in t of ρa. Because P is elliptic and ã is a
Schwartz function in its third argument, uniformly in |ξ| > 1 and x, y, we
get easily ∫

|ã+(x, y, λ−
√
p(y, ξ), ξ)|dξ ≤ Cλ

and ∫
|ã−(x, y, λ+

√
p(y, ξ), ξ)|dξ ≤ CNλ−N
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for any N , which proves the claim.

For the Lp estimate we proceed as in section 2.2. Clearly, we only need to

consider the term with a+.

First, we split up Kt using conical cutoff functions σj(ξ). Looking at one

piece at a time, we may assume that σ is supported near the ξ1 direction, in

{|ξ2| ≤ γξ1} say. We change variables α1 =
√
p, α2 = ξ2. We thus consider

K̃t(x, y) =
∫
R2
ei(ψ(x,y,α)+tα1)b(x, y, t, α)dα

with supp b ⊂ {|α2| ≤ γ′α1} for some γ′ < 1, b ∈ S0, and from (2.11),

(2.13)

ψ = 0 if x = y, ψ′x = (
√
α2

1 − α2
2, α2) if x = y = x0.

(2.14)

To complete the argument as in section 2.2, we need to see that the phase

ψ has the same properties with respect to stationary points as we used

there. Also, the amplitude b here is not homogeneous as it was there, but

the symbol estimates are all that is needed. We are thus left with showing:

The function η 7→ ψ(x, y; 1, η) has a critical point on supp b

only if δ2 ≤ γ̃δ1, and then it is nondegenerate. Here, γ̃ is some

constant.

From (2.14) we get, using Taylor’s theorem:

ψ′η = −δ1
η√

1− η2
+ δ2 +O(|δ|2) +O(|δ| |x− x0|),

ψ′′ηη = −δ1(1− η2)−3/2 +O(|δ|2) +O(|δ| |x− x0|)

which implies the claim if x, y are sufficiently close to x0.
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2.4 A Few Words about Geometry

Here we explain the propagation of singularities for the wave kernel and the
geometric meaning of microlocalization, i.e. introduction of the conical cut-
offs σj(ξ) in sections 2.2 and 2.3, and and how this relates to the estimates
on ρλ(x, y).

Formally, the operator P = −∆Ω is connected with the metric g on Ω
by the formula

p(x, η) =
∑
i,j

gijηiηj (2.15)

for its principal symbol1. As we will see below, this implies a more geometric
relation between P and the metric: The solution of the wave equation for
P , (2.10), propagates singularities along geodesics. More precisely, if (with
notation as in Proposition 2.4)

Kσ
t (x, y) =

∫
eiΦ(x,t,y,ξ)σ(ξ)a− dξ

where Φ = φ− − t
√
p, then

sing suppKσ = {(x, t, y) : x = γt(y, ξ) for some ξ ∈ suppσ},
(2.16)

where t 7→ γt(y, ξ) ∈ Ω is the geodesic of unit speed, starting at y, with
tangent γ̇0 = ξ]/|ξ]|g at y. Here ξ] is the vector with components

(ξ])i =
∑
j

gij(y)ξj . (2.17)

This is just the local coordinate formula for the canonical isomorphism,
induced by g, of the tangent and cotangent spaces:

] : T ∗yΩ→ TyΩ.
1More precisely, P (x,Dx) =

∑
i,j
g−1/2Dxig

1/2gijDxj , with g = det gij , but this

just means that P is the unique operator with principal symbol (2.15) that annihilates
constants and is formally selfadjoint with respect to the measure

√
g dx induced by g on

Ω.
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Its inverse we denote by
[ : TyΩ→ T ∗yΩ.

Usually, what appears naturally in calculations are cotangent vectors, i.e.
vectors ξ for which ξ] defined by (2.17) has a meaning as tangent or direc-
tion. Intuitively, one may often think of tangent vectors whenever we talk
about cotangent vectors in the following chapters. Only in calculations it
is important to keep (2.17) in mind.

Remarks:

• In this chapter, we are only interested in values of t near 0 and x, y
near the interior point x0, so we don’t need to be concerned with
geodesics hitting the boundary. The propagation of singularities also
obeys the reflection law, see chapter 3.

• Our special choice of coordinates (see (2.11)) makes ξ] = ξ at y = x0,
so γ̇0 is close to ξ/|ξ|g for y close to x0. Therefore, if suppσ∩{|ξ| = 1}
is close to (1, 0), then (2.16) shows that the function t 7→ Kt(x, y)
will be smooth for t small and x− y outside a small neighborhood of
the x1-direction, explaining the rapid decay estimate for the Fourier
transform ρλ(x, y) of ρ(t)Kt there (second line in (2.7)).

• The singular support of the plus term in Proposition 2.4 is generated
by the geodesics γt(y,−ξ), ξ ∈ suppσ.

• One can sharpen (2.16) to the ’microlocal’ statement

WF(Kσ) = {(x, t, y; η, τ,−ξ) : ξ ∈ suppσ,

x = γt(y, ξ), η = [γ̇t(y, ξ)][, τ = −
√
p(y, ξ)}. (2.18)

By the wave front set calculus this means that if (y, ξ) ∈WF(f) and
ξ ∈ suppσ then (γt(y, ξ), [γ̇t(y, ξ)][) ∈WF(Kσ

t f).

• In outline, one can prove (2.18) by first showing

WF(Kσ) = {(x, t, y; Φ′x,Φ
′
t,Φ
′
y) : Φ′ξ = 0 for some ξ ∈ suppσ},

by a clever integration by parts, and then using the eikonal equation
(2.12) to see that the right hand side is actually generated by the
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bicharacteristic flow for the Hamiltonian (p(x, η)− τ2)/2, i.e. it is the
union of curves

{(x(s), t(s), x(0); η(s), τ(s), η(0)) : s ∈ R and near 0}

which are solutions of the system of ODE’s

ẋ =
1
2
p′η

ṫ = −τ

η̇ = −1
2
p′x

τ̇ = 0.

From 1
2p
′
ηi(x, η) =

∑
j g

ij(x)ηj we see (2.17), and the initial values
η(0) that actually occur are exactly the values ξ ∈ suppσ because of
the normalization (2.13), which implies

WF(Kσ
0 ) = {(x, y;φ′x, φ

′
y) : φ′ξ(x, y, ξ) = 0, ξ ∈ suppσ}

= {(x, x; ξ,−ξ) : ξ ∈ suppσ}.

2.5 Sharpness

Proposition 2.5 If the interior of K is not empty then

lim sup
λ→∞

λ−ε(p)‖χλ‖Lp′ (K)→L2(Ω) > 0.

We restrict ourselves to domains in R2 again. Higher dimensions can be
handled the same way, but for variable coefficient Laplacians there are some
technical difficulties in carrying out these ideas (which are solved in [S2]).
We take the lim sup in Proposition 2.5 because there can be many values λ
with χλ = 0.
In this section we will write q = p′. The following lemma contains a converse
of Lemma 2.2. We write: ‖ ‖ = ‖ ‖Lq(K)→L2(Ω).

Lemma 2.6 Let ρ ∈ S(R), and assume ρ̂ does not vanish on [0, 1]. Then
∀E ∃C > 0∀ε, 0 < ε < E

C−1 lim sup
λ→∞

‖χλ‖
λε
≤ lim sup

λ→∞

‖ρλ‖
λε
≤ C lim sup

λ→∞

‖χλ‖
λε

.
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Proof: The first inequality follows directly from Lemma 2.2. To prove
the second inequality, we first replace ρλ by ρ+

λ = ρ̂(λ −
√
−∆Ω), using

‖ρ−λ ‖ = O(λ−∞). Clearly, |ρ̂(·)|2 ≤
∑∞
−∞ αkχ[0,1](· − k) for some sequence

(αk) satisfying αk ≤ CN (1 + |k|)−N for all k and any N .
Let A = lim supλ→∞ λ−ε‖χλ‖. For any δ > 0 one can choose λ0 so that
‖χλ‖ ≤ (A+ δ)λε for all λ > λ0. For λ > 2λ0 we then have

‖ρ+
λ ‖

2 ≤
∑
k

αk‖χλ−k‖2 =

∑
|k|≤λ/2

αk‖χλ−k‖2+
∑
|k|>λ/2

αk‖χλ−k‖2 ≤ (
∞∑
−∞

αk) (A+δ)2( 3
2λ)2ε+C ′Nλ

−N .

In the last step we used that ‖χλ‖ is polynomially bounded which follows
easily from Sobolev’s inequality as mentioned in the introduction. This
implies lim supλ→∞ λ−ε‖ρλ‖ ≤ C(A+δ) for any δ > 0. Letting δ → 0 gives
the result. ♣
Clearly, there is at most one value of ε for which any of the two lim sup’s
is finite and nonzero. Also, λε could be replaced by any function h(λ)
satisfying h(2λ) ≤ C h(λ).

Proof of Proposition 2.5: W.l.o.g. we may assume {|x| < 1} ⊂ K.
Choose a function ρ ∈ C∞0 (−1/2, 1/2) with ρ̂ 6= 0 on [0, 1]. We construct
families of functions fλ, gλ supported in {|x| < 1/2} with

‖ρ+
λ fλ‖L2 ≥ Cλ

2
q−

3
2 ‖fλ‖Lq for 1 ≤ q ≤ 6/5 (2.19)

‖ρ+
λ gλ‖L2 ≥ Cλ

1
2q−

1
4 ‖gλ‖Lq for 6/5 ≤ q ≤ 2. (2.20)

Because supp ρλfλ ⊂ K ⊂ Ω by the finite propagation speed of waves, the
norms can be interpreted on R2; thus, we have transferred the problem
from Ω to R2. By Parseval,

‖ρ+
λ fλ‖L2(R2) = ‖ρ̂(λ− | · |)f̂λ(·)‖L2(R2) ≥ ‖f̂λ‖L2(A)

where A is the annulus {λ− 1 ≤ |ξ| ≤ λ}, and similarly for gλ.
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Choose ψ ∈ C∞0 (R) with ψ̂ 6= 0 on [−1, 1], and set

fλ(x) = ψ(λx)

gλ(x) = eiλx1ψ(x1)ψ(
√
λx2).

Then ‖fλ‖Lq = Cλ−2/q and ‖gλ‖Lq = Cλ−1/2q. Also, f̂λ(ξ) = λ−2ψ̂(ξ/λ).
Because ψ̂(1) 6= 0, |f̂λ| ≥ Cλ−2 on A for λ big enough, so

‖f̂λ‖L2(A) ≥ Cλ−2|A|1/2 = C ′λ−3/2

which gives (2.19).
To determine the L2-norm of g, write ĝλ(ξ) = λ−1/2ψ̂(ξ1 − λ)ψ̂(ξ2λ−1/2).
The point is that [λ, λ+ 1

2 ]× [−λ1/2, λ1/2] ⊂ A. From ψ̂ 6= 0 on [−1, 1] we
thus get

‖ĝλ‖L2(A) ≥ Cλ−1/2λ1/4 = Cλ−1/4,

and (2.20) follows.
♣



Chapter 3

Parametrix for the
Initial-Boundary Value
Problem

In this chapter we will present an approximate solution (parametrix) for the
wave equation with Dirichlet boundary conditions, near a concave boundary
point. In section 3.1 we write down the parametrix as sum of ’interior’,
’transversal’ and ’grazing’ parts and discuss the relatively easy transversal
parts (the interior parts are of the form given in chapter 2). To clarify
the more difficult grazing parts, we present in section 3.2 the ’Friedlander
example’ where many of the calculations can be carried out explicitly, and
give some geometric explanations in section 3.3. Because the kernel Kt(x, y)
of a grazing part is simpler when only one of the points x, y is close to the
boundary, we consider only times t in some small interval I close to but not
containing zero. Concavity and propagation of singularities then guarantee
that for x and y close to ∂Ω, the wave kernel is smooth and therefore
negligible for our purposes.

3.1 Statement of the Parametrix, and Transver-
sal Part

Fix a concave boundary point x0 ∈ ∂Ω. Let ω be the part lying in Ω of a
neighborhood of x0 in Ω̄. Choosing ω small enough, we may assume:

25
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There are t0, ε > 0 and an open set ω′ ⊂ Ω, dist(ω′, ∂Ω) > 0, such that
γt(x, ξ) ∈ ω′ for all x ∈ ω, ξ 6= 0, |t − t0| < 2ε, and γt(x, ξ) hits the boundary
at most once for |t| < 10t0. See figure 3.1. (∗)

Here t 7→ γt(x, ξ) ∈ Ω̄ is the (possibly reflected) geodesic (of unit speed)
starting at x in direction ξ, i.e. x = γ0(x, ξ), ξ = [γ̇0(x, ξ)][ (see section
2.4). Reflection in the boundary obeys the usual law that the reflection
angle equals the incidence angle.

For f ∈ E ′(Ω) let Uf(x, t) = Utf(x) be the solution of the wave equa-
tion (1.1), and denote by U freef the solution of the same problem, without
boundary conditions, on some closed extension Ω̃ ⊃ Ω, i.e. a compact Rie-
mannian manifold of same dimension without boundary.

We are only interested in x ∈ ω, t ∈ I = (t0 − ε, t0 + ε). We call a
continuous map K : E ′(Ω)→ D′(Ω×R) a microlocal parametrix at (y, η) ∈
T ∗(Ω) if, for some open cone Γ containing (y, η) and all f with WF(f) ⊂ Γ,

(Kf − Uf)|ω̄×I ∈ C∞(ω̄ × I). (3.1)

It is essential to use ω̄ here because the approximation must be uniformly
good as x → ∂Ω. Recall the theorem on propagation of singularities (see
[H1]):

If WF(f) ⊂ Γ then Uf is smooth outside {(x, t) : x ∈ γt(Γ) ∪
γ−t(Γ)}.

Therefore, near any (y, η) not in Γ0 = Γ+
0 ∪ Γ−0 ,

Γ±0 = {(y, η) ∈ T ∗(Ω) : γt(y, η) ∈ ω̄ at some time t ∈ ±Ī},

K ≡ 0 is a microlocal parametrix. In particular, this holds for any y /∈ ω′
by (∗). Below we will describe microlocal parametrices near points in Γ0.
Using a cutoff near ω′ and a microlocal partition of unity in T ∗ω′ one can
then construct K such that (3.1) holds for all f ∈ E ′(Ω).
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Figure 3.1: One endpoint near ∂Ω, one endpoint away from ∂Ω
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Fix (y, η) ∈ Γ+
0 (the case Γ−0 is treated in an analogous manner), and

let γt = γt(y, η). Below, we write down a microlocal parametrix near (y, η).
Its form depends on the nature of γ: We say that γ is transversal, grazing
or interior if it hits the boundary transversally, tangentially or not at all,
respectively, for some t ∈ [0, 3t0]. Clearly, if γ is transversal or interior then
so are all nearby geodesics.
In the following discussion f always denotes a distribution with wave front
set close to (y, η).

Interior case: If γ is interior, we simply set K = U free. Then v = Kf−Uf
satisfies v|t=0 = vt|t=0 = 0, solves the wave equation and has smooth
boundary values for t ∈ [0, 3t0]. Classical theorems imply that v is
smooth in Ω× I.

Transversal case: Assume γ hits the boundary transversally at time t̃,
γt̃ = x̃ ∈ ∂Ω. Transversality means that the reflection ξ̄ of the velocity
vector ξ̃ = (γ̇t̃)

[ of γ at x̃ is distinct from ξ̃. That is, there is ξ̄ 6= ξ̃

in T ∗x̃ Ω̄ having the same projection onto the (co)tangent plane to the
boundary, T ∗x̃∂Ω, see figure 3.2.

Let γ̃t = γΩ̃
t (y, η) be the geodesic in Ω̃ starting at (y, η) (without

reflection in ∂Ω) and γ̄t its reflection in ∂Ω at x̃, i.e. the geodesic
in Ω̃ going through (x̃, ξ̄) at time t̃. The extension Ω̃ can be chosen
(depending on (y, η)) such that both γ̃ and γ̄, considered for t ∈
[−3t0, 3t0], hit the boundary only at time t̃. Denote by (ȳ, η̄) =
(γ̄0, ( ˙̄γ0)[) the reflection of (y, η).

The idea for our construction of the transversal parametrix is to first
determine a ’reflection’ f̄ of f , with wave front set near (ȳ, η̄), and
then to write

K = U freef − U freef̄ . (3.2)

Thus, f̄ should be determined such that U freef̄ has the same boundary
values as U freef .
To construct f̄ , it is useful to write, with Q =

√
−∆Ω̃,

U free
t = cos(tQ) =

1
2

(e−itQ + eitQ) =
1
2

(U1
t + U2

t ).
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Figure 3.2: Geodesics in transversal case



30CHAPTER 3. PARAMETRIX FOR THE INITIAL-BOUNDARY VALUE PROBLEM

1
2U

1 and 1
2U

2 are, modulo C∞, the minus and plus terms in Propo-
sition 2.4, respectively. They have the advantage to propagate singu-
larities only in one direction:

sing suppU
3
2±

1
2

t f ⊂ {γΩ̃
t (x,∓ξ) : (x, ξ) ∈WF(f)},

see section 2.4.

Now we consider the boundary value problem

(
∂2

∂t2
−∆Ω̃)u = 0, u|∂Ω×R = g (3.3)

where g = (U1f)|∂Ω×R. It is well-known that, in the transversal case,
this behaves like a hyperbolic initial value problem. That is, there are
solutions u±(x, t), unique modulo C∞, for t ∈ J = [0, 3t0] and x ∈ Ω̃,
with sing suppu−(t, ·) near γ̃t and sing suppu+(t, ·) near γ̄t, and
the operators B±, u± = B±g, are Fourier integral operators (here g
varies over boundary values of functions f with WF(f) conically close
to (y, η)). In fact, one can take B−g = U1f , and if we set

f̄ = (B+g)|t=0,

then B+g = U1f̄ also. Now define K by (3.2). We claim that this is
a microlocal parametrix near (y, η). Set v = (Kf−Uf)|Ω×J . Clearly,
v(x, t) satisfies the wave equation. Because WF(f̄) is near (ȳ, η̄) and
ȳ ∈ Ω̃− Ω̄, we also have v|t=0, vt|t=0 ∈ C∞(Ω). Finally, U freef ≡ U1f

and U freef̄ ≡ U1f̄ mod C∞ near ∂Ω× J , so v has smooth boundary
values for t ∈ J , and again we can conclude that v ∈ C∞(Ω× J).

Grazing case: In the interior and transversal cases, K could be con-
structed as Fourier integral operator, with smooth canonical relation.
That this cannot work here is easy to see: If γt(y, η) is tangent to
∂Ω at t̃ say the ’propagation of singularities map’ (y, η) 7→ γ2t̃(y, η)
is not smooth, but only C1/2, see figure 3.3. A parametrix in this
case was constructed by Melrose and Taylor ([MT]; see also the nice
presentation in [ZW]). We state the result formally and give some
explanations in the next two sections.
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Figure 3.3: Geodesics in grazing case
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In the proposition below, we summarize the discussion above.
We will use coordinates (t, x) = (t, x2, . . . , xn+1) on Rt × ω, with ∂Ω =

{xn+1 = 0}. Even if we are dealing with a domain Ω in Rn (i.e. a flat
metric), this straightening out of the boundary will make ∆ a variable
coefficient operator P = P (x,Dx). We choose our coordinates such that

P (x0, Dx) = D2
x.

Throughout, we use the notation

x = (x2, . . . , xn, xn+1) = (x′, xn+1) = (x′′, xn, xn+1) and

ξ = (ξ1, . . . , ξn) = (ξ1, ξ′) = (ξ1, ξ′′, ξn).

Proposition 3.1 For ω sufficiently small, the solution operator U for the
initial boundary value problem (1.1), followed by restriction to ωx× It, can
be written as a finite sum

∑
l

K(l) ◦ P (l) +R

where R is smoothing, uniformly as x→ ∂Ω, i.e.

Rt(x, y) ∈ C∞(ω̄x × Ωy × It),

P (l) is a microlocal cutoff near a point (y(l), η(l)) ∈ T ∗ω′, i.e. a pseudodif-
ferential operator in Ψ0

1,0(ω′) whose symbol is supported near (y(l),R+η
(l)),

and each K(l) is either (with extensions Ω̃ = Ω̃(l) as above)

interior, then K(l) is just the free solution U free and given as in Proposi-
tion (2.4), or

transversal, then
K(l) = U free − U free ◦ V (l)

where V (l) is a Fourier integral operator of order 0, elliptic near
(y(l), η(l); y(l), η(l)), or
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grazing, then K(l) = M ◦G, with (everything depending on l)

Mtf(x) =
∫
Rn

[
g

(
A−(ζ)−A+(ζ)

A−
A+

(ζ0)
)

+ h

(
A′−(ζ)−A′+(ζ)

A−
A+

(ζ0)
)]
ei(θ+tξ1)f̂(ξ) dξ (3.4)

where g(x, ξ) ∈ S0, h(x, ξ) ∈ S−1/3 have conical support near x =
x0, ξ = ξ̄ = (1, 0, . . . , 0), and G is a Fourier integral operator of order
1/6 elliptic near ((t̃, 0), ξ̄; y, η), with t̃ defined by γt̃(y

(l), η(l)) ∈ ∂Ω.
The phase functions ζ(x, ξ), θ(x, ξ) are smooth near (x0, ξ̄) in Ω̄×Rn
and homogeneous in ξ of degree 2/3 and 1 respectively. They satisfy
the eikonal equations

p(x, θ′x)− ζp(x, ζ ′x) = ξ2
1 ,

p(x, θ′x, ζ
′
x) = 0,

(3.5)

in {ζ ≤ 0}, where p(x, ξ) is the principal symbol of P and p(x, ξ, η)
denotes the bilinear form associated with p. The matrix θ′′x′ξ′ is non-
singular, and we have the normalization

ζ0 = ζ|x∈∂Ω = −ξnξ−1/3
1 , and

ζ ′xn+1
< 0 on ∂Ω.

A± are Airy functions defined in Appendix A.
θ′x(x0, ξ̄) is tangential to the boundary, and by a rotation in the x′-coordinates
we can make

θ′xi(x0, ξ̄) = δin. (3.6)

To complete the discussion of the transversal case, we need to show that
the operator V : f 7→ f̄ is an elliptic Fourier integral operator of order 0.
We can write V = R0◦B+◦R∂ ◦U1, where R0, R∂ denote restriction to {t =
0} and the boundary, respectively. All the operators on the right hand side
are Fourier integral operators in the relevant domains, and transversality
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of γ easily implies the transversality condition on their canonical relations
that guarantees that their composition is also a Fourier integral operator.
B+g = U1f̄ , B−g = U1f imply that V −1 = R0 ◦ B− ◦ R∂ ◦ U1, and this
shows ellipticity and ordV = ordV −1 = 0.

Remarks:

• The form given for the transversal parametrix is a generalization of
an elementary idea how to find solutions of the wave equation in Rn

that vanish on the hyperplane xn+1 = 0: take any solution u(x, t) of
the wave equation and use u(x′, xn+1, t)− u(x′,−xn+1, t).

• The transversal parametrix can also be constructed without reference
to an extension Ω̃, but the form given here is very intuitive and also
makes the estimates for Theorem 1 very easy.

• The construction of the transversal part works for any geometry of
the boundary; concavity was never used.

3.2 The Friedlander Example (Model)

In ([FL]), the following boundary value problem is considered:

[
∂2

∂t2
− 1

1 + xn+1
(
∂2

∂x2
2

+ · · ·+ ∂2

∂x2
n+1

)
]
u(t, x) = 0 for x ∈ Ω = R

n
xn+1>0

(3.7)

u(t, x′, 0) = f(t, x′) ∈ E ′(t ≥ 0)

u(t, x) = 0 if t < 0 (3.8)

Here x = (x2, . . . , xn+1) = (x′, xn+1) as before. This equation describes
wave propagation in a layered medium, i.e. the propagation speed 1/

√
1 + xn+1

depends only on one coordinate, here the distance to the boundary ∂Ω =
{xn+1 = 0}. Because this speed is highest at the boundary, waves or rays
approaching it get refracted away from the xn+1-direction, so ∂Ω is con-
cave with respect to the metric gij = (1 + xn+1)δij that has these rays as
geodesics, see figure 3.4. For n ≥ 3, the operator P = − 1

1+xn+1
∆x is not

the Laplace-Beltrami operator of g, but this is not important here as only
the principal part matters for us.
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The virtue of this example is that most computations can be carried out
explicitly (in particular, the Airy function appears naturally). R. Melrose
proved ([M2]) that in some geometric sense, any boundary value problem
near a concave boundary is equivalent to it, and that this equivalence can
be used to construct solutions. Therefore, it serves as a model for our
general situation.

To solve (3.7), take the Fourier transform in (t, x′), whose dual variables
we call (τ, µ), to obtain

(−τ2(1 + xn+1) + µ2 − ∂2

∂x2
n+1

)û(τ, µ, xn+1) = 0 if xn+1 > 0

û(τ, µ, 0) = f̂(τ, µ)

û has an analytic continuation to Im τ < 0.

Up to a change of coordinates, this is Airy’s equation A′′(z) = zA(z), and
we obtain for τ > 0

û(τ, µ) =
A+(−τ−4/3(τ2 − |µ|2 + xn+1τ

2))
A+(−τ−4/3(τ2 − |µ|2))

f̂(τ, µ).

The choice of Airy function is dictated by the ’forward’ condition (3.8).
In order to put the solution in a form corresponding to the parametrix in
section 3.1, we set ξ1 = τ, ξ′′ = (µ2, . . . , µn−1), ξn = (τ2 − |µ|2)/τ and get

u(t, x) ≡ (2π)−n
∫
Rn

A+(ζ)
A+(ζ0)

ei(θ(x,ξ)+tξ1)g(ξ)f̂(ξ1, ξ′′,
√
ξ2
1 − ξ1ξn − |ξ′′|2) dξ

(3.9)

modulo C∞(Rt × Ω̄x) where

ζ = −(ξn + xn+1ξ1)/ξ1/3
1 , ζ0 = −ξn/ξ1/3

1 ,

θ = x′′ξ′′ + xn

√
ξ2
1 − ξ1ξn − |ξ′′|2, and

g(ξ) =
ξ1

2
√
ξ2
1 − ξ1ξn − |ξ′′|2

ρ(ξ),



36CHAPTER 3. PARAMETRIX FOR THE INITIAL-BOUNDARY VALUE PROBLEM

with a conical cutoff function ρ which equals 1 for ξ1 > 3|ξ′| and vanishes
for ξ1 ≤ 2|ξ′|, and we assume that f̂(ξ1, ξ′′,

√
ξ2
1 − ξ1ξn − |ξ′′|2) is rapidly

decaying for ξ1 ≤ 3|ξ′|. To get the C∞ error for u, we use the fact that
the boundary value problem with smooth data has a smooth solution. The
restriction on f̂ represents no loss of generality since every f can be de-
composed into parts which after a rotation in the (t, x′)-variables have the
required property.

Now in order to solve the initial boundary value problem for the operator
P , we write as in the transversal case in section (3.1)

K = U free −B+ ◦R∂ ◦ U free, (3.10)

where B+ is the operator in (3.9) and R∂ denotes restriction to the bound-
ary Rt × Rn−1

x′ . In principle, one could use the parametrix for U free from
section 2.3 here, but the cancellations in the composition become easier to
handle when we write it in a different way:

It is clear from the construction of ζ and θ that Ai(ζ)ei(θ+tξ1) satisfies
the wave equation (3.7). Thus, if we can find, for k ∈ E ′(Rnxn+1>0), a
distribution Gk for which∫

Ai(ζ)eiθg(ξ)(Gk)̂ (ξ) dξ ≡ k (3.11)

then

U free
t k(x) ≡

∫
Ai(ζ)eiθ+tξ1g(ξ)(Gk)̂ (ξ) dξ.

Using this and formula (7.2) from Appendix A in (3.10) gives the parametrix
(3.4), with h = 0.

We will only outline the idea why Gk exists if k is supported away from
the boundary, more than one unit with above choice of supp ρ. For details,
also in the general case, see ([ZW]).

The assumptions imply that xn+1 + ξn/ξ1 > C > 0 on (supp k) ×
(supp ρ). So we can write Ai(ζ) =

∑
±Ψ±(ζ)e∓i

2
3 (−ζ)3/2

, and as ξ varies,

the oscillation directions (φ±)′x of eiφ
±

, φ± = ∓ 2
3 (−ζ)3/2 + θ, sweep out a

full neighborhood of some points η± (just check that φ′′xξ is nonsingular).
So a function k as above whose oscillation directions are concentrated near
η+ or η−, i.e. whose Fourier transform is rapidly decaying far away from
these directions, is representable as a superposition as in (3.11). One can
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check directly that η+, η− point away from respectively towards the bound-
ary, so we are mainly interested in functions k microlocally supported near
η−. In a more formal manner, the above argument says that G can be
obtained as the inverse of the elliptic Fourier integral operator with kernel∫
ei(φ

−−zξ)Ψ−(ζ)g(ξ) dξ. Its order is 1/6 because Ψ−(ζ) ∈ S
−1/6
1,0 in the

region considered.

3.3 Some Geometric Aspects of the Grazing
Part

First, we will give interpretations of ξ, ζ and θ. Then we will give geometric
meaning to the various parts of the grazing parametrix.

Let K = K(l) be one of the grazing parts in Proposition 3.1, and let
(y0, η0) be close to (y(l), η(l)). Let γ = γ(y0, η0) and γ̃ = γΩ̃(y0, η0), so γ
may be reflected, but γ̃ doesn’t notice the boundary. To γ there corresponds
a unique value ξ0 of the integration parameter ξ with the following property:
Whenever we introduce a conical cutoff σ(ξ) with σ(ξ0) 6= 0 in the integral
defining Mt, then the obtained operator Mσ

t will ’notice’ a singularity at
(y0, η0), i.e. for all distributions f with (y0, η0) ∈WF(f), Mσ

t Gf is singular
at γt(y0, η0).

This implies that at (y0, ξ0), eiφ
−

oscillates in direction η0, i.e. ξ0 can be
obtained from

(φ−)′x(y0, ξ0) = η0,

where φ− is the total phase as in the last paragraph of the previous section.
The geometric relation between ξ0 and γ is not as simple as in section

2.4, where we had ξ0 = η0. The following facts about ξ, ζ and θ are con-
sequences of ( ˙̃γt)[ = (φ−)′x(γ̃t, ξ0) and the properties stated in Proposition
3.1:

• ξ1 is the frequency of oscillation of eiφ
±

. In fact, one readily ver-
ifies that the eikonal equations (3.5) are equivalent to the system
p(x, (φ±)′x) = ξ2

1 . Now recall |η|g =
√
p(y, η) for η ∈ T ∗y (Ω).

• γ̃ is tangential to the surface Sξ0 = {x : ζ(x, ξ0) = 0} which is roughly
parallel to ∂Ω at a distance approximately proportional to |ξ0

n/ξ
0
1 |. ξ0

n

is positive or negative if γ hits the boundary transversally or not at
all, respectively, and ξ0

n = 0 characterizes grazing γ. In the model,
Sξ0 = {xn+1 = −ξ0

n/ξ
0
1}.
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• The direction of γ̃ at the point of contact x0 with Sξ0 is [θ′x(x0, ξ0)][;
thus, the normalizations (3.6) and gij(x0) = δij mean that we are con-
sidering geodesics roughly in the xn-direction, which shall be referred
to as ’the ray direction’ in chapter 4.

• From the eikonal equations it then follows easily that, at (x0, ξ̄),
θ′′xnξj 6= 0 iff j = n (see also Lemma 4.3 in section 4.3), and so the

nondegeneracy of θ′′x′ξ′ is equivalent to nondegeneracy of θ′′x′′ξ′′ , which

just means that (ξ0)′′ parametrizes diffeomorphically the direction of
the projection of γ̃ onto Sξ0 . In the model, this direction is precisely
(ξ0)′′.

We proceed to interpret various parts of Mt. Fix cutoff functions χ, φ ∈
C∞(R) with

χ(s) =

{
0 if s < 1
1 if s > 2

φ = 1− χ.

Let us say that an expression like (χA−)(ζ) generates a line l (always a
part of a geodesic) if

sing supp
[∫

[g(χA−)(ζ) + h(χA′−)(ζ)] ei(θ+tξ1)(Gf )̂ (ξ) dξ
]
⊃ l

for every f with (y0, η0) ∈WF(f). Thus for example, saying that singular-
ities are propagated according to the reflection law is equivalent to saying
that A−(ζ) − A+(ζ)A−A+

(ζ0) generates γ, by Proposition 3.1. We also have

(see figure 3.4):

• Ai(ζ) generates γ̃. The splitting Ai = −ωA− − ω2A+ corresponds to
a splitting of γ̃ as follows:

• (φA−)(ζ) generates the ’incoming part’ of γ̃, i.e. the line {γ̃t : t ≤ t0}
where t0 is the time when γ̃ hits the surface Sξ0 tangentially.

• (φA+)(ζ) generates the ’outgoing part’ of γ̃, i.e. the line {γ̃t : t ≥ t0}.
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∂Ω

ζ = 0

Ω

Α+(ζ)

Α−(ζ)

Α+(ζ) --- (ζο)
A-

Α+

yo
ηο

Figure 3.4: Meaning of terms in the grazing parametrix
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• (φA+)(ζ)A−A+
(ζ0) generates (an extension of) the reflected part of γ,

i.e. {γt : t ≥ t̃} if γ hits the boundary at t = t̃, plus the backward
extension of this as geodesic in Ω̃ to the point where it becomes out-
going. If γ doesn’t hit the boundary then the same line is generated
as by (φA+)(ζ).

• The part χ(ζ)[A−(ζ)−A+(ζ)A−A+
(ζ0)] = −ω2χ(ζ)[Ai(ζ)−A+(ζ) AiA+

(ζ0)]

defines a convergent integral only for x ∈ Ω̄ and generates nothing
there, since it is has exponential behavior, decreasing in Ω and in-
creasing outside.



Chapter 4

Estimates near the
boundary

Here we show how the methods in chapter 2 together with the parametrix
in chapter 3 yield Theorem 1.

Because this parametrix is valid only for t near some point t0 6= 0, we
take ρ supported in (t0− ε, t0 + ε). By Lemma 2.2, we may then replace χλ
by
∫
e−itλρ(t)Ut dt, and therefore we need to show

‖
∫
e−itλρ(t)KtPf dt‖Lp(ω) ≤ Cλε(p)‖f‖L2(Ω)

for every part K ◦ P = K(l) ◦ P (l) of the parametrix.
As P is bounded on L2(Ω), the analysis in section (2.3) finishes the

interior parts.

4.1 Transversal Parts

Here K ◦ P = (U free − U free ◦ V ) ◦ P .
U free ◦ P is treated like an interior part, and so is U free ◦ V ◦ P :

‖
∫
e−itλρ(t)U free

t V Pf dt‖Lp(ω) ≤ Cλε(p)‖V Pf‖L2(Ω̃) ≤ C
′λε(p)‖f‖L2(Ω)

because elliptic Fourier integral operators of order 0 are bounded on L2.

41
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4.2 Grazing Parts: Reductions

Here K = M ◦ G. Because G is elliptic near ((t0, 0), ξ̄; y, η) and of order

1/6, D−1/6
x1 ◦G ◦P is bounded on L2, so we can argue as in section 4.1 and

replace G ◦ P by D1/6
x1 . It will be useful to further split up

Tλ =
∫
e−iλtρ(t)Mt ◦D1/6

x1
dt

into pieces Tλ =
∑8
j=1 T

(j)
λ , corresponding to different summands in (3.4)

and to regions of oscillatory respectively exponential behavior of the Airy
functions:
Choose cutoff functions χ, φ ∈ C∞(R) with

χ(s) =

{
0 if s < 1
1 if s > 2

φ = 1− χ.

The T (j)
λ then correspond to the following parts in Mt:

T
(1)
λ : φ(ζ)A−(ζ)

T
(2)
λ : φ(ζ)A+(ζ)

A−
A+

(ζ0)

T
(3)
λ : χ(ζ)Ai(ζ)

T
(4)
λ : χ(ζ)A+(ζ)

Ai

A+
(ζ0)

and T
(5)
λ , . . . , T

(8)
λ analogous for the A′± terms. Note that we use Ai

where positive ζ matter, A± otherwise (recall (7.2) in appendix A). For an
interpretation of the various terms, see section 3.3. Also, we define similarly

T
(1+)
λ : φ(ζ)A+(ζ)

T free
λ : Ai(ζ).
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T free
λ is just a reparametrization of the parametrix for the free wave

equation, see chapter 3.
We will use Lemma 2.3 for the operators T (j)

λ T
(j)∗
λ . Carrying out the t

integral we get

T
(j)
λ (x, z) =

∫
ρ̂(λ− ξ1)L(j)(x, ξ)e−izξ dξ

and thus T (j)
λ T

(j)∗
λ (x, y) =

∫
Rn

|ρ̂(λ− ξ1)|2 L(j)(x, ξ)L(j)(y, ξ) dξ

where, for example, L(1)(x, ξ) = g(x, ξ)(φA−)[ζ(x, ξ)] ξ1/6
1 eiθ(x,ξ). Thus,

setting

I
(i,j)
λ (x, y) =

∫
Rn−1

L(i)(x, λ, ξ′)L(j)(y, λ, ξ′) dξ′,

we need to show

‖I(j,j)
λ ‖Lp′→Lp ≤ Cλ

2ε(p), j = 1, . . . , 8.

We will only consider the terms with j = 1, . . . , 4 because the others can
be treated the same way.

Note that we are spared consideration of mixed terms because we need
only upper bounds:

‖T‖L2→Lp ≤
8∑
1

‖T (j)‖L2→Lp =
8∑
1

‖T (j)T (j)∗‖1/2
Lp′→Lp .

For example, I(1,2) would be much harder to analyze directly. In I(j,j),
quotients of Airy functions only occur for the ’elliptic’ terms j = 4 or
8, and these are easy to analyze, see subsection 4.3.2. For j = 2 or 6,
the quotient A−/A+(ζ0) cancels out because of |A−| = |A+|, so I(2,2) =
I(1+,1+). Geometrically, this means that if x and y lie on a reflected geodesic
γ, on the same side of the reflection point, then going from y along γ through
the reflection point and then back to x has the same effect as going from y
to x directly, without ever noticing the reflection.

We will, however, consider the mixed term I(1,1+) because for it the L2

estimate in Lemma 2.3 can be proved using Young’s inequality, while for
I(1,1), I(2,2) it cannot. A functional analytic argument then yields the L2

estimate for these operators.
Remark on notation: Here and from now on x and y both denote

variables in ω, i.e. close to the boundary. In chapter 3, y was restrained to
ω′, away from the boundary.
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4.3 Grazing Parts: Estimates on the Kernels

Proposition 4.1 Let I = I(j,j), j = 1, . . . , 4, free or I = I(1,1+). For every
ε̃ > 0 one can choose ω sufficiently small and supp g, supph sufficiently close
to the ξ1 direction so that for all x, y ∈ ω

λ−(n−1)|Iλ(x, y)| ≤ C (for the L∞ estimate) (4.1)

and for the Lp-estimate, with any N ≥ 1,

λ−(n−1)|Iλ(x, y)| ≤

 C|λδ|−(n−1)/2 if |δn| > (1− ε̃)|δ| (4.2ray)
CNλ

−1/3 |λ2/3δ|−N if |δn+1| > ε̃|δ|. (4.2perp)
CN |λδ|−N if |δ′′| > ε̃|δ| (4.2else)(4.2)

Furthermore, for I(free,free) the sharper estimate (4.2else) is true whenever
|δn| ≤ (1− ε̃)|δ|, and for I = I(1,1+), I(3,3) and I(4,4), one has

λ−(n−1)|Iλ(x, y)| ≤ Cλ−1/3. (4.3)

Here δ = x− y and x = (x2, x3, . . . , xn+1) = (x′′, xn, xn+1).
(4.2ray) describes the behavior of |I(x, y)| if x − y is close to the ray

direction (cf. the third remark in section 3.3), (4.2perp) if x − y is close
to perpendicular to the boundary, and (4.2else) the remaining cases. Of
course, the estimates obtained here for I(free,free) are the same as those
proved in chapter 2. The weakness of (4.2perp) is the reason why we can
prove Theorem 1 only if n = 2, see section 4.4. Of course, (4.2else) is void
then, but it is of independent interest. The reason for the different behavior
near the xn+1 direction is that, close to the boundary, the length scale of
oscillations of the integrand in (3.1) in this direction is λ−2/3 while in the
other directions it is λ−1.

The proof of (4.1) only uses the size of the L(j). For (4.2) oscillations
are important. We will get (4.2ray) from a stationary phase analysis and
(4.2perp) and (4.2else) using integration by parts only.

In the expression for I(x, y) we change variables ξ′ = λη′ and write
ζ = ζ(x; 1, η′) and ζ̃ = ζ(y; 1, η′), and similarly for θ. Then we have, for
example,

λ−(n−1)I
(1,1+)
λ (x, y) =

λ1/3

∫
Rn−1

(φA−)(λ2/3ζ) (φA+)(λ2/3ζ̃) eiλ(θ−θ̃)g(x, λ, λη′)g(y, λ, λη′) dη′,

and the integrand is nonzero only on a small set of η′ near 0, independent
of λ.
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4.3.1 Proof of the L∞ estimate

Although the uniform bound (4.1) will be a byproduct of the analysis for
the Lp-estimate, we give a simpler, independent proof here.

Let us consider I(1,1+)
λ , for example. By Cauchy-Schwarz it suffices to

show

λ1/3

∫
|η′|<1

|(φA−(λ2/3ζ)|2 dη′ < C. (4.4)

Now |φA−|(t) ≤ Ct−1/4, so the left hand side is majorized by C
∫
|η′|<1

|ζ|−1/2 dη′.

For x ∈ ∂Ω, ζ = −ηn and so |ζ ′ηn | = 1. Thus, for x near the boundary,

|ζ ′ηn | > 1/2. This implies
∫
|ηn|<1

|ζ|−1/2 dηn < C, and (4.4) follows.

The other cases are treated the same way; for I(4,4) notice

|A+(λ2/3ζ)
Ai

A+
(λ2/3ζ0)| = | A+(λ2/3ζ)

A+(λ2/3ζ0)
Ai(λ2/3ζ0)| ≤ |Ai(λ2/3ζ0)|

because |A+| is increasing and ζ ≤ ζ0 in Ω.

4.3.2 Proof of the decay estimates (4.2)

We will deal with I(4,4) in subsection 4.3.2. For the other integrals, we
first get rid of the Airy functions. To this end, we could replace them by
their asymptotic expansions. But this introduces non-smooth phases. The
following lemma from [ZW] lets us use smooth phase functions throughout:

Lemma 4.2

(φA±)(λ2/3ζ) ≡ λ1/3

∫
R

eiλ(T 3/3+Tζ)Ψ±(λ1/3T )ψ(T ) dT mod λ−∞

with ψ ∈ C∞0 (R),Ψ± ∈ S0(R),Ψ′± ∈ S(R), and Ψ±(t) rapidly decaying as
t→ ∓∞.
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Proof: See [ZW, Lemma 4.1]. One simply replaces A±(ζ) by its
asymptotics Ψ±(ζ)e∓i

2
3 (−ζ)3/2

and uses stationary phase. ♣
Any ψ works that equals one in |T | < r where r can be chosen small if ω is
small and supp g, supph are close to the ξ1 direction.

For unity of presentation, we also write the (Schwartz) function χAi as
in the lemma:

(χAi)(λ2/3ζ) ≡ λ1/3

∫
R

eiλ(T 3/3+Tζ)α0(λ1/3T )ψ(T ) dT mod λ−∞

with α0 ∈ S (simply take α0(t) = (2π)−1e−it
3/3(χAi)̂ (t)).

Thus we have

λ−(n−1)I
(i,j)
λ ≡ λ

∫
eiλΦ(x,y,T,S,η′)α(λ1/3S)β(λ1/3T )a(x, y, T, S, η′, λ) dTdSdη′.

(4.5)

Here

Φ =
1
3

(T 3 − S3) + Tζ − Sζ̃ + θ − θ̃ (4.6)

and a is supported near x = y = x0, S = T = 0, η′ = 0, and satisfies

|Dα
S,T,η′a| ≤ Cα.

α and β are given in table 4.1. Note that αβ ∈ S for I(1,1+) and I(3,3).
For the free parametrix, written differently, we proved the estimates

already in chapter 2, so we expect the main difficulty to come from the
λ-dependence of α and β.

Our strategy in analyzing (4.5) will be as follows:
We carry out the T, ηn integral first. The stationary point is uniformly
nondegenerate, so we get a factor λ−1. For δ near the ray the remaining
phase will have Hessian (with respect to S, η′′) of order |δ|, and stationary
phase yields (4.2ray). Away from the ray there is no stationary point, and
integration by parts yields the other estimates. The various nondegeneracy
claims are usually easy to check directly at x = y = x0, η

′ = 0, S = T = 0,
and therefore hold nearby also, by smoothness of the phase. Thus, they are
true for x, y ∈ ω and S, T, η′ in the supports of ψ(S), ψ(T ), g(x, λ, λη′) and
h(x, λ, λη′) if ω and these supports are chosen small enough.

In the next subsection, we investigate the phase. Then we finish the
proof of Proposition 4.1 in subsection 4.3.2, except for the elliptic term
I(4,4), which is treated in subsection 4.3.2.
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(i, j) α β
(free,free) 1 1

(1, 1) Ψ− Ψ−
(2, 2) Ψ+ Ψ+

(3, 3) α0 α0

(1, 1+) Ψ+ Ψ−

Table 4.1: Symbols

Analysis of the phase

It is useful to keep in mind the model, where

ζ = −ηn − xn+1, θ = xn
√

1− ηn − |η′′|2 + x′′η′′.

The stationary points of Φ with respect to T, ηn are determined by

Φ′T = T 2 + ζ = 0

Φ′ηn = Tζ ′ηn − Sζ̃
′
ηn + (θ′ηn − θ̃

′
ηn) = 0.

(4.7)

If x = y ∈ ∂Ω then ζ = −ηn, θ = θ̃ and the Hessian HessT,ηnΦ =
(

2T −1
−1 0

)
is

nondegenerate. Hence this is true for x, y near x0, and the implicit function
theorem gives functions η̄n(S, η′′, x, y), T̄ (S, η′′, x, y) as unique solutions of
(4.7), with

T̄ = S if x = y,

η̄n = S2 if x = y ∈ ∂Ω.
(4.8)

Let φ(x, y, S, η′′) = Φ(x, y, T̄ , S, η′′, η̄n) be the phase at the stationary point.
From (4.8) and (4.6) we see

φ|x=y = 0,

φ′x|x=y = Sζ̄ ′x + θ̄′x,

with ζ̄ ′x, θ̄
′
x equal to ζ ′x, θ

′
x evaluated at ηn = η̄n, x = y. Therefore,

φ = (x− y) · (Sζ̄ ′x + θ̄′x +O(|x− y|)). (4.9)

We need to investigate closer the dependence of φ′x on S and η′′. But
first we collect some information about θ:
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Lemma 4.3 θ′xn+1
= 0 at x = x0, and for x = x0, η′ = 0

θ′′xnη′′ = 0, θ′′xnηn 6= 0 (4.10)

θ′′x′′η′′ , (θ′xn)′′η′′η′′ are nondegenerate. (4.11)

Proof: Recall the eikonal equations, which read under the normaliza-
tions at x = x0:

|θ′x|2 + ηn|ζ ′x| = 1, (4.12)

θ′x · ζ ′x = 0. (4.13)

As ζ ≡ ηn on ∂Ω, we have ζ ′xi 6= 0 iff i = n+ 1, so (4.13) gives θ′xn+1
= 0.

Differentiating (4.12) with respect to (η′′, ηn) gives (4.10), using θ′xi = δin
at x = x0, η

′ = 0. Because θ′′x′η′ is nonsingular, (4.10) implies that θ′′x′′η′′ is
nonsingular. Finally, differentiating (4.12) twice in η′′ gives

0 =
n∑
k=2

(|θ′xk |
2)′′η′′η′′ = 2

n∑
k=2

θ′xk(θ′xk)′′η′′η′′ + 2
n∑
k=2

θ′′xkη′′ · θ
′′
xkη′′

and therefore

(θ′xn)′′η′′η′′ = −(θ′′x′′η′′)
tθ′′x′′η′′

which proves the second part of (4.11).
♣

We return to φ. In the model, φ′x = (η′′,
√

1− S2 − |η′′|2,−S) at x =
y = x0.

Lemma 4.4 At x = y = x0, (η′′, S) = 0 we have

a) (φ′xn)′′η′′η′′ nondegenerate, (φ′xn)′′SS 6= 0.

b) φ′′xiS 6= 0 iff i = n+ 1.

c) φ′′x′′η′′ nondegenerate and φ′′xiη′′ = 0 for i = n and i = n+ 1.
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Proof: At x = y = x0, φ′x = Sζ ′x(x0; η′′, S2) + θ′x(x0; η′′, S2). So
φ′x = θ′x and (φ′xn)′′SS = 2θ′′xnηn at S = 0. Therefore, a) and c) are direct
consequences of Lemma 4.3. Also, φ′′xiS = ζ ′xi gives b). ♣

Let us illustrate with an example how we will use the lemma:
Say |δn+1| > ε̃|δ|. We show that φ′S = δn+1ψ(x, y, S, η′′) with ψ smooth in
η′′, S and |ψ| > C > 0 near x = y = x0, (η′′, S) = 0.

Clearly,

ψ =

{
φ′′xn+1S

if x = y, and else

φ′′xn+1S|x=y + δ′′

δn+1
φ′′x′′S|x=y + δn

δn+1
φ′′xnS|x=y +O( |δ|

2

δn+1
).

By b) in Lemma (4.4), ψ 6= 0 if x = y = x0, (η′′, S) = 0. Then |δ/δn+1| <
ε̃−1, and continuity of the φ-derivatives implies the claim.

Main Terms

Let

J = Jλ(S, η′′, x, y) = λ

∫
eiλΦ β(λ1/3T )a dTdηn,

with a as in (4.5). By stationary phase,

J = eiλφ b(x, y, S, η′′, λ)

where

|Dα
S,η′′b| ≤

{
Cα if β ≡ 1
Cαλ

|α|/3 else.

We now have

λ−(n−1)I
(i,j)
λ ≡

∫
eiλφ(x,y,S,η′′)α(λ1/3S) b dSdη′′.

We first prove (4.2ray). By Lemma 4.4, φ = δnφ̃ with HessS,η′′ φ̃ nonde-
generate if |δn| > (1 − ε̃)|δ|. Stationary phase, with parameter λ|δn|, now
implies the estimate near the ray for I(free,free).

Because the stationary phase method requires that differentiation of the
amplitude brings out a factor of at most (λ|δn|)1/2 (see Appendix B), it is
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not directly applicable to the other cases. Therefore, we need to keep track
of the λ-dependence of b.

Using Taylor’s formula, write

β(λ1/3T ) =
k−1∑
j=0

λj/3(T − T̄ )j β(j)(λ1/3T̄ ) + λk/3(T − T̄ )kh(λ1/3T, λ1/3T̄ )

with h smooth and bounded, and k to be determined.
Putting this into the expression for J , we gain a factor of λj/3−dj/2e

in the jth term because (T − T̄ )j vanishes to order j at the stationary
point. Thus, if k is big enough, the term involving h will be less than some
constant, and we only need to show:

|
∫
eiλδnφ̃ α(λ1/3S) γ(λ1/3T̄ (S, η′′, x, y)) c(S, η′′, x, y, λ) dSdη′′| ≤ C(λ|δn|)−(n−1)/2

if α′, γ′ ∈ S and |Dα
S,η′′c| ≤ Cα.

If n = 2, η′′ is not there. Choose ρ ∈ C∞0 (R) and introduce a factor
[1−ρ(

√
λ|δn|(S−S̄))] under the integral, where S̄ = S̄(x, y) is the stationary

point; this introduces an error of (λ|δn|)−1/2, and a single integration by
parts shows that the remaining integral is of the same order, because the
L1 norm of the derivative of the amplitude is uniformly bounded.

If n > 2, we first note, using (4.8),

|Dη′′(γ(λ1/3T̄ ))| ≤ Cλ1/3|δn| ≤ C(λ|δn|)1/3

and similarly for higher derivatives, so that we can use stationary phase in
the η′′ variables. An argument as above takes care of the S integration,
and we are done.

We now turn to the estimates (4.2perp) and (4.2else) away from the
ray. Again, this is easy for I(free,free): By Lemma 4.4 we have |DS,η′′φ| >
C|(δ′′, δn+1)|, thus simple integration by parts in

λ−(n−1)I(free,free) ≡
∫
eiλφ b dSdη′′
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gives the result. In the other cases, we have the λ1/3-dependence of α and
β, so we will lose a factor λ1/3 with each integration by parts. We show

that this actually happens only when integrating with respect to S, not

with η′′. Because the η′′-gradient of the phase can become zero when δ is

close to perpendicular to ∂Ω we get only the weaker result (4.2perp) there.

First, we argue as before, replacing β(λ1/3T ) by its Taylor expansion
around β(λ1/3T̄ ), to see that we only need to consider

∫
eiλφα(λ1/3S)γ(λ1/3T̄ )c(S, η′′, x, y, λ) dSdη′′ (4.14)

with α, γ and c as before.

If |δ′′| > ε̃|δ| then Lemma 4.4 implies φ′η′′ = δ′′ · A(S, η′′, x, y) for some
uniformly nondegenerate matrix A, so

|
∫
eiλφα(λ1/3S)γ(λ1/3T̄ )c dSdη′′| =

λ−N |
∫
eiλφα(λ1/3S)(Dη′′

φ′η′′

|φ′η′′ |2
)Nγ(λ1/3T̄ )c dSdη′′| ≤ CN |λδ′′|−

2
3N

since |Dη′′γ(λ1/3T̄ )| ≤ λ1/3|δ| ≤ |λδ|1/3.

If |δn+1| > ε̃|δ| then Lemma 4.4 shows similarly φ′S = δn+1ψ with |ψ| >
C > 0, and integration by parts gives (4.2perp) since any S-derivative
falling on α or γ brings out a factor of λ1/3 but also makes the S-integral
of order λ−1/3 since α′, γ′ ∈ S.

Finally, for I(3,3) the improvement (4.3) follows from α ∈ S. For I(1,1+),
α(·)γ(·+ s) ∈ S uniformly for |s| < C. Therefore, if |δ| ≤ λ−1/3 then

∫
|α(λ1/3S)γ(λ1/3T̄ )c| dSdη′′ ≤ C

∫
|α(λ1/3S)γ(λ1/3[S+O(|δ|)])|dS ≤ Cλ−1/3

and if |δ| ≥ λ−1/3 then (4.2perp) for N = 1 shows |I| ≤ Cλ−2/3.
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The Elliptic Term I(4,4)

Write

L = λ−(n−1)I(4,4) = λ1/3

∫
u(−λ2/3ηn, λ

2/3xn+1ρ)u(−λ2/3ηn, λ2/3yn+1ρ̃)eiλ(θ−θ̃)gg̃ dη′′dηn

with

u(s, t) = (χA+)(s− t) Ai
A+

(s)

and ζ(x; 1, η′) = −ηn − xn+1ρ(x, η′), ρ > 0.

Lemma 4.5 u ∈ S(Rs × Rt≥0) and

|Dα
η′′u(s, λ2/3xn+1ρ)| ≤ Cα.

Proof: s ≥ t on suppu and |u(s, t)| ≤ |Ai(s)| if t ≥ 0 (because |A+| is
increasing) imply u ∈ S there. Also, ρ > C > 0 gives

|Dη′′u(s, λ2/3xn+1ρ)| = |λ2/3xn+1ρ
′
η′′u
′
t(s, λ

2/3xn+1ρ)| ≤ C|
λ2/3 xn+1ρ

′
η′′

λ2/3 xn+1ρ
| ≤ C ′

and similarly for higher derivatives. ♣
Now if |δn| > (1− ε̃)|δ| then we get from Lemma 4.3 θ − θ̃ = δnφ̂ with

φ̂′′η′′η′′ uniformly nondegenerate and |φ̂′ηn | > C > 0. By Lemma 4.5, we can
use stationary phase in η′′ and obtain

|L| ≤ Cλ1/3λ−2/3|λδ|−(n−2)/2.

If we then integrate by parts once in ηn we get

|L| ≤ Cλ−1/3|λ1/3δ|−1|λδ|−(n−2)/2,

and these two estimates easily imply

|L| ≤ C|λδ|−(n−1)/2.
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If |δ′′| > ε̃|δ|, we integrate by parts in η′′ as for the main terms, and get

|L| ≤ Cλ1/3λ−2/3|λδ|−N .

Finally, if |δn+1| > ε̃|δ|, we simply write

|L| ≤ CNλ1/3

∫
(1 + λ2/3|ηn|)−2(1 + λ2/3xn+1ρ)−N (1 + λ2/3yn+1ρ̃)−N dη′′dηn

≤ CNλ1/3λ−2/3|λ2/3δn+1|−N ,

using |δn+1| ≤ max(xn+1, yn+1).

4.4 Grazing Parts: Completion of the Proof

Here we show how the estimates on the various kernels in Proposition 4.1
imply, for n = 2,

‖I(j,j)
λ ‖Lp′ (ω)→Lp(ω) ≤ Cλ

2ε(p), j = 1, . . . , 4, p = p2 = 6,

with the help of Lemma 2.3. The role of x1 in the lemma is played by
xn = x2 in the present setup. Thus, by the same scaling argument as in

section 2.2, we need to prove for I = I
(j,j)
λ

λ−1|I(x, y)| ≤ C|λδ2|−1/2 (4.15)

‖I‖L2(Hx2 )→L2(Hx2 ) ≤ C (4.16)

where Hs = {x ∈ ω : x2 = s}, and in (4.16) we write I = Ix2x2 for
simplicity.

Near the ray, (4.15) is just (4.2ray). Away from it, we use (4.2perp)
with N = 1 and (4.1):

λ−1|I| ≤ C min(
1
|λδ|

, 1) ≤ C

√
1
|λδ|

= C|λδ|−1/2.



54 CHAPTER 4. ESTIMATES NEAR THE BOUNDARY

The L2-bound (4.16), where δ2 = 0, can be proved using Young’s inequality
in the ’better’ cases I(free,free), I(3,3), I(4,4) and I(1,1+): For I(free,free), (4.1)
and (4.2else) give

|I| ≤ C λ

(1 + λ|δ3|)2
, so

∫
|I| dx3,

∫
|I| dy3 ≤ C.

For I(3,3), I(4,4) and I(1,1+), (4.3) and (4.2perp) give

|I| ≤ C λ2/3

(1 + λ2/3|δ|)2
, so

∫
|I| dx3,

∫
|I| dy3 ≤ C.

To obtain (4.16) for I(1,1) and I(2,2), we write

Ai− χAi = −ωφA− − ω2φA+

and infer, using the positivity of the operators I(1,1) and I(2,2) = I(1+,1+)

on L2(Hx2) and writing ‖ ‖ = ‖ ‖L2(Hx2 )→L2(Hx2 ),

max(‖I(1,1)‖, ‖I(2,2)‖) ≤ ‖I(1,1) + I(2,2)‖ =

‖I(free,free) + I(3,3) − I(3,free) − I(free,3) − ω2I(1,1+) − ω2I(1+,1)‖ ≤

2(‖I(free,free)‖+ ‖I(3,3)‖+ ‖I(1,1+)‖) ≤ C.



Chapter 5

The Case of the Disk

Here we prove Theorem 2. A complete system of (nonnormalized) eigen-
functions on the unit disk is given by

enm(r, φ) = einφJn(λnmr), n ∈ Z,m = 1,2,3, . . .

where r, φ are polar coordinates, Jn is the nth Bessel function and λnm the
mth positive zero of Jn. λnm is the frequency of enm. Jn can be defined as

Jn(t) =
1

2π

∫ 2π

0

ei(t sin θ+nθ) dθ (5.1)

and solves the differential equation

t2J ′′n + tJ ′n + (t2 − n2)Jn = 0

which results from separation of variables when the eigenvalue equation for
∆ is written in polar coordinates.

In section 2.2 we proved

‖enm‖L6(r≤R) ≤ CRλ1/6
nm‖enm‖L2(Ω)

for each R < 1, so the functions in Theorem 2a) must be big near the
boundary.

55
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Also, because the treatment of the transversal parts in chapters 3 and 4 is
independent of the geometry of the boundary, we expect that only eigen-
functions make trouble with gradients almost tangential to the boundary.
For the enm this means that the ratio of angular frequency n to radial fre-
quency (which depends monotonically on λnm and therefore on m) should
be big and thus m small. In fact, after collecting some facts on the asymp-
totic behavior of Bessel functions we will see that fn = en1 works for a).
In contrast, the oscillation of e0m is purely radial, and the estimates of
Theorem 1 are easily verified directly.

In order to make sufficiently precise estimates we need to know the
behavior of Jn near λn1. Since λn1 ∼ n as n → ∞, see Lemma 5.2 below,
this is contained in the first part of the following Lemma:

Lemma 5.1

Jn(nz) = n−1/3g(z)Ai(n2/3ζ(z)) +O(n−4/3(1 + n2/3ζ)−1/4g(z)),

J ′n(nz) = n−2/3g̃(z)Ai′(n2/3ζ(z)) +O(n−4/3(1 + n2/3ζ)1/4g̃(z)), (A)

uniformly in z > 0 with functions g, g̃, ζ ∈ Cω(0,∞), g and g̃ nonvanishing
and ζ(1) = 0, ζ ′ < 0 on (0,∞).

Jn(nz) =
1√

2πn (z2 − 1)1/4
sin( 2

3n(−ζ)3/2 + π
4 ) +O(n−3/2z−1/2),

J ′n(nz) =
1√
2πn

(z2 − 1)1/4

z
cos( 2

3n(−ζ)3/2 + π
4 ) +O(n−3/2z−1/2), (B)

uniformly in z > C for any C > 1.

In fact, g, g̃ and ζ can be computed explicitly as

2
3
|ζ|3/2 =


√
z2 − 1− arctan

√
z2 − 1 if z ≥ 1

ln
1 +
√

1− z2

z
−
√

1− z2 if z ≤ 1

g(z) =
(

4ζ
1− z2

)1/4

, g̃ = ζ ′g,
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and then (B) is just a special case of (A), using the Airy function asymp-
totics (see appendix A). But (B) can easily be obtained directly by station-
ary phase from (5.1). The O errors can be improved by using lower order
terms. For proofs and full asymptotic expansions see [OL].

ζ(z) is related to the functions ζ(x, ξ), θ(x, ξ) in chapter 3 as follows:
Set x2 = φ, x3 = r − 1 and α(z) = z−2/3ζ(z). Then α(1) = 0, α′(1) 6= 0, so
α has an inverse β near 1. Then

ζ(x; 1, η) = α((x3 + 1)β(η)) (x3 + 1)2/3 and

θ(x; 1, η) = x2/β(η).

The parameter η corresponds to λ, n via η = α(λ/n).
The following lemma states some implications of Lemma 5.1 which we

will need. They could be stated in sharper form.
If α, β are functions of λ, n,m, we write

α ≈ β for cα ≤ β ≤ Cα

with some positive constants c and C, for sufficiently large λ. As always,
C may denote a different constant at each occurence.

Lemma 5.2 For any ε > 0,

∫ 1

0

J2
n(λr) rdr ≈

{
λ−1 if λ

n ≥ 1 + ε,

λ−1(−ζ(λn ))1/2 if 1 + ελ−2/3 ≤ λ
n ≤ 2.

(a)

Jn(nz) ≤


C(nz)−1/2 if z ≥ 1 + ε,

Cn−1/3 (1− n2/3ζ)−1/4 if z ≥ 1,
Cn−1/3 e−nζ

3/2
if 1/2 ≤ z ≤ 1.

(b)

λnm = n+ αmn
1/3 +O(n−2/3) as n→∞ with m fixed, α1 > 0. (c)

|γm2/3 + n2/3ζ(
λnm
n

)| ≤ C(m−1/3 + n−1) for some constant γ. (d)

The zeroes of Jn and Jn+1 interlace, i.e. λnm < λn+1,m < λn,m+1,
(e)

and λn+1,m − λnm > 1.
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Sketch of proof (for details see [OL]):
(a) From Bessel’s equation we see 1

2
d
dt

[
t2(J ′n)2(t) + (t2 − n2)J2

n(t)
]

= tJ2
n(t),

so ∫ λ

0

J2
n(t) tdt =

λ2

2
[
(J ′n)2(λ) + (1− (nλ )2)J2

n(λ)
]
.

Now use Lemma 5.1 with z = λ/n. Note that if Jn(λ) = 0 then we get

∫ 1

0

J2
n(t) tdt =

1
2

(J ′n)2(λ) =
1
2
n−4/3g̃2(Ai′(n2/3ζ))2 +O(n−2)

(5.2)

for z = λ
n ≤ C.

(b) is clear from Lemma 5.1 and the Airy function estimates in Appendix
A.
(c),(d): If am is the mth zero of the Airy function then (A) in Lemma 5.1
implies

am = n2/3ζ(
λnm
n

) +O(n−1).

This gives the asymptotics for λnm. The Airy function asymptotics gives
am = −Cm2/3 +O(m−1/3), and this shows (d).
(e) The interlacing is a well-known elementary fact, see [WA] for example.

The gap statement is harder. One can show d2λnm
dn2 < 0 (e.g. using [WA,

equation (3) in 15.6]). Also, (c) implies dλnm
dn → 1 as n→∞.

♣
Proof of Theorem 2: a) We show that

‖en1‖6
‖en1‖2

≥ Cλ2/9
n1 .

This reflects the fact that en1 is ’essentially’ supported in a strip of width
n−2/3 near the boundary, so the quotient is approximately (n−2/3)

1
6−

1
2 =

n2/9. Note that λn1 ∼ n by (c).
(a) shows ‖en1‖2 ≈ n−2/3, and (A), (c) and Ai(0) 6= 0 give

Jn(n+ tn1/3) ≈ n−1/3 for 0 ≤ t ≤ α1/2,



59

from which we conclude ‖en1‖6 ≥ Cn−1/3(n−2/3)1/6, and the claim follows.
b) We need to show

∑
n,m

λ−1≤λnm≤λ

J2
n(λnmr)

‖Jn(λnm·)‖22
≤ Cλ.

Write Qnm for one summand. Because of Proposition 2.1, we may assume
r > 1/2. By (e), there is at most one summand for each m. Form = 1, 2, . . .
let n(m) be the index n for which λnm is closest to λ − 1/2. Clearly, the
claim follows from ∑

m:n(m)>0

Qnm ≤ Cλ. (5.3)

n is a decreasing function of m, even strictly decreasing as long as n > 0,
by the interlacing property. By (c), n(1) ≤ λ, and therefore n(λ + 1) = 0,
so the sum goes at most up to m = λ. On the other hand, (d) for n = 1
and the asymptotics ζ(z) ∼ −Cz2/3 as z → ∞ show n(2ελ) > 0 for some
ε > 0 independent of λ, and strict monotonicity implies

n(m) > 2ελ−m.

Now consider the terms in (5.3) with m > ελ. Then we have n ≤ λ − ελ,
so λ

n >
1

1−ε > 1, and (a) and (b) give

∑
m>ελ
n(m)>0

Qnm ≤ Cλ
λ∑
ελ

1
λr
≤ Cλ.

This part of the sum corresponds to the transversal part in chapter 3.
We now turn to the harder part with m ≤ ελ and 1 < λ

n ≤
1
ε . Clearly,

(d) remains true if λnm is replaced by λ, since |λnm−λ| < λn,m+1−λn,m−1.
By (a), (c) and (d) we now have

‖Jn(λnm·)‖22 ≈ λ−1|ζ(
λnm
n

)|1/2 ≈ λ−4/3m1/3.
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So all that remains is to show

I =
∑
m<ελ
ζ>0

m−1/3e−nζ
3/2
≤ Cλ1/3,

II =
∑
m<ελ
ζ<0

m−1/3(1− n2/3ζ)−1/2 ≤ Cλ1/3

where ζ = ζ(λnr) and n = n(m) as always. We will even see I ≤ C.
One way to proceed would be to define n(m) as function of real m,

replace sums by integrals and use ζ as new variable. But let us stay with
integers m here. In any case, we need to estimate the change of ζ with m:
Let m > m̄, n̄ = n(m̄), so n < n̄. With ζ0 = ζ(λn ), and ζ̄, ζ̄0 defined using
n̄, we then have, using ζ ′ < 0, r ∈ [1/2, 1] and n̄ ≈ λ,

ζ̄ − ζ ≈ r(λ
n
− λ

n̄
) ≈ ζ̄0 − ζ0 ≈ λ−2/3(n̄2/3ζ̄0 − n̄2/3ζ0)

≥ λ−2/3(n̄2/3ζ̄0 − n2/3ζ0) = γλ−2/3(m2/3 − m̄2/3 +O(m̄−1/3)),

and this implies

ζ̄ − ζ ≥ C m− m̄
m1/3λ2/3

(5.4)

for some C > 0 if m− m̄ ≥ C0.
We now analyze the sums I and II.
ζ is decreasing in m. Let M = max{m : ζ > 0}. Applying (5.4) repeatedly
gives for m+ C0 ≤M

ζ ≥ Cλ−2/3(
1

(m+ C0)1/3
+

1
(m+ 2C0)1/3

+ · · · ) ≥ Cλ−2/3(M2/3 −m2/3)

where the sum goes at most up to M . If one uses this in the expression for
I and estimates the sum by an integral, one gets

I ≤ C
∫ M

1

m−1/3e−C
′(M2/3−m2/3)3/2

dm,
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and a change of variable z = M2/3 −m2/3 shows I ≤ C.
With II we proceed similarly: For m > M ,

ζ < −Cλ−2/3(m2/3 −M2/3),

so

II ≤ C
∫ λ

M

1
m1/3 (m2/3 −M2/3)1/2

dm,

and changing variables z = m2/3 −M2/3 shows

II ≤ C
∫ λ2/3

0

z−1/2 dz = 2Cλ1/3.

This finishes the proof of part b).
♣

Remark: The method of estimating the L2-norm of Jn using the iden-
tity (5.2) involving its derivative might seem artificial. We could have pro-
ceeded directly and used the Airy function asymptotics only. The reason
why we chose our method is the following:

The method leads to a sum over squares of terms like

Ai(n2/3ζ)
Ai′(n2/3ζ0)

where n2/3ζ0 ranges over the zeroes of Ai. As M. Williams showed in [WI],
the parametrix for the wave kernel near a convex boundary can always be
written in terms of such a sum, using the residue theorem on its usual
representation as complex line integral. This strongly suggests that the
estimates above essentially suffice to prove the L∞ bound near a convex
boundary point of an arbitrary domain.
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Chapter 6

Remarks and Problems

• The foremost problem is to generalize Theorem 1 to higher dimen-
sions. While n = 3 can probably be handled by a better argument
to obtain the L2 estimate needed in Lemma 2.3, avoiding Young’s
inequality, the case n ≥ 4 is less clear as the decay of the kernels
on a λ−2/3 scale in directions close to perpendicular to the boundary
seems to make Lemma 2.3 too weak then.

• Next is the convex case because here a parametrix for the wave equa-
tion is known. Is the example in chapter 5 worst possible?

• Sogge used the interior estimates proved in chapter 2 to deduce certain
results about convergence of Bochner-Riesz means on Ω, see [S3].
What are the implications of the different behavior of ‖χλ‖L2→Lp on
the disk for these means?

• It would be very interesting to decide if the L∞ estimate ‖χλf‖L∞(Ω) ≤
Cλ(n−1)/2‖f‖L2(Ω) is true for any geometry of the boundary. One
would need to find a method of proving such estimates without using
parametrices for the wave equation.

• The asymptotics of the Lp-norms of eigenfunctions seems unclear.
Corollary 1.1 gives an upper bound. But unlike for the spectral pro-
jections, this is not sharp in all cases: On the cube, ‖ej‖Lp/‖ej‖L2

is uniformly (in j) bounded, for the standard basis (ej) of eigenfunc-
tions. Is it true that this quotiont must be unbounded if there is any
curvature, either in the metric or in the boundary?
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Chapter 7

Appendix A: Airy
functions

Ai is the unique (up to constant factor) bounded solution of

A′′(z) = zA(z).

Set A−(z) = Ai(ωz), A+(z) = Ai(ω2z), where ω = e2πi/3. A± are also
solutions of this equation. Ai and A± are called Airy functions. They are
linearly related by

Ai+ ωA− + ω2A+ ≡ 0. (7.1)

To see this, just evaluate this expression and its derivative at 0. The Airy
functions have oscillatory behavior for negative argument and exponential
behavior for positive argument. More precisely,

Ai(z) = Ψ(z)e−
2
3 z

3/2

where Ψ is holomorphic and has the asymptotic expansion, uniformly in
{z ∈ C : | argz| ≤ (1− δ)π} for any δ > 0,

Ψ(z) ∼ z−1/4
∞∑
0

ajz
− 3

2 j .
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In particular,

A±(z) = Ψ±(z)e∓
2
3 i(−z)

3/2
if z < 0,

A±(z) = Ψ±(z)e
2
3 z

3/2
if z > 0,

Ai(z) = Ψ(z)e−
2
3 z

3/2
if z > 0

with Ψ±(z) = Ψ(ω∓z). Also, from this and (7.1),

Ai(z) = c(−z)−1/4 sin( 2
3 (−z)3/2 + π

4 ) +O((−z)−3/2) for z → −∞.

Here are a few more useful facts: A− = A+ for real z, and |A±| is monoton-
ically increasing. In the context of the grazing ray parametrix it is useful
that (7.1) implies

A−(ζ)−A+(ζ)
A−
A+

(ζ0) = −ω2

(
Ai(ζ)−A+(ζ)

Ai

A+
(ζ0)

)
.

(7.2)
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Appendix B: Stationary
Phase

Here I state the stationary phase lemma in the form I need it. The proof
is standard and therefore only sketched.

Let φ(x, y) be a smooth function of x ∈ Rn and y ∈ Rm, defined near
(x0, y0), and suppose φ(x0, ·) has a nondegenerate critical point at y0, i.e.

φ′y(x0, y0) = 0, φ′′yy nondegenerate.

By the implicit function theorem there is a smooth function y(x) near x0,
with y(x0) = y0, such that φ(x, ·) has, for y near y0, a unique critical point
at y = y(x). By continuity of φ′′yy it is nondegenerate.

For each λ > 1 let a(x, y, λ) be a smooth function of x, y with support
sufficiently close to (x0, y0) and independent of λ.

Assume

|Dα
x,ya(x, y, λ)| ≤ Cαλr|α| (8.1)

for all multi-indices α, for some r ≤ 1/2.

Lemma 8.1 Let

Iγλ (x) =
∫
eiλφ(x,y)(y − y(x))γa(x, y, λ) dy
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for some multiindex γ. Then

Iγλ (x) = λ−m/2−d|γ|/2eeiλφ(x,y(x))b(x, λ)

where b satisfies the same estimates as a:

|Dα
x b(x, λ)| ≤ Cαλr|α|.

Here dse is the smallest integer greater than or equal to s. Thus the
nondegenerate stationary point gives a decay, in powers of λ → ∞, of
− 1

2 (number of integration variables), and each order of vanishing of the
amplitude at the stationary point gives an additional gain of − 1

2 , with odd
orders slightly better.

For r = 0 a proof can be found in [S3], for example. The main idea (for
α = 0 say) is to cut off the integral smoothly at a distance λ−1/2 from the
stationary point, introducing an error of the order of the desired estimate,
and repeatedly integrating by parts in the remaining integral. As the λ-
dependence of the cutoff function is as in (8.1), with r = 1

2 , the resulting
estimate is not weakened by allowing to have a stronger λ-dependence of a
as in (8.1), as long as r ≤ 1

2 .
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