
Perturbation theory for plasmonic eigenvalues

Daniel Grieser and Hannes Uecker
Institut für Mathematik, Carl von Ossietzky Universität, D-26111 Oldenburg, Germany

Svend-Age Biehs,* Oliver Huth, Felix Rüting, and Martin Holthaus
Institut für Physik, Carl von Ossietzky Universität, D-26111 Oldenburg, Germany

�Received 14 August 2009; revised manuscript received 27 October 2009; published 4 December 2009�

We develop a perturbative approach for calculating, within the quasistatic approximation, the shift of surface
resonances in response to a deformation of a dielectric volume. Our strategy is based on the conversion of the
homogeneous system for the potential which determines the plasmonic eigenvalues into an inhomogeneous
system for the potential’s derivative with respect to the deformation strength and on the exploitation of the
corresponding compatibility condition. The resulting general expression for the first-order shift is verified for
two explicitly solvable cases and for a realistic example of a deformed nanosphere. It can be used for scanning
the huge parameter space of possible shape fluctuations with only quite small computational effort.
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I. INTRODUCTION

Recent advances in plasmonics, i.e., in the use of surface
plasmons for subwavelength optics,1–3 have led to renewed
interest in the physics of plasmon excitations bound to
smooth or rough surfaces.4 In particular, it has been proposed
to transport electromagnetic energy along linear chains of
nanoparticles,5 possibly embedded in a gain medium,6 and
proof-of-principle experiments have been made.7–9 In such
setups, fabrication-induced shape imperfections of the nano-
particles inevitably will result in slight shifts of their reso-
nance frequencies and it might be crucial to estimate the
maximum size of such fluctuations which can still be
tolerated.10 Although sophisticated numerical methods for
computing the optical response of nanoparticles do exist,11,12

it would still be helpful to have a flexible analytical tool
which exploits the fact that the shape of an unintentionally
deformed nanoparticle is close to some theoretical ideal, as
this tool would allow one to explore the huge parameter
space of possible perturbations in a computationally cheap
manner.

In the present paper we develop such a perturbative ap-
proach to the computation of surface resonances. Our strat-
egy is quite general, relying on concepts borrowed from dif-
ferential geometry.13 The mathematical arguments are given
in the following Sec. II; some technical details have been
deferred to Appendix A. The main results are the expressions
�26� and �28�, which quantify the shifts of the resonance
frequencies to first order in the deformation strength.
Section III then provides three illustrative examples. The first
two of these make contact with analytically solvable models
thus helping to gain confidence in the formalism while the
third one is a more realistic application to a deformed nano-
sphere for which no closed analytical solution is available.
This necessitates to consider the splitting of degenerate
modes, which is done in Appendix B. The paper ends with
some concluding remarks in Sec. IV.

II. PERTURBATION THEORY FOR PLASMONICS

Consider a volume ��R3 filled with a dielectric medium
which is characterized by an isotropic, frequency-dependent

dielectric function ����; this volume � be surrounded by
vacuum. We employ the quasistatic approximation, which is
valid if the characteristic linear extensions of � are small in
comparison with the wavelengths of impinging radiation,
and thus captures essential features of nonretarded plasmon
dynamics in small nanoparticles.12,14–17 The Fourier compo-
nents u�r ��� of the potential then are given by the solutions
to the set of equations

�u = 0 in R3 \ �� , �1�

u− − u+ = 0 on �� , �2�

��nu− − �nu+ = 0 on �� . �3�

Here u− is the restriction of u to the interior � and u+ is its

restriction to the open exterior R3 \�̄; both u− and u+ are
smooth everywhere except at the boundary ��. We stipulate
that �� be sufficiently smooth to substantiate the following
operations and suppress the dependence of u on the fre-
quency � altogether. The expressions �nu�=n ·�u� in
Eq. �3� are the derivatives of the potential in the direction of
the outward unit normal n.

Observe that at this point the knowledge of the dielectric
function ���� is not yet required. Rather, we take � on the
left-hand side �lhs� of Eq. �3� as a real number and regard it
as an eigenvalue, henceforth dubbed as plasmonic eigen-
value, if the system �1�–�3� with that particular � possesses a
nontrivial solution u which vanishes at least quadratically
with increasing distance from ��. This nomenclature is for-
mally justified by reformulating the system �1�–�3� in terms
of Dirichlet-to-Neumann operators so that the desired values
of � explicitly appear as inverse eigenvalues of a combina-
tion of such operators.18 This somewhat unfamiliar view of-
fers conceptual advantages: on the one hand, the material-
specific aspects of the problem, embodied in the function
����, are separated from the geometric ones; only these geo-
metric aspects matter when studying deformations of �. On
the other hand, standard theorems concerning the behavior of
eigenvalues of linear operators under perturbations can now
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be employed. After such a plasmonic eigenvalue has been
found for a particular geometry, i.e., for some domain �
with a given shape, that eigenvalue then determines the fre-
quency �s of a surface resonance through the equation
�=Re����s��. For example, a half space with planar bound-
ary �� yields �=−1 and the dielectric function can be taken
as

���� = 1 −
�p

2

�2 �4�

for metallic materials with plasma frequency �p, describing
the free-electron motion. This then leads to the familiar ex-
pression �s=�p /�2 for the surface-plasmon resonance at a
planar metal-vacuum interface in the quasistatic limit.4 Typi-
cal plasma frequencies for good conductors are on the order
of 1016 s−1.

We now consider the response of a plasmonic eigenvalue
� to a small deformation of �. This deformation is modeled
in terms of a shape function a :��→R and a dimensionless
parameter h, such that the surface of the deformed volume is
given by

���h� = �r + ha�r�n�r� : r � ��� . �5�

We assume that one has solutions ��h�, u�r ,h� to the
problem �1�–�3� with � replaced by ��h�, and that ��h� and
u�r ,h� depend differentiably on h. We denote the derivatives
in h by a dot and write �̇= �̇�0� and u̇�r�= u̇�r ,0� for brevity.

In what follows we derive a system of equations for �̇ and
u̇�r�, and therefrom an explicit expression for �̇. To this end,
we take the derivative of the system �1�–�3� with respect to
h. First, for any r�” ��=���0� one has r�” ���h� for h suf-
ficiently close to zero; therefore, Eq. �1� readily yields

�u̇ = 0 in R3 \ �� . �6�

Next we differentiate Eq. �2�. In a more explicit form, this
equation reads

u−�r + ha�r�n�r�,h� − u+�r + ha�r�n�r�,h� = 0 �7�

and hence gives

an · �u− + u̇− − �an · �u+ + u̇+� = 0 �8�

or

u̇− − u̇+ = an · �u+ − an · �u− = �� − 1�a�nu−, �9�

where Eq. �3� has been used for eliminating u+.
Similarly we differentiate Eq. �3�, keeping in mind that

�nu�=n ·�u�, and taking into account that n also depends
on h. Thus, one has

�n · �u��· = ṅ · �u� + n · ��u��· . �10�

The required derivatives ṅ and n · ��u��· are calculated in
Appendix A. According to Eq. �A12�, ṅ=−��a coincides
with the negative gradient of the shape function inside the
surface �� while Eq. �A21� expresses n · ��u��· in terms of
the Laplace-Beltrami operator ��=div� �� applied to u�, and
the mean curvature H of ��. Combining these results, we
find

�n · �u��· = − ��a · ��u� − a��u� + 2aH�nu� + �nu̇�

= − div��a��u�� + 2aH�nu� + �nu̇�. �11�

Thus, taking the h derivative of Eq. �3� leads to

���nu− − �nu+�· = �̇�nu− + ���nu−�· − ��nu+�·

= �̇�nu− − div��a����u− − ��u+��

+ 2aH���nu− − �nu+� + ��nu̇− − �nu̇+.

�12�

The lhs now vanishes identically and the third term on the
right-hand side �rhs� vanishes because of Eq. �3� itself.
Moreover, since u+=u− on �� according to Eq. �2� and ��

differentiates inside �� only, we can replace ��u+ by ��u− in
the second term, finally leaving us with

��nu̇− − �nu̇+ = − �̇�nu− + �� − 1�div��a��u−� . �13�

In summary, the differentiation of the homogeneous
system �1�–�3� has led to the inhomogeneous system

�u̇ = 0 in R3 \ �� , �14�

u̇− − u̇+ = F on �� , �15�

��nu̇− − �nu̇+ = − �̇�nu− + G on �� , �16�

where

F = �� − 1�a�nu−, �17�

G = �� − 1�div��a��u−� . �18�

Since the homogeneous system has a nontrivial solution �the
given u�, its inhomogeneous descendant can admit a solution
only if the right-hand sides F, −�̇�nu−+G satisfy a certain
compatibility condition. Since by assumption there is a solu-
tion �the h derivative of the given family u�r ,h��, this con-
dition actually is fulfilled, and yields an expression for �̇. For
deriving this expression, we start from �u−=�u̇−=0 in �.
Green’s formula then gives

0 = 	
�

d3r�u−�u̇− − ��u−�u̇−� = 	
��

d2S�u−�nu̇− − ��nu−�u̇−� ,

�19�

where d2S denotes the surface area element. Thus, one has

	
��

d2Su−�nu̇− = 	
��

d2S��nu−�u̇−, �20�

a corresponding identity holds for u+ and u̇+. Therefore

	
��

d2S�u−��nu̇− − u+�nu̇+� = 	
��

d2S����nu−�u̇− − ��nu+�u̇+� .

�21�

Since u−=u+ on ��, the lhs becomes
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��

d2Su−���nu̇− − �nu̇+� = 	
��

d2Su−�− �̇�nu− + G� .

�22�

On the other hand, since �nu+=��nu− on ��, the rhs of
Eq. �21� takes the form

	
��

d2S���nu−��u̇− − u̇+� = �	
��

d2S��nu−�F . �23�

Equating these two expressions �22� and �23�, and solving
for �̇, we obtain

�̇ =

	
��

d2Su−G − �	
��

d2S��nu−�F

	
��

d2Su−�nu−

. �24�

Inserting the formulae �17� and �18� for F and G, and per-
forming an integration by parts, the numerator reduces to

	
��

d2Su−�� − 1�div��a��u−� − �	
��

d2S��nu−��� − 1�a�nu−

= �1 − ��	
��

d2Sa����u−�2 + ���nu−�2� . �25�

Thus, the desired expression for the first-order change of the
plasmonic eigenvalue � with the deformation strength h fi-
nally reads

�̇ = �1 − ��
	

��

d2Sa����u−�2 + ���nu−�2�

	
��

d2Su−�nu−

. �26�

This is the principal result of the present work. Observe that
�u−=0 implies

	
��

d2Su−�nu− = 	
�

d3r��u−�2 �27�

so that the denominator is positive. Of course, �̇ can likewise
be expressed entirely in terms of u+,

�̇ = �1 − ��
	

��

d2Sa�����u+�2 + ��nu+�2�

	
��

d2Su+�nu+

. �28�

III. APPLICATIONS

Consider an infinite half-space geometry with the dielec-
tric medium filling the volume z�0 so that its boundary is
given by the plane z=0. Let �= �kx ,ky� be a two-dimensional
wave vector with �=�kx

2+ky
2. Solutions to Laplace’s Eq. �1�

which vanish for z→ �	 then are given by

u+�r� =	 d2�

�2
�2A���ei�·x−�z, �29�

u−�r� =	 d2�

�2
�2B���ei�·x+�z �30�

with x= �x ,y� and r= �x ,y ,z�, and the continuity
condition �2� yields B���=A���. Moreover, since u� is real,
one has A����=A�−��. At this point, the amplitudes A���
describing the excitations at an exactly planar surface are
arbitrary. The normal and the in-plane derivatives at z=0
then are

�nu� = �	 d2�

�2
�2A����ei�·x, �31�

��u� =	 d2�

�2
�2A����i��ei�·x, �32�

respectively, so that the condition �3� immediately provides
the well-known eigenvalue �=−1 for this particular geom-
etry. We write

��nu��2 =	 d2�

�2
�2	 d2��

�2
�2A���A����������ei��−���·x,

���u��2 =	 d2�

�2
�2	 d2��

�2
�2A���A������� · ���ei��−���·x

together with

u��nu� = �	 d2�

�2
�2	 d2��

�2
�2A���A�������ei��−���·x,

giving

	
��

d2Su��nu� = �	 d2�

�2
�2 �A����2� . �33�

Now we introduce a small deformation of the planar surface,
described by some suitable shape function a�x�. The required
amplitudes A��� consequently are determined by that defor-
mation; the assumption that the exact potential u��r� can still
be written in the form �29� or �30� constitutes the Rayleigh
hypothesis.19 Upon inserting the Fourier transform of the
shape function, i.e.,

a�x� =	 d2�

�2
�2 â���ei�·x �34�

and using �=−1 for the unperturbed eigenvalue, either Eq.
�26� or its variant �28� readily yields

�̇ = 2
	 d2�

�2
�2	 d2��

�2
�2 â��� − ��A���A����������̂ · �̂� − 1�

	 d2�

�2
�2 �A����2�

,

�35�

where �̂ denotes the unit vector in the direction of �. In
particular, if a�x�=c, one has â���= �2
�2c����, so that
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�̇=0: The plasmonic eigenvalue does not change when the
entire surface plane is displaced by some amount c.

On the other hand, there exists an exact integral equation
for determining the amplitudes A��� associated with a given
surface deformation, derived by Farias and Maradudin on the
basis of the Rayleigh hypothesis:19

� + 1

� − 1
A���� =	 d2�

�2
�2J��� − ���� − ���1 − �̂ · �̂���A���

�36�

with

J�
�q� =
1



	 d2Se−iq·x�exp�
ha�x�� − 1� , �37�

this has been applied by Maradudin and Visscher to the study
of particular perturbations of planar surfaces.20 Expanding
the latter expression �37� to first order in h gives

J�
�q� = hâ�q� + O�h2� �38�

so that Eq. �36� becomes

� + 1

� − 1
A���� = h	 d2�

�2
�2 â��� − ���1 − �̂ · �̂���A���

�39�

for sufficiently weak perturbations. Recalling that the unper-
turbed eigenvalue is −1, we insert �=−1+O�h� into the de-
nominator on the lhs. Multiplying both sides by A�������,
integrating, and rearranging then yields

� = − 1 + h�̇ + O�h2� �40�

with �̇ indeed formally equal to the previous Eq. �35�. Thus,
our perturbative result is consistent with the formula �36�.

A second example which allows one to confirm the valid-
ity of the perturbative approach by analytical means is pro-
vided by the deformation of a dielectric sphere of radius R
into a spheroid. In this case the unperturbed potential is
written as

u+�r� = 

�=1

	

A�r−��+1�Y0
���� ,

u−�r� = 

�=0

	

B�r�Y0
���� �41�

valid for r�R and r�R, respectively. Here Ym
� denote the

familiar spherical harmonics. The restriction to these basis
functions with m=0, which do not depend on the azimuthal
angle �, confines us to deformations which preserve the ro-
tation symmetry around the z axis. From condition �2� one
gets B�=A�R−�2�+1� and Eq. �3� then leads to the eigenvalues

�� = −
� + 1

�
. �42�

In particular, �1=−2 characterizes the dipole resonance.21 We
deform the sphere into a spheroid oriented along the z axis,
employing the shape function

a��,�� = R cos2��� . �43�

Here the choice of the sphere’s radius R as the scale of the
deformation is a matter of convenience. The three degenerate
dipole modes of the sphere are shifted when the deformation
strength h adopts nonzero values such that the mode associ-
ated with the z axis splits off from the two others. For esti-
mating the corresponding change in �1 for small h, we use

u1−�r� = rY0
1��� = r� 3

4

cos � �44�

and calculate

��nu1−�2 =
3

4

cos2 � ,

���u1−�2 =
3

4

sin2 � ,

u1−�nu1− =
3

4

R cos2 �

on ��, giving

	
��

d2Sa��nu1−�2 =
3

5
R3,

	
��

d2Sa���u1−�2 =
2

5
R3,

	
��

d2Su1−�nu1− = R3. �45�

Plugged into Eq. �26�, this yields

�̇1 = −
12

5
. �46�

This easily obtainable result can be checked against the ex-
actly known expression for the dipolar z mode of a
spheroid21

�1 = 1 −
1

L
, �47�

where L denotes the depolarization coefficient, given by22

L�e� = �
1 − e2

e3 �artanh�e� − e� h � 0

1 + e2

e3 �e − arctan�e�� h � 0� �48�

with
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e2 = �1 −
1

�1 + h�2 = 2h + O�h2� h � 0

1

�1 + h�2 − 1 = − 2h + O�h2� h � 0

.� �49�

Thus, e2 becomes small with h, allowing us to expand L�e�
as

L�e� = �
1

3
−

2

15
e2 + O�e4� h � 0

1

3
+

2

15
e2 + O�e4� h � 0

.� �50�

Exploiting Eq. �49� one expresses L in terms of h, finding

L�h� =
1

3
−

4

15
h + O�h2� . �51�

This tells us that �1, as given by Eq. �47�, should be ex-
panded in powers of �L−1 /3�:

�1 = − 2 + 9
L −
1

3
� + O�
L −

1

3
�2� . �52�

Inserting Eq. �51�, we obtain

�1 = − 2 −
12

5
h + O�h2� �53�

in accordance with the result Eq. �46� of perturbation theory.
The following third example concerns a deformed nano-

sphere which does not admit an analytical solution in closed
form so that the accuracy achieved by first-order perturbation
theory has to be ascertained by comparison with numerical
calculations. This is exactly the type of application we have
in mind since here Eqs. �26� and �28� provide a quick and
reliable estimate of the possibly detrimental consequences of
geometrical imperfections10 without hard requirements on
computational resources. We assume that the ideal sphere is
distorted by two Gaussian protrusions and parametrize its
surface as

a��,�� = R 

i=1,2

f i exp�−
dist��i,�i;�,��2

2wi
2 � �54�

with dist��i ,�i ;� ,�� denoting the dimensionless Euclidean
distance between the two points on the unit sphere specified
by the angles �i ,�i and � ,�, respectively. The protrusions’
parameters are chosen, somewhat arbitrarily, as f1=1.0 and
f2=0.8 for their amplitudes, w1=0.7 and w2=0.65 for their
Gaussian widths, and �1=1.1, �2=2.2, and �1=4.9 and �2
=0.1 for their locations. Figure 1 depicts the resulting de-
formed sphere for the value h=0.2 of the overall perturbation
strength.

This example also illustrates a further important issue.
While the dipole modes of a perfect sphere are threefold
degenerate, this degeneracy is removed entirely by the
distortion �54�. Thus, there now are three branches of dipole-
like eigenvalues, and our previous analysis applies to each
branch separately, provided the starting point is chosen ap-
propriately: The expressions �26� and �28� refer to the indi-

vidual branches, if the proper linear combinations of the un-
perturbed degenerate modes are inserted. The problem how
to find these linear combinations is solved in Appendix B.
Basically, the numerator of the formula �26� defines a qua-
dratic form of the eigenmodes �see Eq. �B11��; the required
proper linear combinations of the unperturbed modes are
those which diagonalize this form. Their determination and
the evaluation of the ensuing surface integrals determining �̇
for all three branches does not demand much numerical ef-
fort. Figure 2 shows the perturbative results for deformation
strengths −0.25�h�+0.25 in comparison with data ob-
tained by nonperturbative numerical computations.23 Quite
remarkably, first-order perturbation theory still produces ex-
cellent results when the shape variation already is quite sub-
stantial, that is, for values of h up to 0.1; even for h as large
as 0.2 one obtains good estimates.

IV. CONCLUDING REMARKS

The first-order perturbative expression �26� or �28� for the
shift of a plasmonic eigenvalue clearly has a limited range of
applicability, insofar as it is restricted to sufficiently weak
deformations, but it stands out because of its generality, and
easy use. Together with similar results for higher
derivatives,24 one obtains a formal perturbation series

FIG. 1. �Color online� Sketch of the particular perturbed nano-
sphere �54� employed as example for demonstrating the accuracy of
the perturbative approach. The deviation of the scaled surface radii
r�� ,�� /R from their ideal value 1 is visualized here for h=0.2.

-1.8

-2.2

-2

0-0.2 0.2

ε

h

FIG. 2. Numerically computed plasmonic eigenvalues for the
dipole modes of the deformed nanosphere depicted in Fig. 1
�crosses�, in comparison with the results of first-order perturbation
theory �full lines�.
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��h� � � + h�̇ +
1

2
h2�̈ + ¯ . �55�

Above we have simply assumed the existence of ��h� and
u�r ,h�. Given a solution at h=0, this existence actually fol-
lows from the reformulation of the problem in terms of
Dirichlet-to-Neumann operators18 and from standard pertur-
bation theory for eigenvalues. If � is p-fold degenerate �as in
the case of the sphere� then one has p branches ��i� and u�i�;
i=1, . . . , p. The analysis of Sec. II then applies to each
branch separately with �̇�i� being given by Eq. �26� or �28�
with u=u�i�. Here u�1� , . . . ,u�p� form a basis of the subspace
of degenerate solutions at h=0, determined such that they
diagonalize the quadratic form given by Eq. �B11�.

The three examples we have given in Sec. III vary in
character, the first two recovering known analytical results
and thus confirming the correctness of our formal line of
reasoning. The third example, summarized by Figs. 1 and 2,
demonstrates the utility of our approach for practical pur-
poses. Here we have dealt with an asymmetrically deformed
nanosphere and obtained fairly good estimates for the shifted
dipole modes. If we assume that tolerances on the order of
5% can be met in nanosphere fabrication, first-order pertur-
bation theory thus allows one to quantify the effects of a
large variety of possible shape fluctuations with both suffi-
cient accuracy and only small numerical effort.
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APPENDIX A: AUXILIARY CALCULATIONS

In this appendix we compute the derivatives entering
into the evaluation of Eq. �10� en route to the important
result �13�. This calculation invokes some notions from dif-
ferential geometry.13 We fix a point r0���=���0� and pa-
rametrize �� near r0 as r=r�v ,w� with r0=r�0,0�. It is as-
sumed that the parametrization is such that the tangent
vectors rv=�vr and rw=�wr are orthogonal and have unit
length at r0, and such that the v line �i.e., v�r�v ,0�� and the
w line through r0 have normal vectors parallel to n at r0 �i.e.,
have vanishing geodesic curvature�.

The curvatures of the v line and the w line are
�v=rvv ·n and �w=rww ·n, respectively. Considering n as a
function of v and w, one has

rv · n = 0 �A1�

and hence

rvv · n + rv · nv = 0 �A2�

giving

�v = − rv · nv; �A3�

analogously, �w=−rw ·nw.

Note that orthonormality of rv and rw holds only at r0, not
at nearby points. In the following calculations we always
evaluate at h=0 after differentiating in h and at r=r0 after
differentiating in v and w.

We now derive an expression for ṅ. The surface ���h� is
parametrized by

r�v,w,h� = r�v,w� + ha�v,w�n�v,w� , �A4�

where we abuse notation by considering a and n as functions
of v and w. Its unit normal is n=N / �N�, where N=rv�rw.
At r0 one has n=N by assumption. Differentiating, one gets

ṅ =
Ṅ

�N�
−

N

�N�2
 N

�N�
· Ṅ� =

1

�N�
�Ṅ − n�n · Ṅ�� , �A5�

which states that ṅ is determined by the tangential part of Ṅ.
Moreover

Ṅ = ṙv � rw + rv � ṙw. �A6�

Since ṙ=an, one has

ṙv = avn + anv. �A7�

At r0, the identity n=rv�rw implies n�rw=−rv and
rv�n=−rw. In addition, nv�rw= �nv ·rv�rv�rw because the
component of nv parallel to rw drops out of the vectorial
product. �Observe that n ·n=1 implies nv ·n=0 so that nv lies
in the span of rv and rw.� Putting this together and using
Eq. �A3�, one finds

ṙv � rw = �avn + anv� � rw

= − avrv + a�nv · rv�n

= − avrv − a�vn; �A8�

analogously

rv � ṙw = − awrw − a�wn . �A9�

Inserting Eqs. �A8� and �A9� into Eq. �A6�, we arrive at

Ṅ = − �avrv + awrw� − a��v + �w�n . �A10�

Now we observe that

avrv + awrw = ��a �A11�

is the gradient of a as a function in the surface ��. Since
according to Eq. �A5� the desired derivative ṅ is the tangen-

tial component of Ṅ, we have the compact result

ṅ = − ��a . �A12�

Next we calculate n · ��u�· for u=u+ or u=u− at r0. Starting
from

��u�·�r� = � �

�h
�

h=0
��u��r + ha�r�n�r�,h�

= a�n · �� � u�r� + �u̇�r� �A13�

one finds
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n · ��u�· = a�n · ��2u + �nu̇ . �A14�

To simplify notation we assume that coordinates in R3 are
chosen such that n= �0,0 ,1� at r0, reducing the first term on
the rhs to a�x3

2 u at r0. Because �u=0, we then have, at r0

n · ��u�· = − a��x1

2 + �x2

2 �u + �nu̇ . �A15�

This has to be expressed in terms of derivatives of u inside
the surface. We choose the surface coordinates as v=x1 and
w=x2 but still write r=r�v ,w�. Differentiating u twice with
respect to v,

�vu�r�v,w�� = �rv · ��u�r�v,w�� ,

�v
2u�r�v,w�� = �rv · ��2u�r�v,w�� + �rvv · ��u�r�v,w��

�A16�

and observing rv ·�=�x1
and rvv=�vn, we get

�v
2u = �x1

2 u + �v�nu . �A17�

Combining this with the analogous equation for x2 gives

��x1

2 + �x2

2 �u = ��v
2 + �w

2 �u − ��v + �w��nu . �A18�

Introducing the mean curvature H of ��,

H =
1

2
��v + �w� , �A19�

and identifying

��u = ��v
2 + �w

2 �u �A20�

as the Laplace-Beltrami operator of the surface ��, Eq.
�A15� takes the final form

n · ��u�· = − a��u + 2aH�nu + �nu̇ . �A21�

While we had used a special coordinate system for simplify-
ing the derivation, the Laplace-Beltrami operator is defined
independent of the choice of coordinates as ��=div� ��.
Here div� is the divergence inside the surface, given by the
negative adjoint of the gradient with respect to the surface
volume element. This is exploited in Eq. �11�.

The fact that the two results Eqs. �A12� and �A21� ob-
tained in this appendix are expressed invariantly, that is,
without reference to coordinates, is essential for their use in
Sec. II.

APPENDIX B: PERTURBATION THEORY FOR
DEGENERATE MODES

When dealing with the splitting of degenerate eigenvalues
in response to some deformation, as exemplified in Fig. 2,
the question emerges which linear combinations of the un-
perturbed modes must be inserted into Eqs. �26� and �28� in
order to obtain the different branches. For finding these
proper linear combinations, we start with the following as-
sertion: if u�

�1� and u�
�2� are two nondegenerate solutions to the

system �1�–�3� with eigenvalues ��1����2�, then

	
��

d2Su−
�1��nu−

�2� = 	
��

d2Su−
�2��nu−

�1� = 0. �B1�

This is shown by first exploiting Eq. �3� and writing

��2��nu−
�2� − �nu+

�2� = 0 on � � . �B2�

Multiplying by u−
�1� and integrating, one arrives at

��2�	
��

d2Su−
�1��nu−

�2� = 	
��

d2Su−
�1��nu+

�2� = 	
��

d2Su+
�1��nu+

�2�,

�B3�

where Eq. �2� has been used. In the same manner one also
finds

��1�	
��

d2Su−
�2��nu−

�1� = 	
��

d2Su+
�2��nu+

�1�. �B4�

Moreover, one has

	
��

d2Su−
�1��nu−

�2� = 	
�

d3r� · �u−
�1� � u−

�2��

= 	
�

d3r � u−
�1� · �u−

�2� �B5�

by virtue of Eq. �1�. Hence, we deduce

	
��

d2Su−
�1��nu−

�2� = 	
��

d2Su−
�2��nu−

�1�; �B6�

similarly

	
��

d2Su+
�1��nu+

�2� = 	
��

d2Su+
�2��nu+

�1�. �B7�

Therefore, subtracting Eq. �B4� from Eq. �B3� readily yields

���2� − ��1��	
��

d2Su−
�1��nu−

�2� = 0. �B8�

Since ��2����1� by assumption, this, together with Eq. �B6�,
was to be demonstrated.

Next, we consider two such branches of solutions which
depend on a deformation strength h and are degenerate only
for vanishing deformation, ��1�=��2�=� for h=0 while
�̇�1�� �̇�2�. Since then the assertion �B1� holds for any h�0,
continuity demands that it is also valid for h=0: it is this
requirement �B1� which singles out the proper linear combi-
nations of the degenerate unperturbed modes, when retracing
the split modes back to the point of degeneracy. Focusing
now on h=0 and observing

0 = 	
�

d3r�u−
�1��u̇−

�2� − ��u−
�1��u̇−

�2�� �B9�

virtually the same steps that also lead from Eq. �19� to Eq.
�26� then result in
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�̇�2�	
��

d2Su−
�1��nu−

�2� = 	
��

d2S�u−
�1�G�2� − ���nu−

�1��F�2��

= �1 − ��M�u�1�,u�2�� , �B10�

where we have introduced the expression

M�u�1�,u�2�� = 	
��

d2Sa���u−
�1� · ��u−

�2� + ��nu−
�1��nu−

�2�� .

�B11�

Because the lhs of Eq. �B10� vanishes so does the rhs.
Excluding the particular value �=1, which corresponds
to the relative permittivity of the vacuum, we deduce
M�u�1� ,u�2��=0. This requirement finally dictates how to pro-
ceed in the general case: let us assume that an eigenvalue �
to the system �1�–�3� is p-fold degenerate with eigenmodes
v�k�, where k=1, . . . , p. Then M�v�k� ,v���� is a symmetric
p� p matrix and hence possesses p orthonormal eigenvec-
tors ��

�j� �where the lower index � refers to the components�
with eigenvalues d�j�, such that



�=1

p

M�v�k�,v������
�j� = d�j��k

�j� �B12�

and



k=1

p

�k
�i��k

�j� = �i,j �B13�

employing the usual Kronecker delta �i,j. Therefore, multi-
plying Eq. �B12� by �k

�i� and summing over k, one gets



�,k=1

p

M��k
�i�v�k�,��

�j�v���� = d�j��i,j . �B14�

Thus, setting

u�i� = 

k=1

p

�k
�i�v�k� �B15�

we have M�u�i� ,u�j��=0 for i� j, as required. This Eq. �B15�
therefore specifies the desired proper linear combinations of
the unperturbed, degenerate eigenmodes.
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