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Abstract. We introduce the notion of a conic space, as a natural structure on

a manifold with boundary, and define a natural first order differential operator,
cd∂ , acting on boundary values of conic one-forms. Conic structures arise, for
example, from resolutions of manifolds with conic singularities, embedded in a

smooth ambient space. We show that pull-backs of smooth ambient one-forms

to the resolution are cd∂ -closed, and that this is the only local condition on one-
forms that is invariantly defined on conic spaces. The operator cd∂ extends

to conic Riemannian metrics, and cd∂ -closed conic metrics have important

geometric properties like the existence of an exponential map at the boundary.

1. Introduction. Let X be a manifold with boundary. The conic tangent bundle,
denoted cTX and defined below, is a natural vector bundle over X of rank dimX.
It is isomorphic to the ’usual’ tangent bundle TX, though not canonically. We call
the pair (X, cTX) a conic space. This notion is motivated by the desire to have
a coordinate invariant framework for calculations in the geometry and analysis
on manifolds with conic singularities: If M is a manifold with conic singularities,
embedded in a smooth manifold Z, and Mres is the resolution of M obtained by
blowing up the conic points (for precise definitions see Section 4) then the fibres of
cTMres correspond naturally

• to the tangent spaces of M at smooth points of M and
• to limits of tangent spaces of M , from various directions, at the singular points

of M ,

see Corollary 1. That is, cTMres is nothing but the Nash bundle of M . Therefore,
in this case cTX has a very intuitive geometric meaning.

Differential geometric objects such as differential forms or Riemannian metrics
have natural analogues on a conic space, obtained by replacing the usual tangent
bundle TX with cTX. We call these conic forms, conic metrics etc. In the case
where X = Mres, smooth forms or metrics on the ambient space Z, when restricted
to the smooth part of M and lifted to the interior of X, extend smoothly to corre-
sponding conic objects on X. They also satisfy an infinite number of compatibility
conditions at ∂X, stemming from the differential structure of the ambient space Z
at the conic singularities of M . These conditions are relations between derivatives
of various orders of the coefficients of the object under consideration, in any local
coordinate system.
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The question arises if any of these conditions can be formulated invariantly in
the category of conic spaces. We show that this is the case precisely for one of these
conditions. This is a first order condition, expressible as cd∂ω = 0, where cd∂ is
a natural first order differential operator on any conic space X, derived from the
exterior derivative and acting at the boundary ∂X. The operator cd∂ is defined on
conic one-forms but extends to higher forms, metrics etc. It can be viewed as a
directional derivative in directions tangent to the boundary, and as such is scalar
valued. See Section 3 for the definition of cd∂ and proofs of its properties stated
above, and Theorem 4.1 for the statement on uniqueness.

It is clear that the condition on a conic Riemannian metric g to be cd∂-closed,
i.e. to satisfy cd∂g = 0, should have geometric implications. We formulate two
such implications in Section 5: The existence of a certain normal form for g near
the boundary, and the existence of an exponential map based at the boundary, see
Theorem 5.2. Here we use a theorem of Melrose and Wunsch [3] which implies the
equivalence of these two conditions.

Besides cTX there is another natural structure on a manifold with boundary,
the b-tangent bundle bTX introduced by Melrose [4]. There are many similarities
between conic and b-geometry. In particular, Melrose introduced an ’exactness’
condition on b-metrics which is equivalent to the existence of a certain normal
form near the boundary. Exactness is also a first order condition at the boundary.
However, there are some important differences between the b- and the conic case: In
the conic case, the closedness condition is equivalent to an exactness condition, see
Remark 2, while the exactness condition in the b-case is global on the boundary and
has no local equivalent. Another difference is that in the conic case the closedness
condition for metrics is induced from a corresponding condition on one-forms. There
appears to be no corresponding condition on one-forms in the b-case.

2. Definition of cTX. We will introduce all objects invariantly and also express
them in local coordinates. Local coordinates r, φ1, · · · , φm near a boundary point
of X are called boundary coordinates if r is a boundary defining function (so ∂X =
r−1(0), r ≥ 0 on X and dr 6= 0 at ∂X). Then φ1, · · · , φm are, when restricted to
∂X, local coordinates on ∂X.

It is easiest to define the dual bundle cT ∗X first and then to dualize. Let i :
∂X → X be the inclusion and

M = {α ∈ Γ(T ∗X) : i∗α = 0}

be the space of one-forms on X vanishing on vectors tangent to the boundary. The
space M is clearly a C∞(X)-module. Also, it is locally free. This is clear near any
interior point of X (since one just gets all one-forms there), and in a neighborhood
U of a boundary point one has, with respect to any boundary coordinate system,

M|U = {a dr +

m∑
i=1

ci dφi : a, ci ∈ C∞(U), ci|U∩∂X = 0 ∀i},

and since ci ∈ C∞(U), ci|U∩∂X = 0 ⇔ ci = rbi for some bi ∈ C∞(U), the mod-
ule M|U is spanned freely by dr, rdφ1, · · · , rdφm over C∞(U). Since locally free
C∞(X)-modules correspond to vector bundles, we may define:

Definition 2.1. Let X be a manifold with boundary. The conic cotangent bundle,
cT ∗X, is the vector bundle whose space of sections is given by M, defined above.
The conic tangent bundle, cTX, is the dual of cT ∗X.
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An explicit model for cT ∗qX, for q ∈ X, is cT ∗qX = M/mqM, q ∈ X, where
mq ⊂ C∞(X) is the maximal ideal of functions vanishing at q.

If r, φ1, · · · , φm are local boundary coordinates then dr, rdφ1, · · · , rdφm is a local
basis of (the space of sections of) cT ∗X; we write

∂r,
1

r
∂φ1 , · · · ,

1

r
∂φm

for the dual local basis of (the space of sections of) cTX.
The precise meaning and a justification for this notation becomes apparent from

a careful examination of the relationship of cTX and TX:

Lemma 2.2 (and Definition). Interpreting a section of cT ∗X as a one-form on X
defines a natural bundle homomorphism

ι : cT ∗X → T ∗X,

which is an isomorphism over the interior of X but over q ∈ ∂X has one-dimensional
range

L∗q := ran ιq ⊂ T ∗qX

equal to the conormal bundle of ∂X. In any boundary coordinate system, one has
L∗q = span{dr}.

The dual homomorphism ι′ : TX → cTX identifies smooth vector fields on X
with certain sections of cTX. It is an isomorphism over the interior of X but at
any boundary point q has one-dimensional range

Lq = span{∂r} ⊂ cTqX

(with respect to any boundary coordinate system) and is naturally dual to L∗q . We
have Lq ∼= TqX/Tq∂X naturally.

We call L the canonical line bundle of X.

We will see later that in a blow-up situation L corresponds to the canonical line
bundle over projective space.

Proof. Clearly, ι is a well defined bundle homomorphism, and an isomorphism over
the interior. In boundary coordinates, it sends a dr+

∑m
i=1 bi rdφi ∈ cTqX (a, bi ∈ R

here) to itself, interpreted as element of TqX. At the boundary, i.e. r = 0, one has

ι

(
a dr +

m∑
i=1

bi rdφi

)
= a dr at ∂X. (1)

This proves the claims for L∗q . The rest is clear by definition of the dual map,
with Lq the orthogonal space to ker ιq = span{rdφ1, · · · , rdφm} with respect to the
natural pairing of cTqX and cT ∗qX. The last statement follows from the fact that
ker ι′q = Tq∂X and general nonsense.

Concretely, the last statement of the lemma means: A smooth vector field on
X, a ∂r +

∑m
i=1 ci ∂φi , can be written a ∂r +

∑m
i=1(rci)

1
r∂φi . Thus, interpreted as

section of cTX, it reduces to a ∂r at any boundary point (since rci = 0 for r = 0).

3. The boundary differential for cTX.
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3.1. Definition of cd∂. In addition to the line bundle L there is more structure
canonically associated with the conic tangent bundle: A differential operator along
the boundary. In order to define it we first compute the exterior derivative of a
one-form which is a section of cT ∗X.

d

(
a dr +

∑
i

bi rdφi

)
=
∑
i

aφi
dφi ∧ dr +

∑
i

(bir)r dr ∧ dφi +
∑
i,j

(bir)φj
dφj ∧ dφi

=
∑
i

(aφi
− bi) dφi ∧ dr +O(r)

(2)
where aφi

denotes the partial derivative and O(r) denotes r times a smooth section

of
∧2

T ∗X. We are interested in the leading term on the right, i.e. in the restriction
to the boundary. We see that it is already determined by the restrictions of a and
the bi to ∂X, and that it only contains terms of the form dφi ∧ dr, so the following
definition makes sense.

Definition 3.1. The conic boundary differential is the operator

cd∂ : Γ(cT ∗∂XX)→ Γ(T ∗∂X ⊗ L∗)

defined by extending an element of Γ(cT ∗∂XX) to the interior of X, applying the
exterior derivative d and restricting to the boundary.

Here T ∗∂X ⊗L∗ ⊂
∧2

T ∗∂XX via ν ⊗ ν′ 7→ ν ∧ ν′. Whenever convenient, we also
consider cd∂ as acting on Γ(cT ∗X); then it is just d followed by restriction to the
boundary.

We may also view cd∂ as defining a directional derivative along the boundary.
For any vector field v ∈ Γ(T∂X) this is given by the operator

ιv ◦ cd∂ : Γ(cT ∗∂XX)→ Γ(L∗)

where ιv is interior product, i.e. (ιvω)(w) = ω(v, w). From (2), in coordinates,

cd∂

(
a dr +

∑
i

bi rdφi

)
=
∑
i

(aφi
− bi) dφi ⊗ dr. (3)

Note that when we fix a boundary defining function r we can turn cd∂ into an
operator Γ(cT ∗∂XX) → Γ(T ∗∂X), by contracting with ∂r (the dual basis of L for
the bass dr of L∗). This just means leaving out dr on the right in (3). The directional
derivative is then simply scalar-valued.

From (3) or from the invariant definition we have the product rule

cd∂(fα) = f cd∂α+ df ⊗ α (4)

for f ∈ C∞(∂X) and α ∈ Γ(cT ∗∂XX). Strictly speaking, on the right we should
write ι(α) where ι is the operator in (1) which from a conic one-form only retains
its dr-part, hence takes values in L∗. To simplify notation we leave out ι here and
below.

cd∂ extends to higher tensors via the Leibniz rule. We only consider symmetric
2-tensors here.

Definition 3.2. The conic boundary differential extends to conic symmetric 2-
tensors as

cd∂ : Γ(S2 cT ∗∂XX)→ Γ(T ∗∂X ⊗ L∗ ⊗ L∗)
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by setting
cd∂(α⊗ β) = cd∂(α)⊗ β + cd∂(β)⊗ α.

Again α, β on the right should be understood as ι(α), ι(β) ∈ Γ(L∗). This is
well-defined (i.e. for example plugging in fα ⊗ β gives the same result as α ⊗ fβ,
for a function f on ∂X) as can easily be checked using (4).

In boundary coordinates we calculate from (3)

cd∂

Adr2 + 2
∑
i

Bidr rdφi +
∑
i,j

Cijrdφi rdφj

 =

=
∑
i

(Aφi
− 2Bi) dφi ⊗ dr ⊗ dr. (5)

Again, by fixing a boundary defining function the boundary differential turns
into a real-valued directional derivative along the boundary.

Remark 1. There is a variant of cd∂ : Fixing a boundary defining function r con-
sider the operator c(rd)∂ : Γ(cT ∗∂XX)→ Γ(

∧2 cT ∗∂XX). This is defined by restrict-
ing the image rdω, for ω ∈ Γ(cT ∗X), as a conic 2-form to the boundary, as opposed
to cd∂ , where we restricted dω as a ’regular’ 2-form. This has the effect that the last
term on the right side of (2), which disappears in cd∂ω, is still present in c(rd)∂ω,
as
∑
i<j [(bi)φj

− (bj)φi
] rdφj ∧ rdφi.

In the sequel we are mainly interested in forms satisfying cd∂ω = 0. This is
equivalent to c(rd)∂ω = 0 since aφi

= bi ∀i implies (bi)φj
= (bj)φi

∀i, j. So in this
regard cd∂ and c(rd)∂ are equivalent.

However, c(rd)∂ is slightly less natural than cd∂ since it involves the choice of a
boundary defining function. Also, it is not clear how to extend c(rd)∂ to symmetric
two-tensors.

Remark 2. For conic 1-forms, cd∂-closedness is equivalent to an exactness condi-
tion: In local coordinates, ω = a dr +

∑
i bi rdφi, we have from (3) that cd∂ω =

0 ⇐⇒ aφi
= bi ∀i ⇐⇒ ω = d(ra) + OcT∗X(r). Here a is defined globally at the

boundary – after choice of a boundary defining function –, as inner product of ω

with ∂r. In other words, the sequence rC∞(X)
d∂→ Γ(cT ∗∂XX)

cd∂→ Γ(T ∗∂X ⊗ L∗) is
exact at the middle term, where d∂ denotes d followed by restriction. Here rC∞(X)
could be replaced by rC∞(∂X) or more invariantly by Γ(L∗), and then one obtains
a short exact sequence, but there is no apparent use of this.

3.2. Naturality. Let X,Y be manifolds with boundary. We denote by rX , L∗X etc.
a boundary defining function for X, the line bundle L∗ for X etc., and similarly
for Y . A natural class of maps between X,Y are the interior b-maps. These are
smooth maps f : X → Y satisfying

f∗rY = reX h

for some e ∈ N and h ∈ C∞(X), h > 0. Intuitively, this means that as q → ∂X to
order one, the image f(q) approaches ∂Y to order e. In particular, f(∂X) ⊂ ∂Y .
Recall that an immersion is a smooth map f whose differential f∗q : TqX → Tf(q)Y
is injective for each q ∈ X. An interior b-map f : X → Y which is an immersion
must have e = 1 and is called an immersed p-submanifold of Y .
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Proposition 1. The conic boundary differential is natural with respect to interior
b-maps. More precisely, let f : X → Y be an interior b-map of manifolds with
boundary. Then the pull-back f∗ : Γ(T ∗Y )→ Γ(T ∗X) induces maps

f∗ : Γ(cT ∗Y )→ Γ(cT ∗X), f∗ : Γ(L∗Y )→ Γ(L∗X),

and f∗ ◦ cd∂Y = cd∂X ◦ f∗.
Furthermore, if f : X → Y is an immersed p-submanifold then f∗q : cTqX →

cTf(q)Y is injective for all q ∈ X and maps LXq to LY f(q).

Proof. If α ∈ Γ(cT ∗Y ) and q ∈ ∂X, v ∈ Tq∂X then (f∗α)q(v) = αf(q)(df(v)) = 0
since f : ∂X → ∂Y , so f∗α ∈ Γ(cT ∗X). The second statement is obvious, and the
naturality follows from naturality of d, i.e. f∗ ◦ dY = dX ◦ f∗, and the definition of
cd∂ .

Now let f be also an immersion. We prove the dual of the last statements. If rY
is a boundary defining function for Y then rX = f∗rY is one for X, which proves
f∗ : L∗Y → L∗X ; if α ∈ cT ∗qX is arbitrary then α = a drX + rXβ for some a ∈ R and
β ∈ T ∗qX. Since f∗ : T ∗f(q)Y → T ∗qX is surjective, β = f∗β′ for some β′ ∈ T ∗f(q)Y
and thus α = f∗(a drY + rY β

′), so α is in the image of f∗ : cT ∗f(q)Y →
cT ∗qX which

was to be shown.

In the sequel we will only consider embedded rather than immersed p-submanifolds
for simplicity.

4. The case of a resolved conic singularity. We recall the notion of blow-up
of a manifold Z in a point p ∈ Z. This is a manifold with boundary, denoted
[Z, p], together with a smooth map β : [Z, p]→ Z which maps ∂[Z, p] to p and is a
diffeomorphism from the interior of [Z, p] to Z \ {p}. Since all that follows is local
near ∂[Z, p] one may w.l.o.g. think of Z = Rn, p = 0, and then [Z, p] = R+ × Sm,
where m = n − 1 and Sm ⊂ Rn is the unit sphere, and β(r, ω) = rω. See [4] or [2]
for a more in-depth discussion.

A subset M ⊂ Z is called a submanifold with conic singularity at p if M \ {p} is

a submanifold and the strict transform Mres := β−1(M \ {p}) is a p-submanifold of
[Z, p]. That is, Mres is a submanifold with boundary of [Z, p] which meets ∂[Z, p]
transversally, and ∂Mres ⊂ ∂[Z, p]. Then the map

βM : Mres
iM→ [Z, p]

β→ Z, (6)

with iM : Mres
iM→ [Z, p] the inclusion, is called the (embedded) resolution of M .

4.1. Conic tangent bundle of a resolved conic singularity. We first give an
interpretation of the conic tangent bundle on [Z, p].

Proposition 2. Let Z be a smooth manifold, p ∈ Z, Z̃ = [Z, p] and β : Z̃ → Z the

blow-down map. Then cT Z̃, cT ∗Z̃ are canonically isomorphic to β∗TZ, β∗TZ∗,
respectively.

More precisely, the isomorphism β∗ ◦ (ι′)−1 : cT (Z̃ \ ∂Z̃) → T (Z \ {p}), where

ι′ is defined in Lemma 2.2, extends to a smooth map cT Z̃ → TZ which, for each
q ∈ ∂Z̃, is an isomorphism cTqZ̃ → TZp.

Proof. It suffices to prove the statement for the cotangent bundle. This says: Let
q ∈ ∂Z̃ = β−1(p). Then a local basis of sections of T ∗pZ pulls back, under β, to a

local basis of sections of cT ∗q Z̃.
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In suitable boundary coordinates r, φ1, . . . , φn−1 based at q and x1, . . . , xn based
at p, the blow-down map β has ’components’

β∗x1 = rφ1, . . . , β
∗xn−1 = rφn−1, β

∗xn = r (7)

(homogeneous or projective coordinates). Then

β∗dx1 = rdφ1 + φ1dr, . . . , β
∗xn−1 = rdφn−1 + φn−1dr, β

∗dxn = dr,

and the right hand sides of this clearly form a local basis of cT ∗q Z̃.

Note that the line bundle L ⊂ cT∂Z̃Z̃ is just the canonical line bundle in the

’usual’ sense: Each q ∈ ∂Z̃ corresponds to a direction at p, hence determines a line
in TpZ, and then Lq is just the corresponding line in cTqZ̃ under the isomorphism
given by the Proposition.

From the proposition we get an interpretation of the conic tangent bundle on the
resolution of a manifold with conic singularities.

Corollary 1. Let Z be a smooth manifold and M ⊂ Z be a submanifold with conic
singularity at p. Let βM : Mres → Z be the resolution of M . Then

(βM )∗(
cTqMres) =

{
Tf(q)M if q 6∈ ∂Mres, i.e. f(q) 6= p,

limp′→qp Tp′M if q ∈ ∂Mres.

Here p′ →q p means that p′ 6= p approaches p in the direction q (recall that points
of ∂Mres correspond to directions of approach to p). The latter limit is taken in the
Grassmannian of TZ. Part of the statement is that the limit exists. A bundle over
a resolution Mres of an embedded singular space M together with a map (βM )∗
having the properties above is called a Nash bundle for M . Thus, cTMres is a Nash
bundle for M .

Proof. p′ →q p is equivalent to q′ → q in Mres, where q′ = β−1(p′). Also, cTMres

my be considered as subspace of cT [Z, p] by Proposition 1. Therefore, the statement
follows from the continuity in Proposition 2.

4.2. Pull-backs of ambient objects are cd∂-closed. The following is the main
motivation for defining cd∂ :

Proposition 3. Let M ⊂ Z be a submanifold with conic singularity and resolution
βM : Mres → Z. Then for each smooth one-form α on Z

β∗Mα ∈ Γ(cT ∗Mres) and cd∂(β∗Mα) ≡ 0.

Similarly, for any smooth 2-tensor g on Z we have β∗Mg ∈ Γ(S2 cT ∗X) and
cd∂(β∗Mg) ≡ 0.

The pull-back β∗Mα or β∗Mg may be thought of as α or g written in polar coor-
dinates.

Proof. By Proposition 2 we have β∗α ∈ Γ(cT ∗[Z, p]) where β : [Z, p] → Z is the
blow-down map. Then restriction to Mres maps this to Γ(cT ∗Mres) by naturality,
Proposition 1, and this proves the first statement.

Again by naturality the second statement follows if we show cd∂(β∗α) = 0 on
[Z, p]. This is just naturality of d together with the fact that β∗(v) = 0 for v ∈
T∂[Z, p]: By definition, cd∂β

∗α equals dβ∗α restricted to the boundary. Now dβ∗ =
β∗d, and ιvβ

∗ = β∗ιβ∗v where ιv is inner product (plugging in a vector in a form).
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So for all v tangent to ∂[Z, p], ιv
cd∂β

∗α = ιvβ
∗dα = β∗ιβ∗vdα = 0 because of

β∗v = 0. This proves the claim.
The last statement follows from building a two-tensor as sum of tensor products

of one-forms.

4.3. Uniqueness of cd∂. In addition to cd∂(β∗Mα) = 0, a pull-back one-form sat-
isfies infinitely many more conditions, involving higher order derivatives. However,
we now show that, among these, the condition cd∂(β∗Mα) = 0 is the only condition
which is invariantly defined on conic spaces. Since we are dealing with local condi-
tions, the language of sheaves is appropriate. Thus, let Ω1

Z be the sheaf of one-forms
on a manifold Z and cΩ1

X be the sheaf of conic one-forms on a conic space X, so
cΩ1

X(U) = Γ(cTU) for any open U ⊂ X.

Theorem 4.1. Assume that for each manifold with boundary X we are given a
sheaf CX ⊂ cΩ1

X satisfying the following conditions:

a) CX ⊂ ker cd∂
b) If βM : Mres → Z is the resolution of a space M ⊂ Z with conic singularities

then

β∗MΩ1
Z ⊂ CMres

c) Invariance under local diffeomorphisms: If X,Y are manifolds with boundary,
U ⊂ X and V ⊂ Y open and F : U → V is a diffeomorphism, then

CX(U) = F ∗CY (V ).

Then CX = ker cd∂ for all X.

Proof. Let ω ∈ ker cd∂ ⊂ Γ(cT ∗X) and q ∈ X. We need to show that ω|U ∈ CX(U)
for some neighborhood U of q. Since X is locally diffeomorphic to an open subset of
a space [Z, p], we may assume X = [Z, p] because of c). Clearly, cΩ1 = Ω1 over the
interior of X, so we may asume q ∈ ∂X. If r, φ1, . . . , φm are projective coordinates
on X = [Z, p] near q as in (7) we know from condition b) that the following forms
are in CX :

dr, d(rφi), (rφi)dr, rd(rφi) (i = 1, . . . ,m)

hence also r2dφi = rd(rφi) − (rφi)dr. By c) this remains true if one replaces r by
any boundary defining function (bdf) ρ. We will show that ω is a sum of finitely
many terms of this form.

Write ω = a dr +
∑
i bi r dφi with a, bi smooth. Since cd∂ω = 0 we know that

aφi = bi ∀i at r = 0, so bi − aφi = rci with ci smooth. Write ω = d(ar) +
∑
i(bi −

aφi
) rdφi = d(ar) +

∑
i ci r

2dφi. Choose C ∈ R big enough so that a+C > 0. Then
ρ = (a+C)r is a bdf, hence d(ar) = dρ−Cdr ∈ CX . Choose C ′ ∈ R big enough so
that ci+C

′ > 0, then ρ′ =
√
ci + C ′r is a bdf and cir

2dφi = (ρ′)2dφi−C ′r2dφi ∈ CX ,
and we are done.

5. Normal forms and exponential map for conic metrics.

Definition 5.1. Let X be a manifold with boundary. A conic metric on X is
a positive definite symmetric 2-tensor on cTX. Equivalently, it is a Riemannian
metric on the interior of X which in any boundary coordinate system r, φ1, . . . , φm
can be written

g = Adr2 + 2dr

m∑
i=1

Bi rdφi +

m∑
i=1

m∑
j=1

Cij rdφi rdφj (8)
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with A,Bi, Cij ∈ C∞(X) and the quadratic form

(ζ, θ1, . . . , θm) 7→ A(q) ζ2 + 2ζ

m∑
i=1

Bi(q)θi +

m∑
i=1

m∑
j=1

Cij(q)θiθj

positive definite for each q ∈ X.

As usual, the point is that the smoothness and positive definiteness hold up to
(that is, including) the boundary.

It is clear from Proposition 3 that smooth metrics on the ambient space Z of a
manifold with conic singularity M , when written in polar coordinates (i.e. pulled
back to Mres), are conic. In addition, they are cd∂-closed, and also satisfy infinitely
many more conditions at the boundary. We now show that closedness alone implies
important geometric properties.

Theorem 5.2. Let g be a conic metric on a manifold with boundary X. The
following conditions are equivalent:

a) g is cd∂-closed, that is cd∂g = 0.
b) (Normal form 1) There are local boundary coordinates in which g has the form

(8) with

A = 1 +O(r2), Bi = O(r) ∀i.
c) (Exponential map based at the boundary) There is ε > 0, a neighborhood U of

∂X and a diffeomorphism Φ : ∂X × [0, ε)→ U so that, for each q ∈ ∂X,

t 7→ Φ(q, t) is the unique unit speed geodesic with Φ(q, 0) = q

d) (Normal form 2) There are local boundary coordinates in which g has the form
(8) with

A = 1, Bi = 0 ∀i in a neighborhood of ∂X.

Proof. a)⇒b): We first show that, for any conic metric, the r-coordinate can be
chosen so that even A ≡ 1. Geometrically this just means taking r to be distance
to the boundary. To find r analytically, assume g = Adρ2 + . . . in some coordinates
ρ, φi (dots mean terms involving dφi). If r = ρh then dr = (ρh)ρdρ + . . . , so if we

choose the function h so that (ρh)ρ =
√
A then we get g = dr2 + . . . . For this we

simply set h(ρ, φ) = 1
ρ

∫ ρ
0

√
A(σ, φ) dσ =

∫ 1

0

√
A(ρs, φ) ds. Next, (5) shows that a)

is equivalent to

Aφi
− 2Bi = 0 at ∂X, i = 1, . . . ,m (9)

in any local coordinate representation (8), so A = 1 implies Bi = 0 at the boundary.
b)⇒c): This was proved by Melrose and Wunsch in [3].
c)⇒d): Choose any coordinates in ∂X and let r be the coordinate on [0, ε).

Using Φ this gives coordinates on U ⊂ X. Then A = 1 by unit speed, and Bi = 0
by the Gauss Lemma (level sets of r are orthogonal to the geodesics Φ(p, ·)).

d)⇒a) is clear from (9).

If X = Mres is the resolution of a space M ⊂ Z with conic singularity at p, the
map Φ in c) indeed gives an exponential map based at p: Since points q ∈ ∂Mres

correspond to rays tangent to M at p, we get a unique geodesic in M starting at p
for every tangent direction, and smooth dependence of the geodesic on the direction,
as well as uniqueness in the sense that for all points p′ in some neighborhood of p
there is a unique geodesic from p′ to p inside the neighborhood. The situation is
remarkably more complicated for cuspidal singularities, see [1].
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