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Let X ⊂ Rn be a real algebraic surface. Let p ∈ X be an isolated singularity of
X, and let Xreg be the regular part of X. Assume p is not an isolated point of
X. By considering shortest curves from p to nearby points, it is easy to see that
there are many geodesics on Xreg ending at p, see for example [BL04]. There it is
also shown that any such geodesic has a limit direction at p. We study the higher
regularity properties of these geodesics; moreover, we study the exponential map
based at p, that is, the whole family of geodesics ending at p. Simple examples
show that such a geodesic may have no second derivative at p. However, one may
hope for a complete asymptotic expansion in which fractional powers and possibly
logarithmic terms occur. We prove that for a certain class of singular surfaces such
complete expansions exist, in a suitable sense, for the exponential map.

Applications of such a detailed description of the exponential map are, among
others:

• A notion of normal coordinates based at the singularity, with all the uses
that normal coordinates have, for example in the analysis of the geometric
partial differential operators on Xreg and of the diffraction of waves by the
singularity.

• Complete asymptotic expansions of the volume of small balls, Br(p) = {q :
dist(p, q) < r}, for r → 0. Here, dist is the intrinsic distance on X. Once
the existence of such an expansion is established, an interesting question
would be to relate the coefficients of such an expansion to generalized
notions of curvature of X at p, as is well-known in the case of a smooth
point p.

Apart from trivial cases, a precise description of the local Riemannian geometry
near a singularity is, to the best of our knowledge, only known in the case of
asymptotically conical singularities: For this case, the exponential map is analyzed
completely in [MW04], and this is then used in the analysis of the propagation of
singularities for the wave equation on manifolds with conical singularities.

In our approach we analyze directly the system of ordinary differential equations
(ODEs) describing the geodesics. To do this, one needs to use suitable coordinate
systems. In the case of an isolated singularity it is natural to use polar coordi-
nates centered at the singularity. Geometrically, introducing polar coordinates
corresponds to blowing up the space X at the point p. It is known that by re-
peated blow-ups, a smooth space X ′ can be obtained (resolution of singularities);
however, the metric on X ′ corresponding to the metric on X is degenerate at the
exponential divisor (the preimage of p), and hence the coefficients of the ODEs
blow up there. The problem is to deal with these singularities.

Our guiding idea is that geodesic flow should behave rather regularly when
considered on a suitably blown-up space and with a suitable rescaling of time.
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The existence of such a blown-up space is by far not obvious. Roughly speaking,
the problem is to find a path between two opposing forces:

• with each blow-up the metric becomes more degenerate, hence the geodesic
equations become more singular

• one needs to make sufficiently many blow-ups to resolve the singularity
as well as the metric (here, ’resolution of a metric’ needs to be defined;
essentially, this means that the degeneration of the metric tensor at the
exceptional divisor has a monomial normal form; for surfaces, this may be
taken to be the normal form derived by Hsiang and Pati [HP85])

We are able to carry out this program for the following class of surfaces, mod-
elled on a (1, 2, 1)-quasihomogeneous algebraic singularity: Let C ⊂ R2 be a
smooth simple closed curve and set X̃ = C × R+, where R+ = [0,∞). Let

(1) β : R3 → R3, (u, v, z) 7→ (uz, vz2, z), X := β(X̃) ⊂ R3.

That is, the singularity of X is at the origin and quasihomogeneous of type (1, 2, 1).
X̃ is the blow-up (resolution) of X by the quasihomogeneous blow-down map
β. Note that X is not necessarily algebraic. We can also allow higher order
perturbations of X.

We make the following assumptions on C. Let

C0 = {q ∈ C : i∗du = 0 at q}, where i : C 7→ R2 is inclusion.

We assume

(2) (u, v) ∈ C0 =⇒ v = 0 and C is nondegenerate at (u, v).

Thus, the only points where the tangent to C is parallel to the v-axis lie on the
u-axis, and C has only first order contact with its tangent there.

An example is the surface

X = {(x, y, z) ∈ R3 :
(x

z

)
+

( y

z2

)
= 1, z > 0} ∪ {(0, 0, 0)}

for which C = {u2 + v2 = 1}, the circle. Here C0 = {(±1, 0)}.
We consider the metric on X induced by the Euclidean metric on R3. This

induces a smooth semi-Riemannian metric g on X̃ which is Riemannian in the
interior of X̃.

Our first theorem shows the existence of the exponential map based at the
singular point 0. This will be expressed in terms of geodesics on X̃ rather than
X. We call a curve γ : [0, T ) → X̃ with γ(0) ∈ ∂X̃ and γ(t) in the interior of X̃
for t > 0 a geodesic if γ|(0,T ) is a geodesic with respect to the Riemannian metric
g and γ is continuous at t = 0. We say γ starts at γ(0).

Theorem 1. Let C and X̃ be given as above.

(a) For each q ∈ C there is a unique geodesic γq : R+ → X̃ starting at (q, 0).
(b) The map exp : C × R+ → X̃, (q, t) 7→ γq(t) is a homeomorphism.
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Our main result is a precise description of the analytic properties of exp. To
state this, it is more convenient to consider the inverse map

exp−1 = (I, d) : X̃ → C × R+.

Here, if p ∈ X̃ then I(p) is the unique point q ∈ C for which there is a geodesic
from q to p, and d(p) is the time it takes to get from q to p. In terms of X, I(p)
corresponds to the direction in which the unique geodesic from β(p) to the singular
point 0 arrives at 0, and d(p) is the distance from β(p) to 0.

Let

π : X ′ = [X̃, C0 × {0}, C0 × R+] → X̃

be the iterated blow-up of X̃ in the (isolated) points of C0 × {0}, followed by a
blow-up in the (preimage of) the lines C0 × R+. While the blow-up β : X̃ → X

resolves X in the sense of manifolds, the blow-up [X̃, C0 × {0}] → X̃ resolves the
metric (for example, in the sense of Hsiang-Pati). The last blow-up, of the lines
C0 × R+, is needed for the analytic description of the exponential map below: It
replaces each of these lines by two copies of itself (making them boundary lines)
and has only the effect that non-smooth behavior is permitted transversal to these
lines.

We denote the faces of X ′ as follows: Cconic is the preimage of (C \ C0)× {0},
ff is the front face of the first blow-up, that is, the preimage of C0×{0}, and Z is
the preimage of C0 × (0,∞).

Theorem 2. π∗I and π∗d are polyhomogeneous conormal functions on X ′. They
are smooth at Cconic and ff but their expansion at Z contains half integral powers
and may contain logarithms.

Whether or not the logarithmic terms actually appear remains to be checked,
but at present seems very likely. The question of their presence (for the case
of semi-algebraic X) is interesting since an affirmative answer would imply that
Hardt’s conjecture, stating that the distance function on a semialgebraic set be
subanalytic, is false. In fact, Theorem 2 suggests a replacement for Hardt’s con-
jecture, namely that the distance function on a semi-algebraic set is conormal on
a suitably blown-up space.

Outline of the proof:
We analyze directly the Hamiltonian flow describing the geodesics in the smooth

part of X, that is, the interior of X̃, uniformly up to ∂X̃. On ∂X̃, the Hamilton
vector field W is singular (i.e. blows up), and even more so at the points in
C0 × {0} ⊂ ∂X̃. This singularity is resolved in three ways:

• rescaling the cotangent bundle of X̃, to the conic cotangent bundle cT ∗X̃
• rescaling time, by considering V = zW instead of the Hamilton field W ,

where z is as in (1).
• blowing up certain points in cS∗X̃ (the cosphere bundle corresponding to

cT ∗X̃), lying over C0 × {0}, with suitable quasi-homogeneity.
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The first two steps were already used by Melrose and Wunsch in the conic case,
where they showed that (the pull-back of) V is a smooth vector field on cS∗X̃ with
non-degenerate hyperbolic critical points along a curve L which projects diffeo-
morphically to ∂X̃, under the natural projection πX̃ : cS∗X̃ → X̃. The invariant
manifold theorem can then be used to deduce the existence and smoothness of the
exponential map in the conic case.

In our quasihomogenous situation, the metric on X̃ is conical except at C0×{0},
and this yields additional singularities of V there. Therefore, an additional blow-
up is needed. The main (and highly non-obvious) point of the proof is that these
singularities can be resolved by blowing up the points in (πX̃|L)−1(C0×{0}) with
a 1, 1, 3-quasihomogeneity, and that the pull-back of V under that blow-up is not
too degenerate. More precisely, one obtains a smooth vector field tangent to the
boundary which has only hyperbolic critical points (at least in the regions that
matter for the exponential map). The flow near these critical points, and hence
everywhere, can then be analyzed.

The emergence of logarithms is related to the fact that the hyperbolic critical
points are resonant and therefore (most likely) do not have smooth linearizations
(but rather ’log-smooth’ linearizations).

While our result is restricted to a special class of singularities, it is the first
detailed (that is, to higher order) investigation of the inner geometry of algebraic
sets beyond the conic case. Since for general algebraic surfaces a normal form of
the metric is known (see [HP85]), we conjecture that similar results will be true
in this more general context.
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