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Let 2 be a property of graphs on a fixed n-element vertex set V. The complexity c(P) is the
minimal number of edges whose existence in a previously unknown graph H has to be tested
such that it becomes possible to decide whether H has property # or not. We investigate
properties (in the broader sense of families of sets) whose complexity is much less than the
maximum (which is (3) for graph properties). It is well known that such properties must be
representable as a disjoint union of long intervals (in the boolean lattice of graphs on V). We
show that, if the number of intervals is not too large, the converse is true as well. We also show
that there are graph properties whose complexities differ by at most 4n from any given number
between 2n — 4 and (5). Finally, we give estimates on the complexity of the scorpion graph

property.

1. Introduction

Let # be a family of subsets of a set 7. We consider a measure of complexity
that was first introduced by Holt and Reingold ([4]) and Rosenberg ([5]). This
measure is defined as follows:

Suppose two players, o (Algy or Seeker) and ¥ (Strategist or Hider) play the
following game: ¥ thinks of some subset H of T. & wants to determine if H is in
@. For this purpose & chooses an element x € T, and & tells & whether x is in H
or not. Then & tries another element and so on until & is able to decide if H is in
P. The goal of o is to make this decision as soon as possible, while & tries to
force o to ask many questions. We allow & to change the set H in the course of
the game as long as the answers given so far remain correct. The complexity c(P)
is defined as the number of questions when both players play optimally.

Obviously ¢(2) is bounded above by ¢ =|T|, and is zero if and only if # =8 or
27 in which cases we call P trivial. P is elusive if c(P) =t. We will use the word
algorithm for the way s plays, and strategy for the way & plays. We think of % as
a property of subsets of T. Especially, when T is the set of all two-element subsets
of V={1,2,..., n}, we may interpret subsets of T as graphs on the vertex set
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vertices.
Up to now research has concentrated on:

(i) showing that large classes of properties and some special (‘natural’) graph

pI'UpGI'[le ﬂdVC Illgll u)mplcxuy’, O €ven are c1u51ve dl'l(l
(ii) giving general lower bounds for the complexity of graph properties, and

conctrnoting oranh nraonerties of low comnlavity
consiructur 1g plapil piupoiucs O 10V CUINPICALLY.

We shortly state some results which will be of interest in the sequel.

Theorem 1 ([6, 2]). If c(P) <k, then P is the disjoint union of intervals of length
t—k

—|A|. This theorem can be used to
y pl" TtIEQ (‘nnoermno oeneral

where A c B. Its length is I([A, B])=|B
(0]

prove lower bounds or even elusiveness for

lower bounds for the complexity of graph properties, Bollobds and Eldrigde
proved the following theorem.

Theorem 2 ([3]). If P is a nontrivial graph property, then
c(P)=2n—4.

Probably this bound is not best possible. The graph property of lowest
complexity known today is the property Fc of being a scorpion graph A graph on
n =3 vertices is a scorpion graph if it has a vertex t of degree 1 (tail), a vertex b
of degree n — 2 (body) and a vertex | of degree 2 incident to t and b (hnk) The

PO . S . § ,a.-finnn ~
lcluauuus i S vVEruces Cail

an ha connected in an arhitrory mannar {caa Dig
UL LULILIVLLIOU 1L all al Ulllal} niaiiivi \Dbb 1’ 15 }
m

The propert Fc was 1nvest1gat ed first in [2]. The algorithm was slightly
in ng the

[1] vie ld1 e followin

|-+

orem.

Theorem 3. c(¥c) < 6n — 10.

Fig. 1. Scorpion.
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In Section 2 we will prove a result which can be viewed as a weak inversion of
Theorem 1: If & is the disjoint union of r >1 intervals of length at least ¢ — &,
then c(%) <2k log r. This yields a nontrivial upper bound in the case where k is
small compared with ¢ (the intervals are ‘long’) and r is not too large, e.g. if isa
graph property (i.e. t = (3)), k is linear and r is polynomial in n (which is the case
for scorpions).

In Section 3 we will investigate scorpion graphs. We will define what a scorpion
with a tumour of size p is (a ‘normal’ scorpion has p = 0), and we will generalize
the well-known algorithm for scorpions to the case of scorpions with tumours. We
will also improve the algorithm to establish an upper bound of 6n — V2n — 6 for
c(¥c). Turning to lower bounds in 3.2, we will construct a strategy to show
c(Fe)= @B+ ayn — C, for any a, 0< & <1.5, and sufficiently large », with some
constant C, only depending on «. This is considerably better than the easily
obtained lower bound 3n — 6, and possibly some ideas in the strategy might be
applicable to more general classes of graph properties. Finally, in 3.3 we show
how scorpions with tumours can be used to construct graph properties whose
complexities are close to any given number between 2n — 4 and (3).

In the description of an algorithm that decides # (i.e. that decides if the set H
is in P) we will often use phrases like “< determines that H is of some specified
form™ and mean: “sf decides that either H has this form or else H isnotin #”. A
question of Algy will sometimes be called a probe or a test.

For later use and as an example we now prove that the complexity of an
interval [A, B], Ac BT, ist~I([A, B]):

If o probes all elements of A U B then o clearly is able to decide #. On the
other hand it is necessary to probe all these elements because & may choose the
strategy of giving all elements of A (i.e., answering “x € H” for all x € A) and
refusing all elements of B°. Hence

c([4, B) =1A U B°| =t~ (|B| = |A]).

2. An upper bound for c(%)

Theorem 4. Let P be a disjoint union of r intervals of length =t — k. Then for the
complexity of P we have the upper bound:

2klogr ifr=2,
P s{
‘=i ifr=1,

where log is the natural logarithm.

Proof. We construct an algorithm which decides % in at most that many steps.
The idea comes from the scorpion graph algorithm: In order to decide if a graph
is a scorpion, player & determines tail, body and link and then checks the
requirements on their incidences (see Section 3.1). Now in the class ¢ of
scorpion graphs on n vertices the graphs with fixed t, b and 1 form an interval, and
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Therefore, 1t is natural to generallze thls proceedmg as follows If ? is the
disjoint union of the intervals %, j € J, then at first & determines the interval .%
which contains H as an element (see the convention at the end of Section 1) and
then decides if H is actually in .#;. Because every $; has length =¢ — k, the second
part takes at most k steps. Therefore we have to show that for r = |J| =2 the first
part can be accomplished in at most k(2logr—1) steps. We will do this
recursively using the following observation.

S N £ b ad — OB e - T i
SUDSEL oy 1. ij I, I T unu X €1

is
A

Lemma 1. Let # b op
contained in every member of P, and in no member of P, then by probing x
H x is refused) or that He P — P, (if x is giv n)

can determine that
tha >y xwsg

dv QELLT7Lnit whivlee 11

Proof. Clear by the definitions. O

Let’s apply this to our situation:
jeJ
and

FNF=0 Vi#j.
We write ?;.=J;e; $; for J' cJ. Choose x € T and let #, = P;, P, = P, with

J'—{ I.}LCAJ} J’2=

By the lemma after the probe x o/ knows that H € ?,_,, (if x is refused) or that
H e P?;_,, (otherwise). If, say, x is refused, then in the case |J —J;| <1 we are
done, and in the case |J — J;| > 1 we can use the same procedure with J replaced
by J —J; and thereby reduce the number of possible intervals step by step until
we arrive at one interval. One such step will be the more effective the larger
min{|J;|, |J5|} is (regarding the worst case for the answer to the probe x), and we

may use our freedom in the choice of x to make th1s number large. Therefore we
have to solve the following problem:

Given a family of r > 1 pairwise disjoint intervals [A;, Bf] of length =t — k, find
x € T which is in manv A’s and in manv RB’s!

21020 L A1 Ay £1 o 4l A1 AAAallY

Observing that for intervals $ = [A, B°], $' =[C, D] the condition ¥ N

....... < -~ vy D LR cn anm Favmailata thic 0o o s
equivaient to (AND#§ or BNT#P), we can formulate this as a pro

families of pairs of sets; we will prove the following lemma.

F'=0is
Tlaces s
uvicliil il

Lemma 2. Let {(A;, B;)};es, r =|J|>1, be a family of pairs of subsets of a set T
having the properties:

(a) A,NB;=0 Vj,

(b) Ai,NB;#@8 or ANB;#0 Vi#j,

(c) IA;UB;|<k Vi
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Before we prove this lemma, we show how the theorem follows. By the lemma
with every question the number of possible intervals can be reduced by the factor
1—1/2k as long as there are at least 2 intervals, hence after / questions there will
be at most max{r(1 — 1/2k)’, 1} intervals left. Using (1 - 1/2k)2" <e7l, it is easy

to see that for { = k(2logr — 1) we have r(1—1/2k)' <Ve <2, and the conciu-
sion follows. [ (Theorem 4)

It remains to prove Lemma 2. We will first show that the problem of finding
such an x is equivalent to a problem concerning coverings of a complete graph by
bipartite graphs, and then solve this problem.

Let the dual family {(R,, S.)},cr of {(A;, B))};c; be the family of pairs of
subsets of J defined by

={jeJ|xeA;}, S,={jeJ|xeB.

Then (a), (b), (c) are easily seen to be equivalent to:

@) R,NS, =0 Vx,

(b') Vi#jIAxsuchthatieR,, je S, ories,, jeR,,

(c’) Every j is contained in at most k of the sets R, U S,,
and the lemma asserts that for some x, both R, and S, contain at least [r/2k]
elements.

If K, is the complete graph on the vertex set J, then (a’), (b’) mean that the
compiete bipartite graphs G, with vertex ciasses R,, S, cover the edges of K;. We
prove the following lemma.

Lemma 3. If the bipartite graphs G,, x € T, cover all the edges of a complete
graph K,, r =2, and if every vertex of the complete graph belongs to at most k of
the G,, then in one of the G, both vertex classes have at least [r/2k] elements.

Proof. Loosely speaking, this comes from the fact that a bipartite graph with one
small vertex class has many vertices compared with its number of edges, while the

l\ llab \I - L}/L ad liialiry CUSCB ad VCllleb

To be precise, we estimate for a bipartite graph G, with vertex classes of size a
and b, a < b =<r, the ratio

V(G| _a+b 1 1_1
L 2 = 4=+
|E(G) ab a b a r

If every G, has one vertex class with at most v vertices (with some integer v),
then a = v and therefore

——
=7

(1 W\ -1)_ r—-1 r-—1
"\ 2 w2
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Therefore at least one of the vertices of the K, is in more than (r —1)/2v and
hence in at least 7/2v of the G,. Choosing v as the largest integer less than r/2k,
v = [r/2k] —1, yields the desired result. O (Lemma 3 and Lemma 2)

As an example for Theorem 4 we consider the property c of scorpion graphs.
e is the disjoint union of n(n —1)(n —2) intervals of length (3) — (3n —6),
hence

c(Fc)<2(3n —6)logn(n —1)(n —2) <18nlogn.

Even if this is much more than the known upper bound 6r, it can be seen that Fc
is not elusive for large n.

3. Scorpions
We first define a scorpion with a tumour of size p.

Definition. Let 1, p be natural numbers, n=p + 5. The class ¥c*?’ consists of
the Graphs G on n vertices with the property:

In G there are p +2 pairwise connected vertices; among them, there are p
vertices which have no other incidences (the tumour vertices), and the vertices 1
(link) and b (body). 1 is incident to only one other vertex, t (tail), which has
degree one, and b to all other vertices except t. The remaining n — p — 3 vertices
can be connected arbitrarily (see Fig. 2).

t, 1, b and the tumour vertices are called critical, as well as all edges (of the
complete graph K,) incident with at least one of them. In order to prove upper
and lower bounds for c(%c”) we will give algorithms and strategies. The
following definitions will simplify the language in their description.

At any stage in the course of the questioning we call an edge green if it has
been given, red if it has been refused, and colourless if it has not been probed yet.
A vertex is colourless if all edges incident with it are colourless, otherwise it is
green, red or many coloured with the obvious meanings.

n-p—3

Fig. 2. Scorpion with a tumour of size p.
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We must slightly modify the well-known algorithm for scorpion graphs
([2,1,7]) to get a good algorithm for Fc®.

Theorem 5.

PN ) /p + 4\
(FeP)=@+pn-8-(", ")

Proof. Player & determines t, I, b and the tumour vertices first and then checks

ail bUllUlllOllS Uil lllCll lllblUCllLCD \Acauy, 1Ul UIC DCLUUU pait ll lb buulblclll to

test all edges incident with critical vertices. Some of these edges will have been
nrobed before and need not be nrnhpd aoain. In order to simnlifv the counting of

proves I.'v LIC QI NS I ¥ VOO apaiil, A OICCT 10 SUIPRALY AR L0 .,. ip ©

the number of steps, in the ﬁrst part we don’t count those probed edges which
become critical in the end.

At any time during the questioning a candidate tail (body) is a vertex at most
one of whose incident edges has been given (refused). T (B) denotes the set of
candidate tails (bodies). The weight w(x) of a candidate tail (body) x is 2 if none
of its incident edges has been given (refused), otherwise it is 1. w(x) is the least
number of probes incident to x that can make x a noncandidate. In the beginning,
B =T = V. The first part of the algorithm consists of three main steps: After the
first step candidate bodies and candidate tails will be separated (B N T = @), after
the second step B or T will contain only one element (i.e., body or tail is known),

and aftar the third cten all critical vertices will he knawn
dilQ aliCl ull ulllG 510 adnx OIiidas VOIUICSS Wia OC sfIOWIl.

Step 1: A tests the n edges of a Hamiltonian circuit C. Then all vertices are
coloured. Let B, B be the set of green vertices, T, < T the set of red vertices,
and M=V — B;— Ty=T N B the set of manycoloured vertices. Let m = |M|.
Then m is even. We distinguish three cases:

Case a: m=0.

Then T or B is empty, and H is not a scorpion.

Case b: m=2, M = {x,y} and x, y are neighbours on C.

Then T, =@ or B, =#. Choose the vertices x’, y' such that x’, x, y, y’
are consecutive on C in this order. If By=# then B={x,y},

=V —{x,y}, and Step 1 is finished; if T,=¢ then B=V, T =
vyl and aftar tha tacte vy ond vv! woe kova DT G
» )’I, 4AllJd altCl LUIC Uod A Yy aliu Ay wo llavoe o1V i1 — Y

Case c:

—15;;ﬂ

=2, M={x,y} and x, y are not neighbours on C, or m = 4.
en tices

r

Then there are m/2 colourless edges connecting the verti f Min
pairs, and after these m/2 tests we have BN T =§.

The sum of the weights of all candidates is at most 2(n — m) + m =2n — m in any

case, and the number of (noncritical) edges asked so far is at most (n —4) + m/2

because at least 4 edges of C become critical in the end and in Case b, T, =0 at

least one of the additional edges becomes critical.

LY F4 QIOLRIIGSS CUBE oriiiceilly O
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Step 2: o asks for colourless edges between T and B as long as there is any left
and b or t is not determined uniquely. The sum of weights is reduced by 1 in
every question, therefore at most 2n — m — 3 questions are necessary. At the end
of this questioning let t=|T|, B=|B|. If t=1 or B =1 then Step 2 is finished.
Otherwise all 8 edges between T and B have been asked. At most 8 of them are
red and at most 7 are green, therefore 18<7+ B, i.e. (r—1)(—1)=<1, and we
conclude 7= g =2

In this case let B = {b;,b,}, T = {t,, t,}. There must be precisely two disjoint
green edges joining B and T, or otherwise H is not a scorpion. Let the edges bt,
b,t, be green, the edges bit,, byt be red. Then either b=b,, t=t,, I=b, or
b=b,, t=t;, I=b;. By choosing p + 1 vertices x;,...,x,,; not in BUT and
asking for the edges byx;, i=1,...,p+1, o can easily decide if b, or b, is the
body. Because all these additional edges become critical, the number of
noncritical probes in this step is at most 2n —m — 3.

Step 3: Now t or b is known, and by probing all edges incident to this vertex sf
gets [ (resp. t) and then similarly the other critical vertices, only probing critical
edges.

The number of critical edges is

G)-("73 7 )=eron=("37),

hence the total number of questions is at most

p+4)

(n—4+ﬂ)+(2n—m—3)+(3+p)n—( )

2

+4
p).[]

m
=(6+p)n——2-—7—( ’

By a good choice of the order in which & asks for the edges of the circuit C in
Step 1 and for the edges between B and T in Step 2, we can improve this with the
following theorem.

Theorem 6.
p+4
c(FcPy<(6+p)n —\/EZ—( ) )

Proof. Let 7'(8’) be the number of red (green) vertices after probing the n edges
of C. of can force T'<m +1or B’ <m + 1 (see below). Let v’ <m + 1, the other
case is analogous. Then |T|<t'+m <2m + 1, hence either m is ‘large’ which
leads to an improved bound by the last expression in the proof of Theorem 5, or
|T| is ‘small’. If &f asks the T-B-edges in Step 2 in such an order that their t-end
goes cyclically through T, then after k questions every remaining t-candidate is
incident to at least k/(t'+m)—1 of all tested T-B-edges, and at least this
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s
k <2n —m — 3 is the number of edges tested in Step 2, the total number of steps

n+—+k— k —1\+((3+p)n—(p‘,+4“
2 \t'+m /N \ 2 //
R 4 and 1
=4t+tp)n— \ 2 }+ +l+(£n —5)\1—2m+1)

s(6+p)n—V§——(p;4),

as can easily be shown by use of the arithmetic-geometric mean inequality.

We still have to show how to test the edges of C. Let n be even, the case n odd
is similar.

First ask for the edges of a perfect matching. Let the number of red edges be
less than or equal to the number of green edges. Now choose the circuit C in such
a way that its edges alternately are matching- and nonmatching-edges and such
that every red matching edge lies between green matching edges. Then every
edge of C asked for in the sequel which generates a red vertex must generate a

manvoalanrad vartav alen nd hanca in tha an,l thara ara ot
lll(llly\zUlUul\«\-l VUVILILVA aldu, all\.l VLG 11 LIV ViU uIviye alyv al

manycoloured as red vertices. [

langt aq many
1ILast as fiainy

3.2 Lower bounds
We obtain a simple lower bound for the complexity of $c® and then

strengthen this bound for regular scorpions (p =0).

Theorem 7.

wior=(3)-( )71

Proof. If ## @ is a property and ¢(%?) <t — k then by Theorem 1 % must contain
an interval # of length k. If ¥ =[A, B], then

For ¢ this last difference is just ("~4~%), the maximal number of edges
between noncritical vertices. The assertion follows. O

Theorem 8. Let 0 <« <1.5. Then there is a constant C,, such that for sufficiently
large n:

c(Fe)y=3+ay—-C



Proof. We will give a strategy for player . One probe and its answer will be
called a step. 9’ always answers in such a way that there is still a scorpion
compatible with the given answers. The strategy consists of two parts. In the first
part (an steps) & gives answers according to rules to be described later. Then &
fixes vertices b, t and | and answers in the second part accordingly. When b, t, 1
have been fixed, o/ must still ask all critical unprobed edges. Because the total
number of critical edges is 3n — 6, & can force « to ask 3n — C, questions if it’s
possible to choose t, 1, b in such a manner that the sum of their degrees in the
graph of probed edges is less than some constant (and, of course, such that there

are SCOI'plOIlb COmpd[lDlC Wl[ﬂ Ulls LHOICC} The Iouowmg lemma shows that [ﬂlS is
possible (for large n) if after the first part there are linearly many red vertices and

Ilnno rlv manv o
HuCadily iiaily g

Lemma 4. Let o, A, u>0 be fixed real numbers. Then the following is true for
sufficiently large n:

l] Gisa gr‘upn with n vertices and an edge some U_[ whose uveriices are
coloured green or red, and if at least An vertices are coloured green and at least un

red, then there are a oreen vertex b and two no nadjn nt red vertices 1. t whose

,,,,, b srely HECh UCTLA s Eh ULl &y t 7eO5C

degrees sum up to at most 2a//A + 6/ .

Proof. First we remark that in a graph with n vertices and k edges there are less
than 2k/p vertices with degree greater than p; otherwise the sum of all degrees
would be greater than p2k/p =2k which is impossible. Now there are less than
An vertices of degree >2an/An =2a/A, hence there is a green vertex with degree
=2a/A. There are less than 2un/3 vertices of degree >3a/u; hence at least un/3
red vertices have degree <3a/u. If un/3>3a/u + 1 then two of them are not
connected, and this inequality holds for sufficiently large n. O

It remains to prescribe the answers in the first part such that there are linearly
many red and green vertices in the end. & answers to the probe of the edge xy
according to the colour of x and y and to the number R of red and G of green
vertices existing at that time. Table 1 shows the strategy. The type number serves
for reference (note that type numbers 4, 5 and 6 occur in two rows). ¢ is some
integral constant {only depending on «, ¢ = 3) that will be determined later. The
idea is as follows: & tries to make the number of one-coloured (i.e. red or green)

ar calonrlace verticacg larae while keenine the ratio G/R houn {‘lpr‘ (hetwean 1/,
OT COi0UNICSS VOIRILOS afge Wiilie KCCOPIE L0 Talll /a8 o0ul nd poelween 1/ ¢

and ¢, if possible). Questions of the form g—c or r—c (i.e., one vertex of the
probed edge is green resp. red and the other is colourless) are more difficult to
handle because these two objectives may become inconsistent. It is mainly this
difficulty which forces us to choose o <1.5.

In the sequel we will prove several assertions which imply in the end that this
strategy fulfills our requirements. Initially all vertices are colourless. Step 1 is of
Type 1 and Step 2 of Type 1 or 5. Assertions (I) through (IV) are true after the
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Table 1
Strategy for ¥c (g = green, r = red, m = manycoloured, c = colourless)
Type Question Answer Condition
1 c—¢
2 m-c red if G=R,
3 r-g green otherwise
4 g—¢ green G/R<corG=1,R=0
5 g—c red G=2,R=0
6 g—¢C red else
4 r-c red R/G<corR=1 G=0
5 r-c green R=2G=0
6 r-c green else
other cases such that G+ R
7 (m-m, r-1, g-g, is maximal
g-m, r-m) afterwards
first step:
M. R+G>0.

For R+ G is reduced only in a Type 3 step, and even this leaves one
one-coloured vertex.

. R+G=3 >

Q| =

S
R

This is true after the first step. Suppose it is true before Step k and let R’, G’
be the values of R, G after Step &, and suppose R’ + G’ =3. If Step k has Type
1, 2, 3 or 7 then it is clear that the assertion is true for R’, G' also. Suppose now
that Step & has Type 4, 5 or 6 and the question was g—c. First, assume R + G = 3;
then G/R < ¢ by assumption. If G/R < ¢ then we have Type 4 and

G G+1
-— = =C.

R’ R

If G/R = c then we have Type 6 and

G'__G—l__ c+1>1>1
R R+1 S R+1 ¢

Finally, if R+ G <3 we must have Type 4 (because R'4+ G'>R + G) and
R = G =1, hence the assertion is true in this case as well.
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Assertions (III) and (IV) show that Type 5 and 6 cannot occur too often (they
are bad in the sense that they destroy colourless vertices without increasing
G +R):

(I). Between any two steps of Type 6 there are at least (¢ — 1)/2 steps not of Type
6.

Proof. Let Step k be of Type 6, with the question g—¢ and numbers G = G,,
R = R,. By (II) we have Gy = cR, and by (I) R, >0, hence Gy~ Ry=(c — )R, =
c~1. Let k<isk+ (c—1)/2 and suppose Step i exists (i.e. i < an). Because
G — R is changed by at most 2 in every Step, we have G — R =0 before Step i.
From this we conclude that R is never reduced in Steps k, k+1,...,i—1.
Because Step k is of Type 6, R is increased by one in this step, and before Step i
we have

GsGo‘*‘z(l‘—k)SGg"{"C—' 1=C(R0+1)"‘1<CR.
Also, R < G <¢G, and Step i cannot have Type 6. 0

(IV). Between any two steps of Type 5 there is at least one step of Type 4.

For G =2, R =0 can only originate from G =1, R = 0 by a Type 4 step (except
in the beginning), and analogously for G =0, R =2.

Now let r = [an], and denote by a; the number of steps of Type i, i=1, 3, 5,
6, and by s the number of all the other steps, counting only Steps 2 to r.

(V). az<2a,+s+1.

For R + G equals 2 after Step 1, increases by 2 in Type 1, by at most 1 in the
steps counted by s and is left unchanged in Type 5 and 6; Type 3 reduces R + G
by 1, and in the end we have R+ G =1 by (I).

Now the main poiht is following.
(V). After r steps there are at most 3r(1 + 1/(c + 1)) + 3 manycoloured vertices.

Proof. Denote the number of manycoloured vertices after r steps by m. Such
vertices are created only in Type 3, S and 6, hence

m=as;+ds+ ae.

By (III), (IV), (V) we have

a4 < +1, asss+1, as<Za;+s+ 1.
<
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Hence
s s
r——1=a1+a3+a5+a6+s=(a1+;)+a3+a5+a6+;
L Tk UV bl . O
2 2 2 2
and
<rija<i(le—=)+s O
m<-r+-as<-r =
3737°°3 c+1/ 3

Now it’s easy to see that our strategy is good: Because r = |an| and a <3, we
can choose ¢ so large (only depending on «) that m < (1 — 8)n for some 8 >0,
Hence after r questions there are at least 6n colourless or unicoloured vertices. If
at least three of them are colourless, we can take them as t, 1, b. Otherwise by
(II) there must be linearly many green and linearly many red vertices which was

to be shown. [ (Theorem 8)

3.3. Graph properties with given complexity

The example of an interval shows that for a fixed set T there are properties of
subsets of 7 with anv mven comnlexitv hetween ( and IT'I Rv Theorem 2, an

LISL ALY LR LORPRCALLY DLIWeLR ailll 241100 Cii: «ail

analogous statement is not true if we restrict ourselves to graph properties.
Nevertheless a weaker statement can be proved.

Theorem 9. Ifn=5 and 2n —4<c < (%), then there is a graph property P with

[c(P) —c| <4n.

Proof. Consider the graph properties $c”>, p=0,...,n—5. By Theorems 5
and 7

(34 pYp — /p +4\<,./cp,.(p)\<mL PAY (p +4\\
\Jll.l}llr \ 2 /\‘/\l}b }\\UTI.I}I \ 2 }.
Tha m:mnar and lavare oA Aiffar hy 220 tha lawrae. hansind aira Qe _ £ Foe 2 n
Fuiie l.llJPbl Allv UYWLl Vuuliu uliicl Uy JIEy, UIC 1UWOL 110 Cqualb o117 U 1UIl l} -
and increases by less than n when p increases by 1. Finally, the upper bound
i that

le(FcPYy—cl<dn. O
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