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QUASIISOMETRY OF SINGULAR METRICS

DANIEL GRIESER

Communicated by Stephen W. Semmes

ABSTRACT. We investigate when two Riemannian metrics, defined near zero
in R™ and possibly singular at zero, are quasiisometric via a coordinate
change that may be singular at zero.

A singular metric is a Riemannian metric on U\ 0, for some neighborhood U of
0in R". A singular coordinate change is a diffeomorphism ¢ : U\ 0 — U’ \ 0, with
U, U’ neighborhoods of 0 in R", which extends to a homeomorphism U — U’ when
one sets ¢(0) = 0. Two singular metrics g, g’ are called (strongly) quasiisometric
if there is a constant C' such that

C 'g. <y, <Cys

(as quadratic forms) for all z in some pointed neighborhood of zero; we then write
g RBc g or simply g ® ¢'. We call g,g" weakly quasiisometric (wqi in short) if
there is a singular coordinate change ¢ such that

g ¢yg.
In this case we write g ~, ¢’ or simply g ~ ¢'.
equivalence relations.

In this note we initiate a study of the question when two singular metrics are

Clearly, both & and ~ are

wqi. In particular, we give conditions when a metric on R? \ 0 is wqi to a metric
of the form dr? + a(r)?df? (Propositions 2.3, 2.4), and when two such metrics
are wqi to each other (Theorem 2.5). As a corollary, we show that two ’horns’
V15 Vis, where

Vy={(z,y,2): 0< 2z <1, z”:\/m}

2000 Mathematics Subject Classification. 53B20, 32599.
The author was supported by the Deutsche Forschungsgemeinschaft.
741



742 DANIEL GRIESER

FiGURE 1. The real Whitney umbrella

for v > 1, are wqi if and only if 73 = 7. Here we use the intrinsic metric on
V., induced by the Euclidean Riemannian metric on R®, and the extension of the
notion of wqi to these spaces is the obvious one. See Corollary 2.7.

Also, the (real) Whitney umbrella (without handle)

W= {(z,y,2): 2> =y*2,2>0} CR®

(see Figure 1) with the induced metric is analyzed in detail, and we show that a
neighborhood of zero in W is wqi to a cone (i.e. to V1) when one considers the
normalization of W, i.e. the space obtained by removing the intersection of the
two sheets along {(0,0,2) : z > 0}. More precisely, the normalization is the map

R - W, (u,v) (uwv,v,u*) € W.

This map is bijective except over the positive z-axis (which corresponds to u #
0,v = 0), where it is two-to-one. Pull-back of the Euclidean metric da? + dy?+ dz>
under this map yields the smooth semi-Riemannian metric

(1) gw = (4u* + v*)du® + 2uv dudv + (1 + u?)dv?
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on R? | which is Riemannian on R? \ 0, i.e. a singular metric in the sense above. In
Section 1 we show that this metric is wqi to the Euclidean metric on R? (which
is wqi to a cone, of course).

A problem that is closely related to ours is the local classification of semialge-
braic or subanalytic subsets of R” up to (weak) quasiisometry; here, one uses the
intrinsic metric on such sets, defined by lengths of shortest curves inside the set.
See [Bi], [G]. One result of these papers is that a neighborhood of an isolated
singularity of any subanalytic surface is wqi to a finite union of spaces V, with
various rational numbers v > 1, which are glued at their tips. Such a classification
is unknown in higher dimensions.

For two functions f,g on a set S we write

f=yg
if there is a constant C such that for all z € S, one has C~1 f(z) < g(z) < Cf(z).

The author is grateful to M. Lesch and J. Tolksdorf for discussing this subject
with him.

1. METRICS OF WHITNEY UMBRELLA TYPE ARE WEAKLY
QUASIISOMETRICALLY EUCLIDEAN

In this section we will show that

(2) gw = gEucl

holds for the Whitney umbrella metric gy and the standard Euclidean metric
gEuct on R2. The latter is clearly wqi to the infinite cylinder {22 +y? = 22,2 > 0}
in R3, via the projection onto the z, y-plane.

We need a little lemma, a generalization of which will be proved in the next
section (see Lemma 2.1 and the remark following it):

Lemma 1.1. Let g = adz? + 2bdx dy + cdy? be a Riemannian metric on a subset
U of R2. Then g is (strongly) quasiisometric to the ‘diagonal’ metric adx® + cdy?
if and only if there is ¢ > 0 such that

(3) b < (1-¢)ac
onU.

Now recall formula (1) for the Whitney umbrella metric. For u < 1 we have
u? < (1 +v?)/2, and this implies (uv)? < $(4u? + v?)(1 + u?) for u, v near zero,
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so from Lemma 1.1 (with € = 1/2) we see that
gw & (4u* + v} du? + (1 4+ u?)dv? = (u? +0v?)du® + do.

In order to put this into the form dz? +dy?, it seems natural to try the singular
coordinate change x = uv/u? + v2,y = v. Then
2

dr = (Vu?+v2+ Y )du + W
Vu? +v? Vu? +v?
dy = dv.

By Lemma 1.1, a metric of the form
(adu + bdv)* + dv® = a® du® + 2abdu dv + (1 + b*)dv?
is quasiisometric to its diagonal part if and only if (ab)? < (1 —¢)a®(1 +b?) for a
constant € > 0, which is equivalent to |b| < const. In this case, one even gets
(adu + bdv)* + dv* = a* du® + dv*.

[uv|

Vu2+v?
2

v 2 2
e < Vu®+v4.

In the case at hand we have |b] = < 1 near zero. Also,

Therefore, we finally get

w2
This proves (2). O

2
dz® + dy* = ( u? +v? + ) du® + dv* = (u® + v?) du® + dv”.

2. PARTIAL CLASSIFICATION OF METRICS WITH RESPECT TO WEAK
QUASIISOMETRY

In this section, we will provide some criteria which allow to decide whether two
given singular metrics are wqi.

We will always work in polar coordinates near zero in R". Thus, we consider
our metrics as defined on a cylinder

Z =Z;, = (0,m9) x S"*

for some rg > 0. A singular coordinate change is then a diffeomorphism ¢ between
open subsets of Z,,, containing strips of the form Z,, for some r; < rp, satisfying
the condition that

r — 0 when p — 0, with ¢ : (p,w) > (r,6).
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2.1. Splitting off dr’: When is a singular metric quasiisometric to a
metric of the form dr? + ¢g5" ' (r)? The following lemma shows when a metric

on a product is quasiisometric to its ’diagonal part’:

Lemma 2.1. Let M, N be manifolds and g a Riemannian metric on M X N.
Denote by g™ + gV the metric on M x N which at the point (m,n) equals g
on TyyM and T, N and for which these two subspaces of Ty n)(M x N) are
orthogonal.

Then

g g™ +g"
if and only if there is a constant 6 > 0 such that the angle
Ly(TrmM,T,N) > ¢
for allm € M,n € N.

Remark: By definition, the angle condition means that for all m,n and v €
TmM,w € T,N one has

arccos 9(v, w) >0
o] - |wl
where |v| := |v]y 1= \/g(v,v) etc., i.e.
(4) |g(v,w)| < (1 =e)v] - |w|

with 1 — & = cosd, which is (up to a square root) just the condition in Lemma
1.1.

PROOF. Assume that (4) holds. We then have

v+ w|§ = |v* +|w* + 2g(v,w)
0] + Jw|* = 2(1 = &) Jv] - Juw]
e([o]? + |wf?)

elv+ w|§M+gN

>
2

and, using the parallelogram identity,
lv+wl? < Jo+w+|v—wf
2(|vl* + |wl?)

= 2+ w|§

M4 gN -

This proves that g & g™ +¢” with quasiisometry constant max(2, (1—cosé)~!) ~
262 for small 4.
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The prove the converse, assume that |g(v,w)| > (1 — €)|v| - lw| for some &
and v € T, M,w € T, N. By multiplying v with a real number, we can assume
|v| = Jw| and

9w, w) < =1 —¢)v] - [w].
Then one has
lo+wly < o’ + [w] = 2(1 )| - Jw| = 2fvf?
= elv+wlivyn-

Therefore g and g™ + g™V cannot be e 1-quasiisometric then. O

In the sequel we will write | |, for both the metric on the tangent bundle and
the dual metric on the cotangent bundle.

For the special case that M is one-dimensional we now formulate several criteria

that characterize when we are in the situation of the previous lemma and in
addition g™ is of the simple form dr?.

Lemma 2.2. Let N be a manifold and g a metric on X = (0,r9) X N. Denote
by r the coordinate on (0,79). Then the following are equivalent:

(i) For a smooth family g™ (r) of metrics on N, one has
g dr® +g"(r),
(i) there is a constant C such that for all z € X
ldrizlg <C  and  |Op4ly < C,

(ili) |dr|g =1 and |Op]g ®1 on X,
(iv) |dr|y ® 1 and there is a constant € > 0 such that for all v = (r,y) € X

ég(ar\maTyN) > €.

Here, 0y(rg,y0) = %\t:o(ro + t,y0) is the first coordinate vector field.
Remarks:
1. With respect to the metric adr? + 2bdrdy + cdy? one has

|0-1* = a and |dr|* = ¢/(ac — b?),

so the two conditions in (ii) are independent.

2. The form dr is invariant under a change of coordinates of the form (r,y) —
(r,(r,y)), i.e., it just depends on the choice of the function 7 on X, while the
vector O, is not.
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PROOF. (i) = (ii) is clear since with respect to the metric g’ = dr? + g™ (r), one
has

‘d’l“‘g/ = 1, |ar|g’ =1.

(ii) = (iii) follows from dr(0,) = 1, which implies |dr|y|0,|, > 1.

For the implication (iii) = (iv), we have to show that Z,(d,,w) > ¢ for all
w € TN. If Vr denotes the vector dual to the one form dr, then Z,(Vr,w) = 7/2
for w € TN since dr(w) = 0. Therefore, we have to show Z,(9,,Vr) < 7/2 —¢.
Now this follows from

9(0,,Nr) _ dr(dy) 2
= >C-.
|01V |Or||dr| —

Finally, we prove that (iv) implies (i): First, Lemma 2.1 shows that the second
condition in (iv) implies g & ¢(®7) + ¢N. But then ¢(®™) & dr® just means
|dr|y & 1, so the proof is complete. O

Applying Lemma 2.2 to the case of R" we obtain an answer to the question in
the title of this subsection. We only reformulate one of the characterizations of
the lemma.

Proposition 2.3. Let U be a pointed neighborhood of the origin in R and g a
metric on U. Let

(r,8):U — Zy,
be some coordinatization of U with r(z) — 0 for x — 0, and g the induced metric
on Zy,.
Then
(5) gad®+¢5 (),

for some smooth (in 1 > 0) family of metrics on S™*, if and only if |dr|, = 1
and the angle between the hypersurfaces r = const and the curves = const is
bounded away from zero.

Note that in the nonsingular case, i.e. if g extends to a smooth metric on
U U {0} then one can take normal polar coordinates (r, ) with respect to zero, in
particular r(z) = disty(0,z). Then |dr| = 1, and the well known Gauss Lemma
says that the spheres {r = const} are perpendicular to the rays = const, and
this means that the metric has exactly the form (5). Also, in this case the family

gsn_l(r) extends smoothly to r = 0.
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2.2. Existence of a ’good’ parametrization of S"~!, for n = 2. Having
treated the r-part of parametrizations satisfying (5) in some detail, we now look
at the map 6 parametrizing the level sets of r. Assuming the existence of some
f-parametrization for which (5) is satisfied, we ask how we can change it so that
the family of metrics gsn_l(r) looks ’simple’.

We now restrict our considerations to the two-dimensional case, i.e. N = S! =
R/27Z. A metric on S', depending on the parameter 7, is of the form

(6) g% (r) = H(r,)*ds?

with some smooth positive function H on Z. We want to see if H can be made
to depend on r only, via a singular coordinate change. If H depends on r only
then 2w H (r) is the length of the curve {r} x S!, and § measures (normalized)
arc length (from some reference point § = 0). This suggests, in the general case,
reparametrizing S! by arclength 7 or normalized arclength 7 for each fixed r, i.e.
considering

0
(7 7(r,0) = /OH(r,w)dw
(8) Iry = %(72277) and
9) (r,0) = 27r71(:;)9).

Then the metric on {r} x S! has the simpler form
1 I(r 2
g% (r) = (%) dr?.

However, this singular coordinate change (r,6) — (r,7) introduces mixed terms
in the full metric g. The following proposition states the conditions when these
mixed terms can be neglected.

Proposition 2.4. On Z = (0,79) x S consider the metric
g =dr* + H(r,0)*df>.

Let a be a positive function on (0,79) and t = t(r,0) an r-dependent reparametriza-
tion of S'. Then

(10) g = dr* + a(r)?dt?

if and only if there is a constant C' such that on Z one has
(11) alt,] < C

(12) atp = H.
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In particular, it then follows that
arl.
For the (normalized) arclength reparametrization this means that
g = dr? +1(r)%dr?
if and only if
(13) llr| < C.

Finally, this condition is a consequence of the following condition:

27 8H

Remark It is possible that arclength parametrization ¢ = 7 does not work but
some other parametrization ¢ does. For example, one could have H = 1 but with
a ’bad’ r-dependence (as 7 — 0) for certain 6, e.g. like 1+ /7 on some f-interval,
and with I(r) = 27. Then (13) is violated but clearly g = dr? + d#?, so t = 0
would work.

Proor. We have
dr? 4 a*dt* = dr® + a®(t,dr + todf)*.

Arguing in the same way as in the second application of Lemma 1.1 in the proof
of (2), one sees that this is quasiisometric to a diagonal metric if and only if (11)
is satisfied, and that this diagonal metric can then be taken as dr? + at}df?.
From this, the first claim follows.

Integrating aty = H over S' gives a = [. If t = 7 then one has I7y = 27 H from
(7), (9), so the second condition (12) is satisfied. The final claim follows from

! 27
im/2m] =17~ GHI S |+ <2 [ 18 .
0
O

2.3. Recovering the function ¢ from the weak quasiisometry class of
dr? + a(r)2df?. We now ask to what extent the factor a is determined by the
weak quasiisometry class of the metric dr? + a(r)2d#?. Clearly, it is determined
up to a multiple bounded above and away from zero if we only allow the metric to
change in its strong quasiisometry class. Also, (the easiest part of) Proposition 2.4
shows that it is determined just as much if we allow singular coordinate changes
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that preserve the r-coordinate. The following theorem shows that, in general,
something slightly weaker is true.

Theorem 2.5. Let a,a be two positive increasing functions on (0,¢), and assume
that

(14) dr® + a(r)?de* ~ dr® + a(r)*d6?
on Z. = (0,e) x S*. Then
(15) sa(Z) < al) < Ca(Cr)

for all v near zero, where C' is the constant implicit in (14).

Remark Clearly, there is a converse statement if a and a satisfy a doubling
condition, i.e. if there is a constant C’ such that for all » we have a(2r) < C'a(r),
a(2r) < C'a(r). In this case, (15) even implies strong quasiisometry in (14) (with
a different C').

PrOOF. The assumption (14) means that there is a singular change of coordinates

¢ : (r,0) — (7,0) such that
(16) dr® + a(r)?d8* =¢ dr* + a(r)*do>.
The idea of the proof is that this quasiisometry implies that level curves of r and
r at comparable levels should have comparable length. These lengths are given
by 2mwa and 27a respectively.

Denote g = dr? + a?df? and g = dr? + a*df*>. Fix p > 0 such that Z, is
contained in the domain and range of ¢. By symmetry, it suffices to prove

(17) a(£) < Calp).

Consider 7, § as functions of (r,6), which are standard coordinates on Z,. First,
we prove that

(18) 7 < Cr.
To prove this, note that dF = 7,dr + 79df and quasiisometry imply |7.| < |dF|, <

C|dr|; = C, and because 7 = 0 for r = 0, this gives

7(r,0) = / 7 (s,0)ds < Cr
0

proving (18).
(18) means that the level curve 7 = p lies completely ’to the right’ of the
vertical level curve r = p/C, see Figure 2. Denoting by Ly(7) the length of a
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FIGURE 2. Level curves of r and 7

curve 7 with respect to a metric g, we will prove below that monotonicity of a
then implies

(19) Ly(r = p/C) < Ly(F = p).
From this we easily deduce (17):
2ma(p/C) = Ly(r = p/C) < Ly(r = p) < CLy(r = p) = 2nCa(p),

where the second inequality comes from the quasiisometry (16).

It remains to prove (19). The path v : S* — (0,¢) x S1,8 = ¢ (p,0)
parametrizes the level curve 7 = p. Write it in components as v = (r,6). Since
¢ is a diffeomorphism between two annuli, it has degree one or minus one. Since
the degree of # : St — S is continuous and therefore constant in p, it must also
be one or minus one. This implies

2w
/ 10(9)| df > 2m
0

where a dot means the derivative with respect to the curve parameter §. Now the
definition of g gives |¥|, > a(r)|f|. From (18) we see that, along v, r > p/C, so
a(r) > a(p/C) by monotonicity. Altogether, we deduce

2m 2m
Ly(r=p) = [ 1sd8 > alp/C) [ 16148 > 27a(p/C) = Ly(r = p/C).
0 0
This finishes the proof of (19) and of the theorem. O

Example 2.6. Suppose a, 8 > 0 and
dr? +r°0% =~ dr? + r?de>.
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The proposition gives C Lpa < P < Cor® for some constant Cy and all r near
0, and this implies a = S.

Corollary 2.7. The spaces Vy,,Vy, (71,72 > 0) are wqi if and only if either
Y1 = 72 or both v1,7v2 are < 1.

PRrOOF. Denote by g, the metric on V5, i.e. g, = (dz* + dy* + dZQ)\Vw'
First, assume v > 1. Using the parametrization

¢:(r,0) € Ry x St (r7 cos,r"sinb,r) €V,
we obtain for the metric
¢* gy = (1 + 220~ DN)ar? 4 r27dg>.

Since v > 1, this is clearly (strongly) quasiisometric to dr? + r27d6? in {r < 1},
and by Example 2.6 the weak quasiisometry class of this metric determines =
uniquely.

For 7 < 1 use the parametrization

Ui (z,y) €R = (2,y, f(2,y) € Vs, flz,y) = (@@ + )/
Then
Uy = (L+ f7)da® + 2f, fy dedy + (1+ f7)dy®
which is quasiisometric to dz? + dy? iff f, and f, are bounded, by Lemma 1.1.
Since V f is bounded near zero for v < 1, we see that all the V,, with v <1 are
wqi. O

A different proof of this corollary was given by L. Birbrair ([Bi]).
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