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 THE SIZE OF THE FIRST EIGENFUNCTION

 OF A CONVEX PLANAR DOMAIN

 DANIEL GRIESER AND DAVID JERISON

 ? 1. INTRODUCTION

 Let Q be a bounded convex domain in R2. Let A be the lowest eigenvalue of

 the Laplacian on Q with Dirichlet boundary conditions and u the corresponding
 eigenfunction, that is,

 (1.1) (/\ +A)u=OonQ, u=Oon&9Q.

 The goal of this paper is to estimate the size of the first eigenfunction u uniformly

 for all convex domains. In particular, we will locate the place where u achieves its

 maximum to within a distance comparable to the inradius, uniformly for arbitrarily

 large diameter. In addition, we will estimate the location of other level sets of u

 by showing that u is well-approximated by the first eigenfunction of a naturally

 associated ordinary differential (Schr6dinger) operator. We intend to show in a
 separate paper that the estimates here are best possible in order of magnitude.

 The present paper depends on the ideas and results of our earlier work [J] and

 [GJ], where detailed estimates for the zero set of the second eigenfunction (or first
 nodal line) are obtained. The paper [J] also contains some estimates for the first

 eigenfunction and lowest eigenvalue, but the techniques of [GJ] and new techniques
 introduced here are essential to the best possible estimates for the first eigenfunction

 presented here.

 The maximum of the first eigenfunction occurs at the point of largest displace-
 ment of a vibrating drum with fixed edges when it vibrates at its fundamental or

 first resonant frequency. The first nodal line is the stationary curve of the drum

 at the second resonant frequency. The maximum is harder to find experimentally
 than the nodal line because it is a single point. Its location has less influence on the

 eigenvalue or Dirichlet integral, so it is also harder to locate mathematically. An-

 other way to describe the difficulty is as follows. To find the maximum of the first

 eigenfunction we will need to estimate its first directional derivative. Derivatives of

 the first eigenfunction are, roughly speaking, analogous to the second eigenfunction
 because they are solutions to an eigenfunction equation. Moreover, convexity prop-

 erties of the first eigenfunction imply that the zero set of the derivative divides the

 region into two connected components. But the derivatives are harder to estimate

 than a second eigenfunction because they do not vanish at the boundary.
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 42 DANIEL GRIESER AND DAVID JERISON

 Before defining the ordinary differential operator associated to Q, rotate Q so

 that the projection onto the y-axis has least length and dilate so that the length is
 1. Thus we may write

 Q = {(x,y): fi(x) < y < f2(x),a < x < b}

 and the functions fi and f2 are convex and concave respectively and satisfy

 O < fi(x) < f2(x) < 1 for a < X < b,

 max f2= 1; min f -= O.
 [a,b] [a,b]

 Note that no further smoothness assumptions are made on fi and f2. Let

 h(x) = f2(x) - fi(x)

 be the height of Q at x. The relevant Schr6dinger operator is

 (1.2) d:= h 2
 dx2 h(X) 2

 on the interval [a, b], with zero boundary conditions. (See [CL, Chapters 7-9] for a
 discussion of self-adjoint boundary problems for second-order ordinary differential
 equations.)

 Let ,u be the lowest eigenvalue of L and let 0 be the first eigenfunction, i.e.,

 (L: + g)ob = O on (a, b), 0(a) =b (b) = O.

 See Figure 1. The significance of L is that 0(x) is the factor depending on x alone
 in an approximate representation of u using the method of separation of variables.

 l y

 1 Y f2(X)

 .Max of u (h(x)

 a XO X1 x b

 graph(F2/Ih 2)

 A~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  ft~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.

 * g~~~raph(q$)

 a X 1. b

 Figure 1: Theorem 1.3
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 SIZE OF THE FIRST EIGENFUNCTION 43

 In the case in which Q is a rectangle the representation is exact: h is constant,

 A = g, and

 u(x, y) = 0(x) sin iry = sin(7r(x - a)/N) sin iry (N = b - a).

 Notice that in order for u to have this product representation it is essential to

 rotate so that the projection on the y axis has least length. The point is that for

 arbitrary Q, this choice of orientation of the axes gives boundary functions fl(x)
 and f2(x) that are close to constant for large N. (The precise size of f'(x) will
 play an important role in proving the best approximations.) As far as we know,

 there is only one other type of bounded planar domain for which an exact solution

 can be expressed in terms of special functions using separation of variables, namely

 the circular sector. In that case, the solution q is an approximation to the (radial)
 Bessel function in the separation of variables solution in polar coordinates to (1.1).

 The circular level sets of the Bessel function tend to the vertical level sets of 0,
 and the approximation gets better and better as N tends to infinity. The theorems

 of [J] and [GJ] and the present work express the extent to which a rectangular,
 approximate separation of variables works in general.

 After multiplication by a constant, we may assume that u and q are positive.
 A theorem of Brascamp and Lieb [BL] implies that the level sets of u are convex.

 Since u is real analytic in Q, it follows that u achieves its maximum at exactly one

 point. The concavity of h implies that q has a unique maximum.1 The first main
 theorem of this paper can be stated as follows.

 Theorem 1.3. Let xi be such that 0(x1) = maxq0. Let (xo,yo) be such that
 [a,b]

 u(xo, yo) = maxu. There is an absolute constant C such that

 Ix0 - XII < C.

 Here we are assuming the unit height normalization of Q described above. C is

 then independent of Q, but the theorem has no content unless N > C. The points

 xo and xi are depicted in Figure 1.
 This theorem should be compared to the analogous theorem for the second eigen-

 function:

 Theorem B of [J]. Let U2 be a second eigenfunction of Q, and let 02 be the second
 eigenfunction of l: on [a, b]. There is a unique X2 E (a, b) such that 02(x2) = 0. If

 (x,Iy) E Q is such that U2 (X, y) = 0, then

 X-X21 <?c.

 The proof of Theorem 1.3 is based on a detailed comparison of u with 0. To
 formulate this comparison, we need to recall from [J] that the essential length scale
 governing the shape of u is not N = b - a, but a number L, defined as follows: L

 is the length of the longest interval I such that (Figure 2; see ?3)

 (1.4) h(x) > 1--- on I.

 1To prove this, note that rr2/h2 is convex and hence 0" < 0 on the interval (a', b') where
 ,u- r2/h2 > 0 and q5" > 0 on the complement of (a', b') in [a, b]. Since 0(a) = 0(b) = 0, 0 must
 be increasing in [a, a'], concave down in (a', b') and decreasing in [b', b]. Consequently 0 has a
 unique maximum.
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 44 DANIEL GRIESER AND DAVID JERISON

 (In what follows the term -1/L2 in (1.4) can be replaced by -c/L2 for any fixed

 c > 0 with no essential changes.) It is easy to check that

 N1/3 <L <N.

 The two extreme cases are the case of a rectangle, for which L = N, and a right

 triangle, for which L = N1/3, and, by considering a suitable trapezoid, one sees that
 any intermediate value for L is possible. The number L is approximately the length

 of the rectangle inscribed in Q of lowest Dirichlet eigenvalue and the projection of

 that rectangle onto the x-axis is comparable to the maximal interval I. As shown

 in [J], this rectangle is where "most" of the mass of u is concentrated. Roughly

 speaking u is constant on the central portion of I and decays at least exponentially

 like e-x/L away from I. The same is true for b.

 Denote

 (1.5) a(x, y) = ( fj(x)

 The function sin a(x, y) is one hump of the sine function in the y variable, equal

 to zero at the upper and lower boundaries, y = f2(x) and y = fi (x). The second
 main theorem is as follows.

 Theorem 1.6. Normalize u and b so that maxu = 1 and maxq 1. There is an
 absolute constant C such that

 Ju(x,y) - b(x)sin a(x,y)I < C/L for all x C I',
 where I' is the interval concentric with I of half the length.

 The interval I' can be any fixed proportion of I less than 1. By adjusting this

 proportion and the constant in the definition of I, one can see that the inequality

 of Theorem 1.6 holds in any interval on which 0(x) (or maxy u(x, y)) is larger than
 a fixed constant. The proof only gives a constant C that increases as I' increases,

 but we expect that this bound is valid on the whole interval [a, b]. In fact, there
 should be better bounds (perhaps with exponential decay) outside the interval I',
 but we have not carried these out.

 The theorems stated here should be contrasted with asymptotic expansions using

 so-called semiclassical methods. The semiclassical limiting methods allow one to

 give complete asymptotic expansions as N -* oo for eigenfunctions on certain one-
 parameter families of domains. The bounds proved here are valid uniformly for
 all domains with the same length scale L, and there can be no further terms in

 an asymptotic formula beyond the first one. Because only the first term in the

 asymptotics exists, the methods here must be more direct than methods designed

 for a full asymptotic expansion. On the other hand, the asymptotic expansion can

 be used on particular examples to show that the theorems here are in the nature

 of best possible. We plan to carry out this analysis in a separate paper. Consider
 a domain

 Q1(N) = {(x,y): 0 < y < x, y < 1, 0 < x < N}.

 This is a right triangle above 0 < x < 1 and a rectangle of width 1 above 1 <

 x < N. Define a second domain Q2 by symmetrizing Q1 around the line y =
 1/2. Thus the two domains have the same width function h and hence the same

 function 0. In work in progress, we intend to show that the difference between
 the locations of the maxima of the first eigenfunctions of the two domains tends
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 SIZE OF THE FIRST EIGENFUNCTION 45

 to a nonzero constant as N -* oo. (This conjecture is strongly supported by
 numerical evidence.) This will show that Theorem 1.3 is best possible. Moreover,

 the difference between the two eigenfunctions is bounded below by c/N c/L
 for some c > 0, for example at points of the form (x, 1/2) for N/8 < x < N/4.

 More generally, an example using trapezoids modified by a unit segment of slope 1

 indicates that there exist eigenfunctions u with the same 0 which differ by c/L no
 matter what the relationship is between L and N. Thus Theorem 1.6 is also best

 possible.

 We will now discuss the relationship between our results and numerical compu-

 tation. Our results are only meaningful for eccentricities (values of N) far larger

 than what is accessible to numerical computation. We make no claims to proving

 these results with practical bounds on the constants involved. Indeed, there are far

 too many places where we are not able to give practical bounds, especially in the

 maximum principle and Harnack inequality aspects of the proof. Nevertheless, nu-

 merical examples using the program of Toby Driscoll [D] indicate that the constants
 can be taken so small that the results give information for essentially all domains.

 For example, to illustrate Theorem 1.3, when N > 5, one finds in examples that

 we believe to be close to the worst possible that the x-coordinate of the maximum

 is within 1/5 of the predicted approximate location xi.
 This paper and [J] show that for several questions about eigenfunctions in planar

 convex domains, a very simple rectangular separation of variables is often adequate.

 The gain in numerical speed is that one then solves an ordinary differential equation

 rather than a partial differential equation. This suggests that the same principle

 works one dimension up. Namely, a separation of variables can, to a certain or-

 der of approximation, reduce a three-dimensional partial differential equation to

 a two-dimensional one, which represents a large computational savings. In higher

 dimensions, one expects to deal with operators of the form A + V, defined on a
 projection of the convex body, where the potential V(x) (like 7r2/h(x)2) is the eigen-
 value of the perpendicular cross-section. It is interesting to note that a theorem

 of [BL] implies that V(x)-1/2 is a concave function of x, just as it is in the one-
 dimensional case. This hypothesis may be useful: It arises in the work of C. Borell

 [B11], [B2], who proves convexity properties of fundamental solutions associated to
 Schrodinger operators.

 Our theorems treat the noncompact "ends" in the space of all convex domains.
 Because our results are uniform as the length of the domain tends to infinity (with

 the width fixed) they can be used as a diagnostic test to see how well a numerical
 program handles this singularity, in much the way one might look at how well a

 numerical program handles the graph of an algebraic function near a singularity.

 For example, the numerical package developed by Toby Driscoll succeeds in the

 sense that it remains accurate as the domain gets very long and thin. Driscoll

 computes eigenfunctions of polygonal regions, using, in essence, a polar coordinate
 expansion at each vertex. Our theoretical results also indicate that for a certain
 level of accuracy, one can afford to take a polygonal approximation to a region.

 Moreover, one can even omit certain vertices of a polygon to make it simpler. For

 estimates of the nodal set to an accuracy on the scale of the inradius, one only
 needs to sample the width function h at points a distance the inradius apart.

 One starting place for connecting this work with the large literature on eigen-
 functions is the parameter L. This parameter is defined purely geometrically and

 gives order-of-magnitude information about the eigenfunctions, such as the ratio
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 46 DANIEL GRIESER AND DAVID JERISON

 between the L2 and L? norms. For related work in higher dimensions, see [K]. The

 earliest instance we know of analysis of a general convex domain using an associated

 ordinary differential equation is [PW1]. That article proves a sharp lower bound

 for the lowest (nonzero) Neumann eigenvalue in terms of diameter. The ordinary

 differential equation of [PW1] is used in [J1] for estimates of the nodal line of the
 first nontrivial Neumann eigenfunction. Other geometric estimates for eigenvalues

 and relationships between the first eigenfunction and the heat kernel with applica-

 tions to probability are investigated in [KP], [S], where further references may be
 found.

 We thank Toby Driscoll for computing several examples that indicate that our
 asymptotics are relevant even for small values of N. We thank the referee for many

 corrections and suggestions.

 ?2. MAIN IDEAS OF THE PROOF

 We will compare u(x, y) to the function q(x)e(x, y), where e is the L2-normalized
 sine hump in the y-direction, that is, with a defined in (1.5),

 e(x, y) = 2/h(x)sin a (x, y).

 Define

 ff2 (x)

 (x) e(x, y)u(x, y) dy.

 The basic idea is that, as motivated by the cases of the rectangle and the circular

 sector, the function u should be well approximated by its lowest Fourier mode

 j (x)e(x, y) in the y-direction, computed for each fixed x, and that +L and 0 satisfy
 similar ordinary differential equations. We will prove Theorem 1.6 by making the
 following two estimates.

 Theorem 2.1. (a) u - be < C/L3 on I'.

 (b) +b-q$/X| < C/L on I'.

 (We do not need the factor h in (b) because 1 - h = O(1/L2) in I'.)
 Estimate (a) is relatively easy to prove using the main idea of [GJ]. Denote

 v = u - 'be. Consider the auxiliary function

 f2 (x)

 (2.2) T(X) v(x, y)2dy.
 fl (x)

 One can compute that v nearly satisfies the equation (/\ + A)v = 0, and hence that
 T satisfies a differential inequality of the form

 (2.3) T" > CT - ,

 for some constant c and measure > 0. (This convexity inequality for T has to be
 interpreted in the sense of distributions, since the term : may have point masses

 coming from the second derivatives of the boundary fi and f2.) The main point is
 that c > 1 and : is suitably small. The reason why c > 1 is that v is orthogonal to
 the first Fourier mode in y, and the contributions from higher modes have at least
 double the eigenvalue. If : were zero, T could be majorized by a hyperbolic cosine,
 and this would imply that its values in I' would be exponentially small compared

 to its values far from I'. In fact, the average of 13 over unit intervals is O(1/L3)
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 SIZE OF THE FIRST EIGENFUNCTION 47

 near I'. And this implies the bound T = O(1/L6), which, in turn, implies estimate

 (a). (See Section 5.)
 Estimate (a) says that u resembles a sine hump in the vertical direction, but it

 says nothing about the behavior in the x variable since it merely compares u to its

 own average. For behavior in the x variable we need the second estimate.

 To prove (b) requires much more work. Recall that (L + gu)q = 0. We also have

 (2.4) (L + p>b = of
 where o- is an error term estimated (in essence) by

 (2.5) lojI <?CJlh'Iuluxdy+C( jhl l+lh' +Ih" If.
 This estimate follows from the eigenvalue estimate A -, = O(1/L3) of [J] and a
 routine computation. From this, it is not hard to see that the average of 1oj over

 unit intervals in I' is O(1/L3). But just knowing that 0 and 46 satisfy nearly the
 same second-order equation is not enough. For example, any translate of the sine

 function satisfies the same second-order equation. One needs to make use of the

 boundary conditions q$(a) = q$(b) = 0, which necessitates estimates for uf on a much
 longer interval than I'. The first step is to show that the functions q and fL are
 negligibly small where h < 1/2 and also within a unit distance of a or b. Call the

 complement of this region [a, b]. This is the interval on which we must estimate v.

 The main difficulty then is that the bound for u- still refers to ux. This means
 that we have not yet reduced the problem to one concerning ordinary rather than

 partial differential equations. The natural goal (motivated by the examples of the

 rectangle and the sector) is that ux = O(1/L). This is achieved by comparing ux
 to '/. In fact,

 (2.6) '= Juxedy + Juexdy

 and the second term is easy to control. Thus ' is comparable to an average of ux.
 Unfortunately ux can change sign on vertical lines. Moreover the best estimate for

 the full gradient IVuI is 0(1).2 But one additional feature of u rescues us, namely
 the fact that u has convex level sets. Crude bounds on the shape of the level set

 {u = 1/2} (Lemmas 3.16 and 3.17) show that it contains a rectangle of length
 comparable to L. So along "most" of its top and bottom, the slope is bounded by

 O(1/L). Since the full gradient IVul = 0(1), it follows that ux = O(1/L). At the
 ends of the level set {u = 1/2}, the slope is far from small, in fact the tangent lines

 become vertical, but there are still one-sided bounds of the form ux < C/L to the
 right and ux > -C/L to the left. (See Lemma 4.3 and Figure 3.) The one-sided
 bound combined with control on the average given by +' gives the control of the
 form

 (2.7) luxI,< C<|Q|l + (1 + +b)/L)-

 (See Lemma 4.4; the fact that an average of Iux I controls its supremum is proved in
 the appendix.) The bounds on /Y, ux and lojI are intertwined: Estimates (2.4)-(2.7)
 are combined to prove simultaneously the O(1/L) bound on ux, +', and the total

 mass of IoI on [a, b] (Lemma 4.7).

 2That this is the best one can do is immediate from the sin y factor appearing in the example

 of a rectangle. The fact that this bound is true for a general convex domain is proved in Lemma

 3.2.
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 48 DANIEL GRIESER AND DAVID JERISON

 To deduce Theorem 2.1(b), choose a constant c0 such that +L and coo match at
 some point. Then the preceding estimates give (see Section 6)

 (2.8) 16- cool < C/L on I'.

 The normalization max u = 1 and max = 1 together with part (a) of Theorem

 2.1 then imply that co can be replaced by 1/X2. Thus Theorem 2.1 and hence

 Theorem 1.6 are proved.

 One cannot deduce directly from Theorem 1.6 the location of the maximum of u

 to the precision given by Theorem 1.3. This is because +L and q only change by the

 order 0(1/L2) within a unit distance of the maximum, as the example sin(x/L) near

 x = 7rL/2 shows. But one can get around this by proving best possible estimates

 for the first derivatives of fL and 0. (The argument is not difficult; it only involves
 ordinary differential equations. See Section 7.) From Theorem 2.1, one can deduce

 the following:

 (2.9) -'// 2/1 < C/L2 on I'.

 Furthermore, if q attains its maximum at x = xi, then

 (2.10) l/'(x)l > clx - xil/L2 on I'.
 (Here I' must be suitably enlarged so that x1 is well inside I'.) From these two

 bounds one easily deduces the estimate on the maximum, Theorem 1.3.

 ?3. PRELIMINARY ESTIMATES

 First, we note a basic geometric fact, which will allow us to express any estimates

 involving the slope of the boundary in terms of h' alone:

 Lemma 3.1. If the projection of Q on the y-axis is shortest, then

 lh'(x)l = lf2(x)l + if'(x)l, almost everywhere,
 i.e., f{ and f2 cannot be simultaneously positive or negative.

 Proof. Fix x1 and denote si = fl'(xI), 82 = f2(Xl). We will show that 82 > s1 > 0
 leads to a contradiction. (More generally, if the derivative does not exist, s1 and
 82 are defined as the slopes of any tangent lines to &Q through (xi, fi(xi)) and
 (x1, f2(xi)), respectively.) The symmetries x -* -x and y -* -y take care of the
 other three orderings. Thus, in all cases, 8182 > 0 leads to a contradiction.

 Because Q is convex, for every (x, y) E Q,

 (x - xI)s1 < fl(xI) + (x - xI)s1 < Y < f2(XI) + (X - X1)s2 < 1 + (X - X1)s2.

 The assumption s2 > s1 > 0 implies that for x < x1,

 1 + (X - Xl)s2 < 1 + (X - x1)s8.

 On the other hand, for x > x1

 y < 1 < 1 + (x - x)s1.

 Thus for all x, y < 1 + (x - x1)sI. Combined with the lower bound above,

 (x - x)s1 < y < 1 + (x - XI)Si.
 This can be rewritten as

 -X1S1 <-xs1 + y 1- XISi.
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 In other words, the points (x, y) . (-S1, 1) span a segment of length at most 1. There-

 fore, the projection of Q onto the direction (-sl, 1) has length at most 1/ + 1.
 This contradicts the fact that the shortest projection has length 1, concluding the

 proof of the lemma. E

 In the next lemma, we collect some local estimates:

 Lemma 3.2. (a) ~b(x) < h(x)1/2 maxu(x, y).
 y

 (b) There is an absolute constant C such that for x E [a + 1, b - 1],

 h(x) 1/2 max u (x, y) < C+b(x) .
 y

 (c) If, in addition, h(x) > 1/10, then

 max IVu(x, y) < Cmaxu(x, y).
 y y

 Proof. Part (a) follows from the definition of fb and from f edy = h(x)1/2v'8/7r <

 h(x)1/2. Because h is concave, If'l + lf21 = Ih'I < 2 in [a + 1/2, b - 1/2]. Thus the
 assumption in part (b) implies that the Lipschitz constant of &Q on [x + 1/2, x- 1/2]
 is bounded by 2. As in the appendix, the Harnack inequality and the Carleman

 lemma imply that u(x, y) for any point y in the middle third of the interval fi (x) <

 y < f2 (x) majorizes values of u in the full segment. And inequality (b) follows.
 Finally, (c) follows from Lemma A.6 applied to w = u, and w = uy, together with
 Lemma A.5. C]

 We now turn to global bounds. Recall from [J, (1.2) and (1.3)] the following
 bounds:

 (3.3) -Al < CIL

 (3.4) A < r2 + C/L2

 Next, we define various subintervals of [a, b]. See Figure 2.

 < L >

 I I~~~~~I- -

 a a Ab b

 Figure 2: The length scale L

 Definition 3.5. Let 0 < E < 1/3. The middle (or E-middle) is the largest interval
 I = [A, B] such that

 h(x) > 1 - 1/EL2 for A -,EL < x < B +EL.
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 50 DANIEL GRIESER AND DAVID JERISON

 We will sometimes display the dependence of the interval I on E with the no-

 tations I(E), A(E), and B(E). Note that if 0 < E < E', then I(E') c I(e). More
 precisely,

 [A(E) -EL/2, B(E) + EL/2] c I(E/2).

 Let I' be the interval defined in Theorem 1.6. Then for sufficiently small E > 0,

 I' c [A, B]. We will prove Theorems 1.6 and 2.1 with I' replaced by the larger
 interval [A, B], for arbitrary E > 0 and constants depending on E.

 Definition 3.6. Let 0 <K 0 < 1/10. The interval

 [a, b]

 is defined as the largest interval for which

 h(x) > 1-Eo, lh'(x)l <Eo for all x c [a-2, b + 2].

 The absolute constant E0 will be chosen later, in the proof of Lemma 4.7. For L

 large,

 a <-a -2 < -a < A < B < b < b + 2 < b.

 Also, maxy u and 'b are comparable on [ab, b] by Lemma 3.2. Elementary reasoning
 with the slope of the concave function h shows that

 (3.7) L/3 < B-A < CEL

 and

 (3.8) lh'I < CE/L3 on [A -EL/2, B + EL/2].

 We will show shortly that f and 0 are bounded away from 0 in the middle. By

 contrast, the interval [a, b] can be much longer than L and Vb and 0 will not be
 bounded below on such intervals as the following exponential decay estimate shows.

 For example, if Q is a right triangle (or circular sector), then N L3 and b - a is
 approximately EON.

 Lemma 3.9. If xi is in the 1/3-middle, then for all x l [a, b]

 0(x) + 'V(x) < Ce-lx-xlI/L.

 In particular,

 b

 jb (x) + q(!x))dx < CL.

 Proof. Define p by

 f2 (x)

 (3.10) p(X) = A u(x, y)2dy.
 'i (x)

 Schwarz's inequality implies
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 p =2 J(uuxx + u2)dy = 2 J(-AU2 _uuy + u2)dy

 = 2 J(-AU2 + u + u)dy

 > 2(2 _A)Ju2dy+2 U2 > 2( 2-A)p

 By definition of L and convexity,

 h(x) <1 - clx - xi /L3 for all x - xi > CL.

 This and the bound (3.4) give

 (3.11) p"(x) >1j2p for all Ix-xiI > CL.

 For every x, p(x) < maxu2 = 1. Let X2 = min(xi + CL, b). The function

 R(x) = e-(X-X2)/L

 satisfies R > 0 and R" = R/L2. Therefore, by the generalized maximum principle
 (A.1), p/R attains its maximum at an endpoint of the interval [X2, b]. But p(x2) <
 1 = R(x2) and p(b) = 0 < R(b), so

 p(x) < R(x) for all X C [X2, b].
 There is a similar argument on [a, xl- CL], and this gives the exponential decay for

 p. Since p majorizes 'V, the bounds for '$ are proved. The bounds for 0 are proved
 in the same way as the bounds for p, since 0 is positive in (a, b), 0(a) = 0(b) = 0,
 and 0 satisfies the differential equation 0" = (7r2/h(x)2 -2 t)0, where ,1 has the
 same upper bound as A. E

 Another upper bound on solutions is provided by the following lemma.

 Lemma 3.12. There is an absolute constant C such that

 (a) maxy u(x, y) < C min{(x-a)/L, (b-x)/L} .

 (b) If h(x) < 1/2, then maxy u(x, y) < C/L.

 Proof. We begin with the proof of the bound (b- x)/L. Estimate (3.4) implies that
 one can choose an absolute constant c1 > 0 sufficiently small that

 RI (s, t) = sin(7r(b - s)/ciL) sin(7rt)

 satisfies (/\ + A)R < 0. Because Q is convex, a barrier on a semicircle (placed so
 that its flat side is tangent to the boundary) shows that u vanishes at least to first
 order at the boundary, that is,

 (3.13) u(s, t) < C dist((s, t), &Q).

 Since 0 < fi < f2 < 1, it follows that

 u(b - clL/2,t) < Csin(7rt) = CRfI(b - clL/2,t).

 We will use the notation

 Q(a,,B) = {(s,t) c Q: a < s

 By the generalized maximum principle (A.1), u/Ri achieves its maximum in
 Q(b - cIL/2, b) on the boundary. In other words,

 u(x, y) < CR1 (x, y) < C sin(7r(b - x)/ciL).
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 This proves the bound of order (b - x) /L in part (a), and the corresponding bound

 of order (x - a)/L follows by reflection x -* -x.

 Next to prove part (b), fix x such that h(x) < 1/2. Let bi = sup{x: h(x) > 3/4}.
 We may assume, after a possible reflection, that b1 < x. The case b - x < 1 follows

 from part (a). So we may assume also that b - x > 1. Then by concavity of h,

 x - b1 > D/3 where D = b - bl. Consider the infinite strip I = [b1, oo) x [YI, Y2]

 with Yi = fi (b1), Y2 = f2(b1) and consider the function

 R(s, t) = e-(s-bl)/11 sin(117r(t - Yo)/10).

 The constant yo is chosen so that

 R(bi, t) = sin(117r(t-yo)/10) > 1/100

 for all t c [YI, Y2]. This is possible because Y2 -YI < 3/4. By Lemma 3.1, Q(b1, b) C
 I. Thus, since u = 0 on OR

 (3.14) u(s, t) < 100R(s, t) maxu(bi, y) for all (s, t) c &Q(b1, b).
 y

 Finally, R is a supersolution:

 (A\ + A)R = (-1.217r2 + 0.01 + A)R < 0

 for sufficiently large L by (3.4). Therefore, by the generalized maximum principle,

 (3.14) also holds on the interior of Q(b1, b). In particular,

 (3.15) max u(x, y) < lOOe-D/30 max u(bl, y).
 y y

 Finally, the estimate in part (a) implies

 maxu(bi,y) < CD/L.
 y

 Combining this with (3.15) gives a bound of the form

 max u(x, y) < CDe-D/30 /L < C/L
 y

 for suitable absolute constants C, changing from line to line. D

 A lower bound for the eigenfunction was proved in Proposition A and Lemma 2
 of [J] and is restated here as follows.

 Lemma 3.16. For any E > 0 there exists 6 > 0 such that if x is in the E-middle,
 then

 0(x) > 6,
 and such that under the additional assumption

 dist((x, y), &Q) > E

 one has

 u(x, y) >?.

 We now prove a converse to Lemma 3.16.

 Lemma 3.17. For any 6 > 0 there exists E > 0 such that if u(x, y) > 6, then x is
 in the E-middle and

 dist ((x, y), &Q) > E,

 and such that if 0(x) > 6, then x is in the E-middle.
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 Proof. We will first prove the claim for u. By the remark before (3.13) u vanishes

 at least linearly at the boundary. It follows that there is an absolute constant c

 such that dist ((x,Iy), &Q) > c6.
 The conclusion that x is in the E-middle will be proved in contrapositive form:

 For any 6 > 0 there exists E > 0 such that if h(x - EL) <1 - 1/EL2, then u(x, y) <
 6 max u. (Using the symmetry z -* -z the same argument is valid with h(x -,EL)
 replaced by h(x + EL).) Let E < 62 and consider first the case 6 < 1/L. Then
 the hypothesis becomes h(x -,EL) < 0, which must be interpreted to mean that

 x -,EL < a. It follows from Lemma 3.12(a) that maxy u(x, y) < C(x - a)/L < CE =
 C62.

 What remains is the case 6 > 1/L. Assume first that h(x) < 1/2. Then Lemma

 3.12(b) implies that maxy u(x, y) < C/L < C6. So (replacing 6 by a suitable
 multiple) we can assume that h(x) > 1/2. Moreover, we can assume that h(s) > 1/4
 for all x - 1 < s < x + 1. To see this assume that h(x + 1) < 1/4. Then the
 convexity of h implies h(x + 2) < 0, i.e., b < x + 2. Lemma 3.12(a) implies that

 maxy u(x, y) < C(b - x)/L < 2C/L < 2C6.
 The preceding paragraph shows that one may assume that h is uniformly bounded

 from below near x. By the Carleson lemma and Harnack inequality (as in Lemma

 3.2) maxy u(x, y)2 < p(x), where p was defined in (3.10). Thus it suffices to estimate
 P.

 Because h is concave, it is monotone in two intervals of [a, b]. Consider first the
 case in which h is increasing at x -,EL. Then

 (3.18) h(s) < 1 - 1/EL2 for all s < x -,EL.

 Recall that p defined in (3.10) satisfies

 p >2(h-A)p.

 From (3.4), there is an absolute constant C, for which

 p"(s) > -Cj2p/L2 for all s.

 Moreover (3.18) implies that for E sufficiently small depending on the absolute

 constant in (3.4),

 p"(s) > (1/EL2)p for all s < x -,EL.

 Let E = 62. Define a supersolution R(s) to dominate the subsolution p as follows:

 R(s) = sin(Cj(s-x)/L + COE + Cj6), s > x-EL,

 R(s) = (sin(Ci6))e6+(s-x)/L s < x -,EL.

 Note that R is continuous at s =x-EL. Furthermore, since sin(C16) > C 6 cos(Cl6),
 R' from the left is larger than R' from the right at x = x - EL. Thus R" has a
 negative point mass at s = x - EL. At all other points the two inequalities for p"
 imply that R"/R < p"/p. Finally we can make a comparison at endpoints. Namely,
 p(a) = 0, but R(a) > 0. And R(x + (7r/2C1 - E - 6)L) = 1, and maxp < 1. In all,

 R is a positive supersolution on the interval [a, x + (7r/2C, - E - 6)L]. In particular,
 p(x) < R(x) = sin(CiE + C16). Thus maxy u(x, y)2 < Cp(x) < C6 and the proof
 is complete if 6 is replaced by a suitable multiple of 62. (In the end we really used
 E = 64.)
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 Last of all we need to consider the case in which h is decreasing at x -,EL. But

 this case is easier than the other one. (3.18) is changed to

 h(s) < 1 - 1/EL2 for all s > x -,EL,

 and p is majorized by the barrier R reflected through x -,EL:

 p(s) < R(-(s - (x -,EL)) + x -,EL).
 In particular, when s = x, p(x) < R(x - 2EL) < sin(C16).

 The claim for 0 can be proved in the same way since the differential inequality
 for p is replaced by the equation 0" = (7r2/h2 - ,u)q.

 ?4. ESTIMATES FOR a, UX AND f

 We will now analyze

 d2 ir2
 (dx2 h2

 A short calculation shows that

 a = J(2exux + exxu) dy + (,u - A)4.

 Our goal is to give estimates for a in terms of h', '$ and +' alone. The main problem

 will be to estimate ux in terms of +'.

 Lemma 4.1. I h I <C/L on [a, b]

 Proof. Lemma 3.2(a) and Lemma 3.12(a) imply that

 'V(x) < 5 maxu(x, y) < Cmin(x-a, b-x)/L.
 y

 But the concavity of h implies that min(x - a, b - x) < 1/h'(x)l. This proves the
 lemma. D

 Lemma 4.2. 1 'l < C/L on [a, b].

 Lemma 4.2 is proved in [J] (Lemma 2.4b).

 Lemma 4.3. For any E > 0 there exists C depending only on E such that if [A, B]
 denotes the E-middle, then

 (a) lux(x, y)I < C/L for A < x < B,
 (b) ux(x, yy)< C (x)/L for B < x < b,
 (c) ux(x, y) > -C (x)/L for a < x < A.

 Proof. The key to the proof is that the convexity of the level sets of u permits us
 to estimate their slope. (See Figure 3.) First consider the level set u = 0, that is,
 &Q. There is an absolute constant such that

 Iux(x, f2(x))I = If2(x)uy(x, f2(x))I < Ih'(x)H1vu(x, f2(x))l < CIh'(x)l.
 The equality holds because the gradient is normal to the level set. The first in-
 equality follows from Lemma 3.1 and the second from (A.4). Hence, (3.8) implies

 |Ux(X)y) ? CeL L3

 for all (x, y) c &Q for which x c [A-EL/2, B+EL/2], where A = A(E) and B = B(E)
 from Definition 3.5.

 But boundary values of ux do not control the values on the interior of Q. Indeed
 the eigenfunction u is zero on the boundary and nonzero inside. The main additional
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 {tu 1/21

 a b

 Figure 3: A level set of the eigenfunction u

 element of the proof of (a) is to find another level set a fixed distance inside the
 domain for which the slope is bounded by C/L.

 Choose zi so that for every Iz - z1 < L/2, h(z) > 1 - 1/L2. By Lemma 3.16
 there is an absolute constant 61 > 0 such that

 u(zi, 1/2) > 61.

 With the notations of Definition 3.5, let

 R(E) = {(x, y) E < y < 1 - E, A(E) < x < B(E)}.

 Denote

 = {(x,y) : u(x, y) > 6}.

 By Lemma 3.17 there is an absolute constant El chosen depending on 61 such that

 Q51 C R(Ei).

 Let E > 0 be the number in the hypothesis of Lemma 4.3. We may assume without

 loss of generality that E < El, so that R(El) c R(E). Next, define an even larger
 rectangle R' by

 R' ={(x, y) :E K<y 1 - E, A(E) - EL/2 <x <B(E) + EL/2}.

 For L > 2/e,

 dist((x,y),&Q) > E/2 for every (x,y) c R'.

 Thus by Lemma 3.16, there exists 62 > 0, depending on E, such that R' C Q52.
 Finally, (the easy part of) Lemma 3.17 implies that there exists E2 > 0 such that if

 (x,Iy) e Q62, then

 62 < K 1- 62-

 Consider any point (x, y) E &Q52 for which A - EL/4 < x < A + EL/4. Because

 Q52 is convex and contains R', the slope of the tangent line to &Q62 at (x, y) has
 absolute value less than 4/L. As before, when we estimated ux on &Q, it follows
 that

 ux (X, y) I < 41 Vu(x, y) I /L < C/L.

 In summary, IuxI < C/L on the four curves forming the upper and lower bound-
 aries of Q and Q62 for A - EL/4 < x < B + EL/4. Also we have the bound luxI < C
 everywhere which follows from (A.4). We now deduce that

 luxj < C/L for A < x < B
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 using barriers on rectangles containing the three regions between these boundaries:

 First, consider the middle strip E2 < y < 1 - E2. The function

 F(x, y) = (1/E2L) cosh(x/ L) sin(w + E2)Y

 satisfies

 F(x, y) > (1/L) cosh(x/vL) > 1/L for E2 < y < 1-E2
 Moreover, when x = ?,EL/4,

 F(x,y) > (I/L)ee l'/4 >> 1.

 Moreover, for sufficiently large L, depending on E2, the eigenvalue of F is larger

 than A:

 (1T + 62)2 - 1/L > 2 + 100/L2 > A

 by (3.4). Therefore, F is a supersolution. For each point x c [A, B] translate F

 by x. Then F majorizes ?ux on the boundary of Q62 (x - EL/4, x + EL/4). Hence
 by the generalized maximum principle, (A.1), it majorizes it inside. The value of
 F at x = 0, the center of the rectangle, is at most 1/E2L. Therefore, we have

 Iux(X,Y)l ? C/L for all (x,y) c Q62 such that A < x < B. The other two regions
 of Q in A < x < B are much narrower, so the same barrier, translated up or down
 in y, provides the same bound. This concludes the bounds in Lemma 4.3(a).

 Next consider any (x, y) c Q for which x > B. Then u(x, y) < 61. The convexity
 of the level sets of u implies that the half-plane

 H = {(z, w) : (z - x, w - y) . Vu(x, y) > 0}

 contains Q61. In particular, (zl, 1/2) c Q61, so that
 1

 (zi -X)ux (X, Y) + ( -y)uy (x, y) > O.

 But z1 - x < -L/2. Therefore, if x < b, Lemma 3.2 implies

 LuX (x, y) /2 < Iuy (x, y) I < C+' (x).

 The proof for x < A is similar. D

 Denote
 x+l

 Fi(x) = F(t)dt and S= lh'll.

 Lemma 4.4. (a) Jul < C(S/I/'Y + (S/L + S2 + h"I + L 3>i) on [a,b], for an
 absolute constant C.

 (b) <j < C(L3 + Ih" ) on [A, B], for a constant C depending on E, where
 A = A(e), B = B(E).

 (c) In particular, Jul, < CL-3 on [A, B], for a constant C depending on E.

 We note in particular that the constant in part (a) does not depend on Eo of
 Definition 3.6. This is obvious because a smaller EO gives a smaller interval [a, b].

 Proof. Suppose that we are in the region A < x < B. Then 'b > c > 0 and according

 to Lemma 4.3, luxl < 1/L. We also have lexl < Clh'I and lexxl < C(Jh"J + Ih'I2).
 Finally, It --AI < CL-3 from (3.3). Therefore, in this range the bound is valid
 without recourse to the term involving 'Vb.
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 Next, consider B < x < b. Then Lemma 4.3 says that

 uX < C+b/L.

 Note that

 b= J(exu + euX)dy,

 so that, using Lemma 3.2(b),

 Jeuxdy = -Jexudy + +'J < Cjh'j/' + ?kV/.

 Therefore,

 0 < f e(ux)-dy =- euxdy + J e(ux)+dy

 < euxdy + Cb/L

 < C(Jp'Y + jh'j? + fb/L).

 It follows that

 Jelux Idy < CQ4" + jh'f + +b/L).

 The boundary values of ux are bounded by jh'11Vul. This in turn is bounded by
 Cjh'j1b, by Lemma A.5 and Lemma 3.2. Lemma A.6 implies

 sup Iux (x, y) I < C sup (I+'(z) I + Ih'(z) Ib (z) + (z)/L).
 Y lz-xl<1/2

 Because h is concave, Ih'II dominates the maximum of Ih'I on the central portion of
 the interval. Also the Harnack inequality and Carleman inequalities as in Lemma
 3.2 imply that Fb is comparable to '$ on [a, b]. Therefore

 |ux < C(< |/I/ + jh'j14 + +/bL).

 This completes the proof of Lemma 4.4(a). Part (b) is a consequence of part (a)
 and the fact that S is bounded by C/L3 on [A, B] and 4"Yj < C from Lemma 3.2.
 To prove part (c), integrate the bound in part (b) and use the fact that Ih?l < C/L3
 on [A, B] to bound the integral of h" on a unit interval. D

 Lemma 4.5. There is a constant C(Eo) depending on the constant Eo in Definition
 3.6 used to define a and b such that

 (a) Ja + fT' _ (+b + 0) < C(,Eo)IL,
 (b) 'V(x)j + q0(x)l + J'V(x)j + q0'(x)l < C(Eo)/L for all x such that Ix - K 1

 orx - bl < 1.

 Proof. The definition (3.6) of b allows for two possibilities, one in which h' (b+ 2) <
 -E0 (if h' is discontinuous the limit from the right must satisfy this inequality)
 and one in which h(b + 2) = 1 - Eo. In the first case, concavity of h implies
 b- (b+2) < 1/Eo orb- (b-2) < 4+ 1/Eo. Therefore, by Lemma 3.2(a) and Lemma
 3.12(a),

 'b (x) < maxu(x, y) < (4 + 1/Eo)C/L for all b-2 < x < b.
 y
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 It follows that

 b

 X /(x)dx < (4 + 1/Eo)2C/L.

 Now consider the second case, h(b + 2) = 1 - Eo. First, if b is within distance

 4/Eo of b, then the estimates for '/ follow from Lemma 3.12(a). Otherwise, we have

 h(b-1) < 1-Eo/4

 by concavity. In that case, the estimate

 u(b-1, y) < C(Eo)/L

 follows exactly as in Lemma 3.12(b), with 1/2 replaced by 1 -sEo/4. This gives the

 upper bound for 'i. The integral bound for '$ then follows from the exponential

 decay estimate

 p(x) < Cp(b - 1)e-(b)

 which is proved exactly as in the proof of Lemma 3.9, only with (3.11) replaced by
 p > c2p where c = c(EO) > 0.

 Next, let us bound +'. For x in the range Ix - bl < 1, h(x) > 1 - Eo > 1/2
 and lh'(x)l < Eo < 1 and hence lexl < C. Furthermore, by Lemma 3.2(c),
 maxy lux(x, y)I < maxy u(x, y), which is bounded as above by C(Eo)/L. It follows
 that

 '(x) l=lJ exudy +1 euxdy < C(Eo)/L for all Ix - bl < 1.

 This argument shows that I'V(x)I < maxy u(x, y) for any x for which h(x') > 1/2
 for all Ix' - xl < 1. The bounds involving a are proved similarly.

 The bound for 4' in part (b) is a special case of Lemma 4.2. The bound for
 q follows from an argument similar to the one above, but much simpler. The
 maximum principle (A.1) applies in one variable as well as several variables. The

 function 0 satisfies

 (4.6) (L+?)oY= ( 2-Vi>0=0

 with VI = 7r2I/h(x) 2 _ -. VI (x) > -100/L2, So (L+tu)g<0 for g(x) =sin(C(b-x)/L)
 and C > 10. This function g is the supersolution that gives the estimate of Lemma
 3.2(a). The exponential decay is proved in the interval where V1 (x) > 62 using
 appropriate multiples of the supersolution e-60(x-b). E

 Lemma 4.7. There are absolute constants Eo and C so that with a, b defined with
 this Eo,

 (a) J+' < C/L on [a, b],

 (b) fa4 Ju < C/L

 Proof. Recall that h > 1 -sEo and Ih'I < Eo on [a- 1, b + 1]. The function '/ satisfies
 2

 fb VI V1 + af where VI = h2-1 > -1001L.
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 Furthermore, V1 > 0, except on an interval of length comparable to L. Also,

 0 < 'b < 1. Therefore, for any a <

 (4.8) /X V >?-C/L.

 Because 'V (x) is comparable to maxy u(x, y)h(x)1/2, Lemma 3.17 implies that there
 exists E > 0 defining A and B so that '$ attains its maximum at a point x c [A, B].
 Fix this E throughout this proof. The constant Eo will be chosen at the end only,

 so we have to keep track of the dependence of various constants on Eo.
 Recall that for sufficiently large L, depending on E0, [A, B] c [a, b]. For x < x <

 b, (4.8) implies

 x x

 Also, (4.8) and Lemma 4.5(b) imply

 rb rb

 +'(x) = b'(b) - (V1+ + a) < C(Eo)L-1 + ojl.

 Denote

 M= max I4'(x)1.
 b>x>Xz

 Actually, +' has jump discontinuities where the monotone function h' is discontin-
 uous. Those points correspond to places where a has a point mass. The pointwise
 equations written here can be modified by taking suitable left and right limits.

 What we just proved implies that

 b

 (4.9) M < C(Eo)/L + Jiui1

 in which the integral in Jul is interpreted as including any point mass at the end-
 points.

 Now we estimate the Jul integral using Lemma 4.4:
 b b b

 (4.10) ful < C ( SJkll + (SIL+ S2 + lh"l + 1/L3>4) .

 Lemma A.5 implies J4"l < C on [a- 1, b - 1]. To bound the first term, use the
 definition of M, Lemma 4.5(b) and (3.8) to get

 ob ob ox b

 JjSk/)|I < f Slkb + S Slb'I + Slkb'I
 b

 < SMdx + C/L3 + C(Eo)/L.

 Since h is concave, lh"I = -h", so integration by parts and Lemma 4.5(b) yield
 b b

 - h" (x) 4 (x)dx = h'(x) /(x)dx + f (x)h'(L) - (b)h'(b)

 b

 < I Ihl(x) IMdx + CIL3 + C(,Eo)IL.
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 Next,

 b b+1

 JS(x)2+(x)dx < Cf h'(x)2+b(x)dx.

 One can replace the average S with the value Ih'(x) because Harnack's inequality
 implies 'V(x) changes by at most a constant factor on unit intervals in [a - 1, b + 1].
 Note that the constant does not depend on so because as so gets smaller the interval
 [a, b] gets smaller. Lemma 4.1 now gives

 ob+1
 j h'(x)2' b(x)dx < (C/L) J h'l < C/L.

 The remaining terms are bounded using '$ < 1 and Lemma 3.9,

 rb rb

 /(SIL + CIL 3)& < Cf h'(x)Idx/L + CL/L3 < C/L.

 Assembling all the terms gives the following bound on the integral in Jul:

 b b+1

 (4.11) Ju1 < CMJ X h' + C(Eo)/L.

 The constant C multiplying the first factor is independent of E0. Since

 jb+1

 / hll < ZEo,

 combining this with (4.9) gives

 M < 2CMEo + C(Eo)/L.

 Choose E0 to be a sufficiently small absolute constant such that 2CME0 < 1/2.
 Then subtract to find M < C/L for some absolute constant C. This bound and

 (4.11) give the bound on the integral of Jul. There is a symmetric argument for the
 interval [-a, ], so this concludes the proof of Lemma 4.7(a) and (b). D

 ?5. PROOF OF BOUNDS ONu - Fbe OF THEOREM 2.1(A)

 Let v = u - 'Ve; then we want to prove

 lv(x,y)I < C/L3 for x C [A,B].

 As we remarked earlier (after Definition 3.5) I' c [A, B], whenever E is sufficiently
 small. So this estimate covers the range stated in Theorem 2.1(a).

 Define

 rf2 (X)

 IT((x) = )v(x,y)2dy.
 f (x)

 Let

 E =e + 2ex+' + exx f

 and

 /3(x 2 (J E(x, 2dY)1/2

 ,(x) =2 E(x, y) 2dy)
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 One calculates (see [GJ], section 4; the calculation there is for the second eigen-

 function, but it carries over literally)

 (/ + A)v = -E,

 and from this

 (5.1) "T > -/3VF.

 On [A - EL/2, B + EL/2] we have Ih'I < C/L3 and lull < C/L3 by applying Lemma
 4.4(c) to the interval [A(E/2), B(E/2)], so

 (5.2) /3I < CL-3 on [A - EL/2, B + EL/2].

 Lemma 5.3 (see [GJ], Lemma 3). Suppose that T is an absolutely continuous func-
 tion satisfying (5.1) on [0, 1] and

 T(_ > A0 p) 7/O >
 Then there exists x C [0 ,1] satisfying

 T(x) > (6/5)T(0), T'(x) > 0.

 We now prove

 (5.4) T(x) < CoL-6 on [A-1, B + 1],

 as in the proof of Lemma 4 in [GJ]; here Co = (10C)2 with C the constant in
 (5.2): We will argue by contradiction. Fix a point x E [A - 1, B + 1] and assume

 T(x) > CoL-6. Without loss of generality we may assume T'(x) > 0, otherwise
 we reflect about the point x. Apply Lemma 5.3 with 0 replaced by x, to obtain a

 new point x1. Apply the lemma again with 0 replaced by x1, and iterate this step
 EL/2 - 1 times. This keeps us always within the interval [A - EL/2, B + EL/2]. If
 x' is the point obtained in the last iteration, we have

 T(X') > (6/5)EL/2l1T(X) > (6/5)EL/2-1CoL-6 > 2

 for large L. But T(x') < 2 for all x', the desired contradiction.
 So we have proved (5.4), i.e. we know that the L2 norm of v over the y-interval

 satisfies the desired bound, uniformly in x c [A, B]. In section 5 of [GJ] it is proved,
 using integral bounds on the Green's function of the Dirichlet Laplacian on a unit
 width domain, that these imply pointwise bounds of the form

 Iv(x, y) I < e(x, y) (I log e(x, y) I + 1)L-3.

 (The factor Ix - xollL in front of the log term in Lemma 5 of [GJ] is missing here
 since it comes from an estimate on the size of the second eigenfunction near its

 nodal line. But the size of the first eigenfunction is of unit size on [A, B]. Also, the
 factor W is replaced by the weaker estimate L-3 from (5.4) in the present paper.)

 In particular, Iv(x, y)I < CL-3 for x c [A, B] and this implies Theorem 2.1(a).
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 ?6. PROOF OF BOUNDS ON - 0 2 OF THEOREM 2.1(B)

 Let 0 < X < 1 be a cutoff function which equals one on [a + 1, b - 1], whose
 support is contained in [C, b], and such that X' and X" are bounded by, say, 10.
 The support of X' is contained in [a, -a + 1] U [b - 1, b]. Choose any point x1 in the
 E-middle, [A, B], and set

 CO = 'b(xi)/1(xi).
 By Lemma 3.16, co is bounded away from zero and infinity. Denote

 710 (x) = '/ (x) -co+(x),

 71(x) = x(X)70o(x)

 Thus q (xi) = 0 and

 (L + bt)77 = X? + 2X'r71 + X"710o

 In order to prove Theorem 2.1(b), we will first show

 (6.1) 171(x)I < C/L for x c [A,B],
 and then

 (6.2) Ico - 1/V1 < C/L.

 We want to express 77 using the solution 0 of (L + tt)q = 0, vanishing at b, and a
 second solution, vanishing at x1, which can be constructed as follows:

 rx
 ?)(x) = ?)(x) j ?$(t>2dt.

 X1

 Then (L + tt)q = 0 and q(xi) = 0. Because L does not have a first-order term, the
 Wronskian W = q'(x)0(x) - 0(x)0'(x) is constant. Note that

 0/'(X1) = q$(xi>-1.

 Therefore, W = 1. The method of variation of parameters (with the boundary

 conditions 77(xl) = r1(b) = 0) gives
 x ob

 71(X) = -?$(z) j} ?(X? + 2X'77q + X"77o) - ?(x) j ?)(x? + 2X'77q + X"7).

 Here the second integral should really go up to b, but the integrand is zero on [b, b].

 To deduce (6.1) from this, let x c [A,B]. In this range 0q(x) > c > 0, and
 Ix-xi <CL,sothat

 0(x) < CLq(x).
 Thus the formula for r1 implies

 l7(x)l < CLq(x) ( $1oj + j $(lSo l +770)).

 By Lemma 4.5(b), the second integral is bounded by C/L2. Therefore, (6.1) will
 follow from

 jb
 /01(71 < CIL.
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 In other words, using Lemma 4.4(a), we need to show

 b

 (6.3) J(01K/IIS + ? bS/L + 0bS2 + 0fbjh"j + 0b/L3) dx < C/L2.
 X1

 Below we will prove the essential new ingredient

 b

 (6.4) ?S(J+ 0) < C/L.

 Assuming this for the moment, we prove (6.3): The term f 01IY"IS is handled using
 Jf'j < C/L (Lemma 4.7(a)) and (6.4), the term f q$bS/L using 0 < 1 and (6.4),
 the term f q$S2 using Sf < C/L (Lemma 4.1; S is controlled by Ih'I on [a, b]) and
 (6.4), the term f /$blL3 using 0 < 1 and the exponential decay of 'b (Lemma 3.9),
 and finally the term f q$bh" =- f q$Ih"I using integration by parts:

 b _ b

 j qih"dx = -j(h'I 5 (l)'h'dx;

 the boundary terms are bounded by C/L2 since lh'I < C/L3 in the middle and 0, f
 are bounded by C/L at b. The remaining integral is handled in the same way as

 the first term in (6.3).

 It only remains to prove (6.4). As before, we can replace S by Ih'I. We will first
 show

 b

 (6.5) J hh'l < C/L.

 This inequality is far from obvious since the interval [a, b] can be much longer than
 CL and the only uniform bound on the integrand is C/L from Lemma 4.1. One
 way to deal with this would be a dyadic decomposition on the interval, with careful

 estimates on the sizes of h' and '/ separately on each piece. Instead we use the
 equation

 (d2v>2
 (dx2 +V1)f=5, V1= h2-A

 and a type of energy

 e = (+/l92 - v,+2.

 The point is that the integrand in (6.5) is closely related to &':

 /= 2b'(b" - V1I) - = 2af+' - 17

 and

 V= -2w2h-3h' -h'.

 Choose z1 c [a, b] with h' < 0 on [zi, b]. Then VI' > 0 and
 b rb

 I = S(Zj) - (b) -2 j Ub

 ?b

 < I'z) +V(b fb) + 2 |ja5+' < CIL 2.
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 The last bound here comes from Lemma 4.5(b) and Lemma 4.7. Since V1' is com-

 parable to Ih'I in [zi, b], we have, by the Cauchy-Schwarz inequality

 f~'b ? fVb ?0 (f2 ) (li) / j htljf < C VI/6 < C It+V) ( 1 < CIL.

 To estimate the integral over an interval on which h' > 0, we proceed analogously.

 Finally, the same estimate works for 0, only it is simpler because the term oa is
 missing. This completes the proof of (6.1).

 We now prove (6.2). Assume u takes its maximum 1 at (xo yo), and 0 takes its
 maximum 1 at x1. By Lemma 3.17, there is an E so that both xo and x1 lie in the
 E-middle. On x c [A, B] and any y we have, by Theorem 2.1(a),

 +b(x) < (u(x, y) + CL-3)/e(x,y).
 Evaluating at the center y = (fi(x) + f2(x))/2, we get, using u < 1,

 +V(x) < h(x)/2 + CL-3.
 On the other hand,

 4'(xo) > (1 - CL-3)/e(xo, Yo) > h(xo)2 - CL-3.

 In both of these estimates, h can be replaced by 1 since h = 1 - O(L-3) in the
 middle.

 Therefore, we get at xo, using (6.1),

 CO > co4(xo) > V(xao) - C/L > 1/2 - C/L)

 and at x1

 CO = coq(xi) < +/(x1) + C/L < 1/2 + C/L.

 This proves (6.2) and thereby concludes the proof of Theorem 2.1.

 ?7. LOCATION OF THE MAXIMUM

 Proof of (2.10). As before, we write

 VI = r2 /h2 -

 By Lemma 3.17 we can choose E so small that max{0(A),0(B)} < 1/2 where
 A = A(2E),B = B(2E). ByLemma4.2wethenhavemin(B-x1,x1-A) > cL,c > 0.
 Further, by Lemma 3.16 we have 0 > co > 0 on [A - EL, B + EL] c [A(E), B(E)].
 We rescale to unit lengths by setting

 a = (A-xl)/L, 3 = (B-xl)/L,

 V(x) = LPVi(Lx + xl), p(x) = qS(Lx + xl).

 Then (2.10) follows from:

 Lemma 7.1. Let V be a convex function on [a-, 3 + E], where a < 0 < 3, E > 0,
 and such that

 V < C

 there. Assume that the function p satisfies the equation

 (7.2) p = Vp on [a-E ++E],
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 and the following bounds:

 p(O) = maxp = 1,

 max{p(a),p(3)} < 1/2,

 p>co>0 on[a-E,1+?E],

 and that p is monotone on each of the intervals [a - E, 0], [0, ,3 + E]. Then

 (7.3) lp'(x)l > clxl

 where the constant c > 0 is bounded away from zero if lal, 3, C are bounded above
 and a, 3, E, co are bounded away from zero.

 Proof. In this proof, all constants c1, C2, . . . will be positive and bounded away from

 0 in the same way as is stated for c. Since p" changes sign at most once on each of

 the intervals [a, 0], [0, 3], it is enough to prove (7.3) on some neighborhood [-cl, cl]
 of zero, and at a and 3.

 First, we show

 (7.4) V(0) < -C2.

 We may assume, possibly after a reflection, that V'(0) > 0. By convexity, V is then
 increasing on [0,/3]. From (7.2) and p'(0) = 0 we conclude

 j(13 - x)V(x)p(x) dx p(3) - p(O) <-1/2

 and from this /2coV(0) <-1/2. This proves (7.4).

 Now convexity of V and V < C imply for some cl < min(lal,/3)

 V(x) <-C2/2 for x E [-ci, ci]

 and thus
 x

 jp'(x)I = I ? >- IxI c2co/2.

 It remains to show p'(a) > C3. The bound at 3 will be analogous. We distinguish
 the cases V(a) < 0 and V(a) > 0.

 If V(a) < 0, then V < 0 on [a, 0] by convexity, so p' is decreasing there and

 pO(a) > p'(-Ci) > COCIC2/2.

 Finally, if V(a) > 0, then V > C4 on [a - E, a - e/2] by convexity and (7.4). Also,
 p' is increasing on [al-e/2, a], so

 {oz- E/2

 p'(a) > p'(a - E/2) = p'l(a - 6) + VP vp 0 + C4COE/2.

 This concludes the proof of the lemma, and thus of (2.10). O

 Proof of (2.9). Let x and x belong to [A, B]. Recall that
 x

 0/ (X) =0(X) + VI 1
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 and
 x

 fb(x) = +/(x) ? ? + u).

 Write r1 = V-q/V. In [A,B], IV1, < C/L2, cI < C/L3, and Ir I < C/L by
 Theorem 2.1 (b) so that

 B

 171(z)-7/(z){ ? IA CL-3 < C/L2.

 Integrating this last inequality in x over [A, B], with x fixed, we find

 Ir7(B) - r7(A) - r'(X)(B - A)I < C/L.
 On the other hand,

 171(B) I + 17(A) < C/L.

 Therefore,

 ( - A) I < C/L.
 Since B -A > cL we find that

 l ((X)I < C/L2
 for every tx C [A, B]. This proves (2.9).

 Now let us prove Theorem 1.3. By Lemma 3.17, there is an e > 0 so that both

 xo and x1 lie in the e-middle. Also, assume e is chosen small enough for (2.10) to
 be valid. Note that e can be chosen as an absolute constant, since it depends only

 on the previous choice of various absolute constants. Recall that lh'l < C/L3 in
 the middle and h = 1 + O(1/L2). Therefore, 4(x)e(x, 1/2) and its first derivative
 satisfies the same estimate as v'2-(x) in its comparison with 0. Combining (2.9)
 and (2.10) we have absolute constants c > 0 and C such that

 (d/dx) (b(x)e(x, 1/2)) ? -c(x - xi)/L2 + C/L2
 for all x such that x1 < x < B. Note that the largest value of u is 1, so that, by

 Theorem 2.1(a), the largest value of ?e is at most 1 + 0(1/L3). The upper bound

 on the derivative of ? e implies that for some absolute constant C, Ob(x)e(x, 1/2) <
 1-1/L2 whenever x1 +C < x < B. Since the midpoint of the segment [fi (x), f2(x)]
 is within 0(1/L2) of 1/2, e(x, y) < (1 + 0(1/L4))e(x, 1/2). Thus Theorem 2.1(a)
 implies that u(x, y) < 1 for all xi + C < x < B. Since we know that x0 < B, we
 get xo < xl + C. The lower bound is similar. Ci

 APPENDIX: POTENTIAL THEORY OF EIGENFUNCTIONS IN CONVEX DOMAINS

 The generalized maximum principle can be stated as follows ([PW, Theorem 10

 p. 73]).

 Theorem A.1. Let D be a bounded, open subset of R2. Suppose that g is a strictly
 positive continuous function on D. Suppose that (\ + ?A)g < 0 in D. Let u be
 continuous in D and satisfy (A + A)u > 0 in D. If u < g on AD, then

 u<g on D.

 (The proof is an application of the usual maximum principle to the function

 ulg.)
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 Remark A. 2. The theorem is also valid in R' with the same proof and when A is a
 continuous function rather than a constant. This is used in the body of the paper

 only in the case of ordinary differential equations (n = 1).

 Inequality (3.4) is proved by using as a test function the eigenfunction in an
 inscribed rectangle with sides L and 1 - 2/L2. The eigenvalue is

 r2(L?-2 + (1 - 2/L2)-2)1

 which is less than 50 if L > 2. Therefore, if L > 2,

 (A.3) A < 50.

 We use this upper bound to prove linear decay of the eigenfunction at the boundary.

 Proposition A.4. Suppose that A < 50. Let u solve (A + A)u = 0 in a convex

 domain Q. Let zo c aQ and let B, denote the disk of radius s around zo. If u = 0
 on B1/2 n aQ, then

 lu(z)I < Clz-zo sup Jul, for all z C Bl/8 n Q.
 Bl/4nQ

 In particular, if u > 0 in Q, then

 7Vu(zo) < C sup u.
 B1/4n Q

 (Note that in this case Vu is defined almost everywhere with respect to arclength on
 the boundary by Dahlberg's theorem.)

 Proof. After a rotation, we may assume that a tangent line to aQ at zo is parallel
 to the x-axis in z = x + iy-space and Q lies above the x-axis. Translate so that

 zo = is for some fixed E, 0 < e < 1/100. To construct a barrier function, denote

 I + Z) /3 =arg( Iz

 where z = x + iy identifies (x, y) with a complex variable. (Note that 3 is harmonic
 because it is the imaginary part of log(1 + z)/(1 - z).) The barrier is

 g = 7r,3 _ 32.

 To show that g is a supersolution, note that p3(z) = 0 for z real and -1 < z < 1.

 Furthermore, p3(z) = ir/2 when lzl = 1 in Imz > 0. Therefore, g attains its
 maximum in the semicircle {z: Imz > 0, lzl < 1} on the circular boundary where
 ,3 is ir/2 and g is ir2/4. An easy computation using the Cauchy-Riemann equations
 shows

 1Vp3-1 22 >2.

 Using A,3 = 0, one computes that g is a supersolution:

 Ag = -21V7312 < -8 < -32g/ir2 < -3g.

 For any constant r, the function g(z/r) is a subsolution for A+3/r2 on the semicircle
 of radius r. Fix r = 1/5. The bound A < 50 then implies Ag(z/5) < -75g(z/5) <

 -Ag(z/5). Let D = B1/5(0) n Q. The function g(z/5) is continuous and positive

This content downloaded from 134.106.106.142 on Fri, 22 Apr 2016 18:14:17 UTC
All use subject to http://about.jstor.org/terms



 68 DANIEL GRIESER AND DAVID JERISON

 on D. Furthermore, g -r2/4> 1 on Q n aB1/5(0) C B114(zo). Therefore, since u
 is zero on the remaining part of the boundary of D,

 maxu/g < sup u.
 OD Bl/4(zo)nQ

 It follows from Theorem A.1 that either u/g < 0 on D or

 maxu/g < sup u.
 D BBl/4(zo))nQ

 Combined with the similar bound for -u, this gives

 maxiul/g < sup lul.
 D Bl/4(zo)fnQ

 To get the estimate of Proposition A.4, one takes the limit as e tends to zero. E

 Lemma A.5. Suppose the planar convex domain Q is normalized as in the body of

 the paper. Suppose that xo c [a + 1, b - 1] and h(xo) > 1/10. There is an absolute
 constant C such that if u > 0 is the first eigenfunction on Q, then

 max{ Vu(x, y) (x, y) c aQ, |x-xo I 1/2} < C maxu(xo, y).
 y

 Furthermore,

 max{j Vu(x, y) . dist((x, y), aQ) x - xo I < 1/2} < C max u(xo, y).
 y

 Note: The second bound can be improved using the first bound and Lemma A.6
 below. See Lemma 3.2(c).

 Proof. The assumptions on h and xo imply that there is a uniformly bounded
 Lipschitz constant for the domain Q n x - xo < 3/4}. Harnack's inequality and
 the Carleson Lemma (see [J], Propositions 3.3 and 3.4) imply that

 max{u(x, y): Ix-xo ? 5/8} < Cmaxu(xo, y).
 y

 Then the first inequality for the gradient at the boundary follows from Proposition
 A.4. The second follows from the well-known fact3 that if (A ? A)u = 0 in Br, then

 rmax1Vul < Cmaxlul
 Br/2 Br

 for r < CL-/2

 Lemma A.6. Let w satisfy (A + A)w = 0 in Q. Define a, b as in Definition 3.6.
 For ai < xo < b,

 sup lw(xo, Y) ? < c I w(x, y) Ie(x,y)dxdy
 y Ix-xo <1/2

 + C sup{ Iw(x, y) I : (x, y) c aQ, Ix - xo I < 1/2}.

 3This fact can be reduced to the case r = 1 by dilation. In that case it follows from the
 explicit representation of solutions to the eigenvalue equation or standard interior elliptic regularity
 estimates.
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 Proof. Clearly, the number 1/2 can be replaced by any positive constant. For
 ease of notation, we will prove the lemma with 1/2 replaced by 1. Recall that for

 x E [a, b], e(x, y) is comparable to distance to the boundary. So e(x, y) is bounded

 below by an absolute constant if dist((x, y), aQ) > 1/10. Provided the point (xo, y)
 is at least a fixed distance from the boundary, interior regularity for A + A implies
 that w(xo, y) is bounded by the integral on the right side.

 To obtain estimates up to the boundary, define

 c= min f2(x)-1/10.
 Ix-xo 1<1/10

 Because If2(x)l < lh'(x)l < 1/10, the points

 ZI = (xo-1,c) and Z2 = (XO + 1,C)

 both belong to Q. For 1/3 < t < 2/3, define (Figure 4)

 Dt={Z=(x,y)CQ: x-xO <1, y>c, IZ-ZI >t, z-Z21 >t}

 Define the four "sides" of Dt as follows:

 aDt = F1 UF2 UF3 UF4

 where

 IF = {(x,c) :xo -I+t <x <x+0?1-t},

 IF2= {z c aDt: Iz - z1i = t},

 F3 = {z c aDt: Iz-z21 = t},

 F4 = (aDt) n aQ.

 The crucial geometric feature of these curves is that because z1 c Q, r2 meets F4 in
 an acute interior angle, and similarly, F3 meets F4 in an acute interior angle. This
 will show that the Poisson kernel has at least linear decay new r14, which permits
 the use of the weight factor e(x, y) in the integral in Lemma A.6. The linear decay
 rate is not special - the Poisson kernel associated to foliations by curves that meet
 the boundary at even more narrow angles have arbitrarily fast algebraic decay rates.
 Thus the same bounds would be true with any power of e(x, y). But the first power
 is what arises in our application.

 Assume zo = (xo, yo) belongs to Dt. We will make uniform estimates indepen-
 dent of the choice of yo in the interval c < yo < f2(xo). Because Dt is a narrow
 domain (width less than 4/10 and length less than 2) one can choose a suitable

 F4 4: Lemma-- A

 - - - - - - - -~~- - - - - -

 Z*l rS-!- Z2
 * d - E. . ... . . ; }... ..

 Figure 4: Lemma A.6
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 translate of the function

 sin(7rx/2) sin 27ry,

 denoted by g so that g has a uniform positive lower bound on Dt independent of
 t, 1/3 < t < 2/3. Because A < 47r2, g is a supersolution for A + A. From this one
 obtains uniqueness of the solution for the Dirichlet problem for A + A in Dt (see
 [PW], Theorem 11, p. 73). Existence then follows from the Fredholm alternative

 since the Dirichlet Laplacian is selfadjoint and one can use the compact operator

 whose integral kernel is the standard Green's function of the Laplacian on Dt as
 an approximate inverse for A + A, so A + A is selfadjoint and Fredholm. Thus we
 have Green's function G, depending on t, so that

 h(z) = f G(z, )f(()d
 Dt

 satisfies (A + A)h = f in Dt and h = 0 on aDt. By standard arguments the
 homogeneous boundary problem is then also solvable, so we also have the Poisson

 kernel P, that is,

 w(z) = J P(z, )w(()dw(()
 aDt

 for every solution w to (A + A)w = 0 in Dt with integrable boundary values. The
 generalized maximum principle (A.1) implies that P > 0. The supersolution g
 satisfies

 g (z) >_ P (z, () g(() du()
 aDt

 and comparable upper and lower bounds for g therefore imply

 (A.7) sup j P(z,()du(() < C
 zeDt ADt

 uniformly in t, 1/3 < t < 2/3.
 To deduce uniform decay estimates for P near the boundary, we use the repre-

 sentation

 P(z, () = (d/dn)G(z, ()

 where d/dn denotes the normal derivative at ( on the boundary and estimate G.
 First, we claim that

 (A.8) IG(z, C) < C

 uniformly for Iz - > 1/100 and uniformly in t. Let J be the radial Bessel
 potential solving (A + A)J = 6, the Dirac delta, in R2. If z is a fixed distance from
 the boundary of Dt, the formula

 G(z, ) = J(( - z) - P(z, s)J(s - z)du(s)
 aDt

 proves (A.8) because J(( - z) is bounded above on aDt. Moreover, if z is near the
 boundary one can use the method of images. In place of J(( - z) use J(( - z) -
 J((- z*) where z* is in the complement of Dt and dist(z, aDt) _ dist(z*, aDt).
 Because IJ(z) - clog Iz is bounded for Iz < 2, J(( - z) - J(( - z*) is uniformly
 bounded for ( C aDt as z tends to aDt.
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 Formula (A.8) and the semicircular barrier used in the proof of (3.13) shows that

 (A.9) JG(zo,() < Cdist((, F4)

 provided Izo - > 1/100. Next, we wish to prove quadratic decay of G near the
 corner F3 n F4. We claim that

 (A.1I0) G(zo, ()< C dist((, IF3) dist((, I74)

 for all ( near Z3 = F3 n F4. This can be proved using an explicit barrier in polar
 coordinates with origin at Z2- Consider such polar coordinates (r, 0) and let 0o be
 the angle of the ray from Z2 to Z3. The annulus

 A = {(r, 0): Oo < 0 < Oo +?r/3, t < r < t + 1/10}

 contains a 1/10 distance neighborhood of F3 in Dt. The focus here is on the right-
 angle corner 0 = 00, r = t of the annulus. This containment property is where we
 use the fact that F3 meets F4 at an acute angle. Define the function

 9e = (f (r) +?E) sin(0-Oo +?e) (0 < e < 1/20)

 where f(r) = (r - t) - 5(r - t)2. One computes that g, is a supersolution for A + A
 in the annulus A. Indeed,

 (A\ + A)gE = [f r ? f + ( r2 + A)(f +?e)] sin(0 -Oo +?e) < 0.

 This is because f"(r) = -10, f'(r) < 1 and f(r) + e < 1/10 for t < r < t + 1/10.
 For L > 2, A < 50, so that the sum in parentheses is less than -10 + 3 + 50/10 < 0.
 (Recall the standing assumption that 1/3 < t < 2/3 implies that r > 1/3.) Next

 since g, > 0 on the annulus, f > 1/20 on r = t+1/10, and sin(0-Oo+e) > (0-Oo)/2,
 (A.9) implies that a fixed multiple of g, majorizes G on the boundary of the annulus
 A. Theorem A.1 implies that g. majorizes G on the interior of A. But both the

 factor f and the factor sin(0 - Oo) vanish at r = t, 0 = Oo, so, letting e tend to zero,
 the bound (A.10) follows.

 Taking the normal derivative of G at ( we find

 P(zo,() < Cdist((,I4) for all G EI3.

 This bound, the symmetric one on F2, and (A.7) imply

 w(zo)l J C w( ) dist(7,F4)du(() +C sup Iw()
 2 Ur3 FlUF4

 with constants independent of the coordinate y in z0 = (x0, y) and also independent
 of t, 1/3 < t < 2/3. Thus one can integrate the right hand side in t. The curves

 F2 and F3 sweep out a two-dimensional subset of Q contained in Ix - xol < 1.
 Moreover, the interior bounds mentioned at the beginning of the proof show that
 the maximum of w in F1 is bounded by the double integral as well. This concludes
 the proof of the lemma. Li
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