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1 Introduction

Let 
 be a bounded, convex domain in R2. Let 0¡�1¡�25�35 · · · be the
eigenvalues of the Laplace operator on 
 with Dirichlet boundary conditions.
Let u be a second eigenfunction, i.e.,

(�+ �2)u = 0 on 
 u = 0 on @
 : (1)

The object of this paper is to show that the nodal line,

� = {x ∈ 
 : u(x) = 0} ;

is close to a straight line when the eccentricity of 
 is large.
In order to state a precise estimate, we will normalize 
 to �t inside an

N ×1 rectangle whose orientation is chosen carefully. Namely, rotate 
 so that
its projection on the y-axis has the shortest possible length, and then dilate
so that this projection has length 1. Denote by N the length of the projection
of 
 on the x-axis. Then N=1, and N is essentially the diameter of 
.

Theorem 1 With the normalization above, there is an absolute constant C0
such that the width of the nodal line � is at most C0=N . In other words,
there exists x0 such that

(x; y) ∈ �⇒ |x − x0|¡ C0=N :

We will also prove a pointwise bound on the slope of �, at least away
from the boundary.

Theorem 2 Let � = (�1; �2) be a unit vector tangent to � at the point (x; y).
For any �¿ 0 there is a number C; only depending on �; such that if (x; y)
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has distance at least � from the boundary then

|�1|5C=N :

These bounds are optimal as we will show shortly. Initially we were able
to prove weaker bounds on the rate at which the nodal line tends to a straight
line, and these were mentioned in [J3]. The best possible rate given here was
announced in [GJ]. In that announcement one can also �nd speculation about
the optimal rate in higher dimensions.
We will now show that the bounds in Theorems 1 and 2 are best possible

using the example of a circular sector. The method of separation of variables
implies that the eigenfunctions of a sector are given by products of trigono-
metric functions with Bessel functions and that the �rst nodal line is a circular
arc. It is then easy to compute explicitly the extent to which the circular arc
deviates from a straight line.
Consider the function given in polar coordinates by

u = Jn(r) sin(n�)

where Jn is the nth Bessel function. It is well known that the zeros r1¡r2¡ · · ·
of the Bessel function have the asymptotic expansions of the form ri =
n + cin1=3 + O(n−1=3) where 0 ¡ c1 ¡ c2 ¡ · · · : De�ne a sector in polar
coordinates by


n = {(r; �) : 0¡r¡r2; 0¡�¡�=n} :

Then u is the second eigenfunction for 
n, and the nodal line is the circular
arc where r = r1. This domain is not quite normalized in the same way as
in the statement of the theorem. Its projection on the y-axis is smallest, but
has length r2 sin(�=n) which tends to � as n → ∞, rather than being equal
to 1. Thus it is contained (modulo lower order terms as n →∞) in an n× �
rectangle. The projection of � onto the x-axis has length r1(1 − cos(�=n))
which is asymptotic to �2=2n as n→∞. Rescaling to the normalizations of the
theorem shows that the best constant C0 in Theorem 1 must be greater than or
equal to 1=2. Numerical evidence from a program that computes eigenfunctions
for polygons developed by Toby Driscoll [D] indicates that the constant C0 of
Theorem 1 is less than 1 at least when N=3. We have not attempted to give
a reasonable rigorous bound on C0 because we use bounds of [J] which are
already very poor.
In general, the nodal line meets the boundary at a right angle so that its

width should be at best comparable to the di�erence in slopes of the upper
and lower boundaries of 
. For N × 1 convex domains, the worst case is a
triangle (or the very similar circular sector) with a di�erence of slopes of 1=N .
In the case of a rectangle the di�erence of slopes is zero and the nodal line is
exactly straight. The much more detailed theorem, stated in the next section,
says, roughly speaking, that the width of the nodal line is bounded by the
di�erence between the slopes, modulo exponentially small errors coming from
parts of the domain far away from �.
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Note further that the choice of normalizing rotation is not unique. In the
case of the circular sector the coordinates were chosen so that the projection
onto the y-axis had the smallest length. But that is also true of the projection
perpendicular to the other straight boundary segment. The error made in pro-
jection of a vertical unit line in one coordinate system onto the x-axis in the
other coordinate system is comparable to 1=N . The convex regions for which a
more precise statement can be made are ones for which the di�erence in slopes
between the top and bottom boundaries enforces a narrower range of choices
for the vertical direction.
Let us now discuss the location of the nodal line, in other words, how one

�nds the value of the number x0 in the theorem. This should be compared
with the earlier result of [J], in which it is proved that the nodal line has a
bounded diameter, independent of N . The present result is much more precise,
but it comes at a price. Here we obtain the location of � to within O(1=N )
using knowledge of eigenvalues of convex two-dimensional domains. In [J],
one obtains the bound O(1), but one can compute the approximate location
of � in terms of eigenvalues of an ordinary di�erential equation.
Here is one way to �nd x0. Because the �rst Dirichlet eigenvalue of a

region decreases as the region gets larger, there is a unique vertical segment
{(x; y) ∈ 
 : x = x1} dividing 
 into two regions with equal �rst eigenvalue.
The min-max principle implies that � divides 
 into two regions with equal
�rst eigenvalue and that these are the smallest possible eigenvalues for such a
partition. It follows that � must intersect the vertical segment. In other words,
the number x0 in the theorem can be taken to be the same as this equipartition
value x1. Thus one can compute the location of the nodal line to within an
accuracy of O(1=N ) if one can compute the lowest eigenvalue of convex planar
regions formed by slicing the original domain by a vertical cut. (The order of
accuracy to which the eigenvalues need to be speci�ed will be made precise in
terms of a parameter other than the diameter which will be described below.)
In [J] the same rotation normalization is used and projection of the nodal line
onto the x-axis is located within a bounded distance of a number x2, which
is the zero of the second eigenfunction of an ordinary di�erential equation.
The number x2 can be determined if one knows how to compute the lowest
Dirichlet eigenvalue on an interval for an ordinary di�erential operator of the
form −(d=dx)2 + V with a potential V that is explicitly determined by the
shape of 
. (V = �2=h(x)2 where h is the width function de�ned below.)
The proofs given here depend on the results of [J], but the bound is much

more precise than in [J]. Moreover, it may be possible, using the new tech-
niques introduced here, to simplify the proof of [J]. A key ingredient is a
well-known technique using di�erential inequalities due to Carleman. Here it
is used in a new way to estimate eigenfunctions rather than harmonic functions.
The paper is organized as follows. In Section 2 the main theorem,

Theorem 3, is stated, and an outline of the proof is given. This theorem is
a sharper version of Theorems 1 and 2 in which bounds are expressed in
terms of the slope of the upper and lower boundaries of the domain. The de-
tails of the proof of the main theorem can be found in Sects. 3 to 6. Section
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2 also presents in Theorem 4 a precise statement of estimates of the second
eigenfunction which can be derived from the results of [J]. The proof of this
theorem is given in Sects. 7 and 8.

2 Main results and an outline of the proof

Recall that we have normalized the domain 
 by supposing that the projection
on the y-axis has the smallest length and that length is 1. 
 is then given by


 = {(x; y) ∈ R2 : f1(x)¡ y ¡ f2(x); x ∈ [a; b]}
with N = b− a, and f1; f2 are convex and concave functions on [a; b] respec-
tively. Denote the width of 
 at x by h(x),

05 h := f2 − f1 5 1 : (2)

Introduce the slope

S(x) = max{|f′1(x)|; |f′2(x)|} S1(x) = min{S(x); 1=N} (3)

(de�ned almost everywhere). As above, de�ne x1 as the unique number such
that the regions {(x; y) ∈ 
 : x ¡ x1} and {(x; y) ∈ 
 : x ¿ x1} have the
same �rst Dirichlet eigenvalue.
As explained in [J], the essential length scale governing the shape of the

eigenfunction u and the size of the eigenvalues is not N , but a number L,
de�ned as follows. L is the length of the longest interval I such that

h(x)= 1− 1
L2

(4)

on I . The number L is approximately the length of the rectangle contained
in 
 with lowest �rst eigenvalue, a kind of optimal inscribed rectangle. The
eigenfunction u is supported near this rectangle and decays at an exponential
rate e−c|x−x1|=L outside the rectangle. (This will not be proved here, but it can
be proved using Carleman-type arguments that are much simpler than the ones
given below.) It is easy to show that

N 1=3 5 L5 N ;

The main theorem is as follows.

Theorem 3 The width of the nodal line is at most

W = C0 max
x∈[a; b]

e−c|x−x1|S1(x) + e−cL :

In other words; there is a number x1 and absolute constants C0 and c ¿ 0
such that

(x; y) ∈ �⇒ |x − x1|¡ W :
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Thus, one can replace 1=N in Theorem 1 with the smaller bound W . (Indeed,
W 5 C=L3 5 C=N:) Likewise, one can replace 1=N in Theorem 2 with the
smaller bound W .

This theorem implies Theorems 1 and 2, and it is much sharper in the case
in which the upper and lower boundary of 
 are very close to horizontal near
the nodal line. In particular, it gives the correct exponentially small bound in
the case of a rectangle that is changed at the ends by an arbitrary perturbation
of at most unit size. The proof of this is simpler than the general case, and it
is carried out in [GJ].
Basic bounds on eigenvalues asymptotically correct to order of magnitude

are as follows:
�2 5 �1 ¡ �2 ¡ �2 + 10�2L−2 : (5)

This is easy to check. The lower bound holds because h(x)5 1, and the upper
bound can be proved using test functions in two rectangles of length L=2 in
the variational characterization of �2. (See [J].)
The proof of Theorem 3 begins with the proof that the positive and negative

parts u± of u resemble bumps of length L. This is made precise in the following
theorem, which we will deduce from the main results of [J] in Sects. 7 and 8.

Theorem 4 Let u be the second eigenfunction for 
. Replace u by a suitable
constant multiple to obtain the normalization max |u| = 1. There are absolute
constants c1 ¿ 0; C1; and L1 such that if L = L1; then there are numbers
A and B with B−A = L=20 such that (4) holds on [A; B] and whenever (x0; y0)
belongs to �; one has

A+ L=50¡ x0 ¡ B− L=50 ; (6)

S(x)5 C1=L3 for A5 x 5 B : (7)

Moreover, u satis�es (after multiplication by ±1)
u(B; 1=2)− u(A; 1=2)= c1 (8)

and
|u(x; y)|+ |3u(x; y)|¡ C1(1 + |x − x0|)=L for all (x; y) : (9)

From now on, attention will be restricted to the part of 
 between x = A
and x = B. We proceed to give an outline of the proof of Theorem 3. As in [J],
the main principle is to approximate the PDE problem by an ODE problem, for
which good estimates are easier to obtain. The idea is that the eigenfunction
u is well approximated by some function of the form

ũ(x; y) = e(x; y) (x) with (10)

e(x; y) =
√
2=h(x) sin �(x; y) ; (11)

�(x; y) = �
y − f1(x)

h(x)
: (12)
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The reason why this is a reasonable strategy is that e(x; y) is the (normalized)
sine function in y representing the lowest frequency for the vertical interval
in x. In [J],  was de�ned as an eigenfunction for the ordinary di�erential
operator (−d=dx)2 + �2=h(x)2, which is the natural di�erential operator that
arises by separation of variables. Here we de�ne  (x) in terms of u itself as
the lowest frequency component of u in the y-direction, i.e.,

 (x) =
f2(x)∫
f1(x)

e(x; y)u(x; y) dy : (13)

Then  satis�es an ODE,

 ′′ = −
(
�2 − �2

h2

)
 + �

with an “error term” �(x) coming from the x-dependence of e. In the case of
the rectangle there is a complete separation of variables, e is independent of x,
and � = 0. In Section 3 we will show using (8, 5, 2) that  ′ is positive of
order 1=L throughout [A; B]. It follows that  has a unique zero x0 in [A; B] at
a distance atleast cL from A and B and

| (x)|= c|x − x0|=L :

This lower bound says that |ũ(x; y)| gets larger the farther x is from x0. The
theorem then follows from an estimate on the error

v = u− ũ (14)

of the form
|v(x; y)|5 e(x; y)W=L : (15)

Namely, if (x; y) ∈ � then v(x; y) = −ũ(x; y) and so

e(x; y)c|x − x0|=L ¡ e(x; y)| (x)|5 e(x; y)W=L (16)

which implies the �rst part of Theorem 3, after adjustment of the constants.
Actually, because we only have a bound on the integral of the curvature, h′′,
rather than a uniform pointwise bound, we only obtain a slightly weaker
estimate on v at a distance to the boundary that is exponentially small in W ;
a separate argument is then needed within that distance.
To prove the error estimate (15), we use the Carleman method. Introduce

the quantity
�(x) =

f2(x)∫
f1(x)

v2 dy : (17)

Then the di�erential equations for  and u imply that � satis�es a di�er-
ential inequality of the form

�′′ = �− �
√

� :

This is a convexity condition on � that forces � to be small near x0. If �
were zero, then the solution would be bounded above by a hyperbolic cosine.
Since � is bounded at the endpoints A and B, it must be exponentially small
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near x0. In generally � is not zero, but it is bounded in terms of S1(x) and L
and this gives the correct bound on �. The novelty here is in the possibility of
obtaining a coe�cient as large as 1 on � on the right-hand side. The reason
it can be obtained is that we have subtracted the lowest “vertical frequency”
of v, so that its next frequency is 4�2=h2, which exceeds �2 by almost 3�2.
(See Section 4 for details.) The Carleman technique is usually used directly on
the square of the solution to a di�erential equation instead of one from which
we have subtracted the �rst Fourier component.
Finally, the bounds on � and estimates of Green’s function are used to

prove the pointwise bounds on v of (15), in Section 5. As we mentioned
earlier, this pointwise estimate fails for points extremely close to the boundary,
and a separate argument is needed there. That argument is given in Section 6.
The slope estimate, which forms the second part of Theorem 3, is proved at
the end of Section 6.

3 The projection onto the �rst vertical frequency

We proceed to analyze  (x), de�ned by (13). From now on we write � = �2.
In the following, �rst derivatives for f1 and f2 exist almost everywhere, and
second derivatives are understood in the sense of distributions. We denote
ex = (@=@x)e etc.

Lemma 1 If A5 x 5 B then

|ex(x; y)|5 CS(x) and (18)

|exx(x; y)|5 C(S(x) + |h′′(x)|) : (19)

Proof. One calculates �rst that these bounds are satis�ed with e replaced by �.
In fact, (4) implies, in particular, that h is bounded below by 1=2 on [A; B].
Therefore,

|�x| = �|(y − f1)h′=h2 + f′1=h|5 CS(x)

and hence

|ex| = |(−
√
2=2)h−3=2h′ sin �+

√
2h−1=2�x cos �|5 CS(x) :

Convexity implies |h′′| = |f′′1 |+|f′′2 |. The second order derivative exx is actually
bounded by a multiple of |h′′|+ S(x)2. But (7) implies S(x)2 5 CS(x):

In the following calculations, all integrals are from f1(x) to f2(x). Let

�(x) =
∫
(2exux + exxu) dy :

Then

 ′′(x) =
∫
euxx dy+ �(x) =

∫
e(−�u− uyy) dy+ �(x)

= −
(
�− �2

h(x)2

)
 (x) + �(x) (20)
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using integration by parts, eyy = − �2

h2
e and u = e = 0 on @
. Fix a number x0

so that (x0; y0) belongs to �. Denote

�(x) = 1 + |x − x0| (21)

The error � is estimated using (9, 18, 19) by

|�(x)|5 C(S(x) + |h′′(x)|)�(x)=L : (22)

Lemma 2 Assume that the function  (x) satis�es the equation

 ′′ + � = �

on [A; B]; B− A = L=20;
 (A)¡ 0¡  (B) (23)

and that the functions �(x); �(x) satisfy

|�|5 100=L2 (24)

B∫
A
|�|5 Q=8 (25)

where Q = ( (B)−  (A))=(B− A): Then

Q=85  ′ 5 2Q

throughout [A; B]:

Proof. Change variables to unit scale by

w(t) =  (A+ (B− A)t) :

Then w satis�es
w′′ + Vw = �

with

V (t) = (B− A)2�(A+ (B− A)t) and �(t) = (B− A)2�(A+ (B− A)t) :

Let Q1 = w(1)− w(0) = (B− A)Q. Then V and � satisfy

|V |5 1=4

and
1∫
0
|�(t)| dt 5 Q1=8 :

The conclusion of the lemma can be written

Q1=85 w′(t)5 2Q1 for 05 t 5 1 :

Let w0; w1 be solutions to the homogeneous equation (with � replaced by 0)
and boundary conditions

w0(0) = −1; w0(1) = 0

w1(0) = 0; w1(1) = 1 :
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We will �rst prove a corresponding estimate for w = w0; w1. The upper bound
on V and Sturm comparison imply that the distance between any two zeroes
of w0 or w1 is at least 2�. It follows that neither changes sign in [0, 1]. Now
let w =

√
2 sin(�x=4). Then

w(0) = 0; w(1) = 1 and w′′ +
(�
4

)2
w = 0 :

From �2=16¿1=4=V and the generalized maximum principle (see [J], [PW])
it now follows that

05 w1 5 w 5 1; w′1(0)5 w′(0) = �=2
√
2; w′1(1)= w′(1) = �=4 :

For 05 t 5 1 we then get

w′1(t)= w′1(1)−
∣∣∣∣ 1∫
t
Vw1

∣∣∣∣= �=4− 1=4

and

w′1(t)5 w′1(0) +
∣∣∣∣ t∫
0
Vw1

∣∣∣∣5 �=2
√
2 + 1=4 ;

so
1=25 w′1 5 3=2

throughout [0, 1]. The same inequalities hold for w′0 using a similar comparison
function.
Let the Wronskian of w0 and w1 be a = w0w′1−w1w′0. Note that a is constant

since the equation has no �rst derivative term. Now write w(t) = h(t) + w2(t)
with h(t) = −w(0)w0(t) + w(1)w1(t). From (23) it now follows that

Q1=25 h′(t)5 3Q1=2

Because h(1) = w(1); h(0) = w(0), and h′′ + Vh = 0, we have w2(0) =
w2(1) = 0 and w′′2 + Vw2 = �. Therefore

w2(t) = −w0(t)
t∫
0

�(�)w1(�)
a

d�− w1(t)
1∫
t

�(�)w0(�)
a

d�

Furthermore, we have a = −w′1(0)5 −1=2 and

w′2(t) = −w′0(t)
t∫
0

�(�)w1(�)
a

d�− w′1(t)
1∫
t

�(�)w0(�)
a

d� ;

so we get

|w′2|5 3
1∫
0
|�| :

This implies the lemma.
Let us remark that � need not be an L1 function. It su�ces if � is a measure

and
∫ |�| represents the total variation.
We wish to apply the lemma to  in (13), and so we choose

� = �− �2

h2
;
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From (2, 4, 5) we get |�| 5 100=L2. Also, (8) and (9) imply Q ¿ cL−1; and
(22, 7) give

∫ B
A |�| ¡ CL−2. (For the latter bound, |h′′| may be a measure

rather than an L1 function, but the total variation is bounded by C=L3, the
maximum of S in [A; B].) Therefore, the lemma applies for su�ciently large
L. Since clearly Q 5 CL−1, the conclusion of the lemma then implies that  
has a unique zero x0 in [A; B] and that

c|x − x0|=L5 | (x)|5 C|x − x0|=L (26)

for positive constants c; C. Moreover, the de�nition of  shows that u must
change sign on the vertical line x = x0, in other words, (x0; y0) belongs to �
for some y0.

4 L2 estimates for the error term

We now turn to the estimation of the error term v(x; y). First, we derive an
approximate PDE for v = u− ũ; ũ(x; y) = e(x; y) (x):

−(�+ �)v = (�+ �)ũ = (eyy + �e) + e ′′ + 2ex ′ + exx 

= e� + 2ex ′ + exx : (27)

Using (20, 22, 18, 19, 26), we �nd that

E = e� + 2ex ′ + exx = (S�+ |h′′|(e�+ |x − x0|))O(1=L) (28)

with � de�ned in (21). In this section, we only use that the right hand side
is bounded by S�=L, on average over unit x-intervals, but the full precision is
needed for the pointwise bounds on v in Section 5.
For �xed x, the function v(x; ·), de�ned on the interval [f1(x); f2(x)] and

vanishing at its endpoints, equals u(x; ·) minus its lowest frequency, i.e. its
Fourier series is of the form

v(x; y) =
√
2=h(x)

∞∑
k=2

vk(x) sin k�(x; y) :

This implies the fundamental inequality (again all integrals from f1(x) to
f2(x))

−∫ vvyy dy= 4�2

h2
∫
v2 dy : (29)

For �(x) =
∫
v2(x; y)dy we then get

�′′ = 2
∫
(v2x + vvxx) dy= 2

∫
vvxx dy

= 2
∫
v(−vyy − �v− E) dy

= 2
(
4
�2

h2
− �
)∫

v2dy− 2∫ vE dy
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The main point is that because of the factor 4, (4) and (5) imply 2(4�2=h2

− �)= 1. Denote

�(x) = 2

(
f2(x)∫
f1(x)

E(x; y)2dy

)1=2
:

Then � is a measure and the Cauchy–Schwarz inequality gives

�′′(x)= �(x)− �(x)
√

�(x) : (30)

Finally, (28) implies that � satis�es

x+1∫
x
�5 CL−1 max

t∈[x; x+1]
S(t)�(t) : (31)

Our goal is to deduce from this inequality that � must be fairly small near
the nodal line, using that it is bounded by a constant within distance cL from
it.
If � were a (positive) constant, one solution of the equation

�′′ = �− �
√

�

would be
� ≡ �2 ;

and it is easy to see that if �(0) ¿ 2�2; �′(0) = 0, say, then � increases
exponentially for x ¿ 1, so that every solution bounded by one in a long
interval of length l must be less than

C(e−cl + �2)

near the center of the interval.
In our case, the proof of a similar bound is a little harder, since �(x) can

have delta function singularities, and we have only bounds on averages of �.

Lemma 3 Suppose the absolutely continuous function � satis�es (30) on [0; 1];
with

�(0)=
(
10

1∫
0
�
)2

; �′(0)= 0 :

Then there exists a point x ∈ [0; 1] satisfying

�(x)¿
6
5
�(0); �′(x)= 0 :

Proof. Let m(x) =min{�(t) : 05 t5 x} and M (x) =max{�(t) : 05 t5 x};
and write b =

∫ 1
0 �. Integrating (30), we get

�′(x)=
x∫
0
�− �

√
�= xm(x)− b

√
M (x)

= xm(x)−M (x)=10 (32)

since b5
√

�(0)=105
√

M (x)=10:
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From this we �rst deduce that

m(x)=
9
10

�(0)

for all x ∈ [0; 1]. To prove this, we assume without loss of generality that x
is a “�rst minimum”, i.e. that m(x) = �(x). Since � assumes the value M (x)
somewhere on [0; x], say at x1 ¡ x, the mean value inequality shows

�′(x2)5
�(x)− �(x1)

x − x1
=

m(x)−M (x)
x − x1

5 m(x)−M (x)

for some x2 ¡ x. From (32) we now get

m(x)−M (x)= �′(x2)= −M (x2)=10= −M (x)=10 ;

and this gives the lower bound for m(x).
To conclude the proof of the lemma, suppose M (x)5 6

5�(0) for all x. We
will derive a contradiction. Then (32) gives

�′(x)=
(
9
10

x − 1
10
6
5

)
�(0) ;

and integrating this from 0 to 1 yields

M (1)= �(1)¿ 1:3�(0) ;

a contradiction. Now choose for x any value in [0; 1] where � is at its maxi-
mum. Then �′(x)= 0 and this concludes the lemma.

Lemma 4 The function �(x) =
∫ f2(x)
f1(x)

v2dy satis�es the bound

�(x)5 (W=L)2

for |x − x0| ¡ 3; where x0 is the zero of  (x) and W is the ‘width’ de�ned
in Theorem 3.

Proof. Set b(x) =
∫ x+1
x �. Fix a point �x and an integer M . Assume �rst that

�′( �x)= 0; �( �x)= max
t∈[0;M ]

(
5
6

)t

(10b( �x + t))2 : (33)

Applying Lemma 3 inductively one can �nd numbers �x = x1; x2; : : : ; xM with

xn ¡ xn+1 5 xn + 1

�(xn+1)=
6
5
�(xn)

�′(xn)= 0

for n = 1; 2; : : : ; M − 1. On the other hand, |u| is bounded by 1, so that
|�(x)| 5 3 for all x in [A; B]. Therefore, we see that if [ �x; �x + M ] ⊂ [A; B]
then (33) implies

�( �x)¡ 3
(
5
6

)M−1
:
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In other words, we have shown that if � satis�es (30) on [ �x; �x+M ] ⊂ [A; B]
and �′( �x)= 0 then

�( �x)¡ max
t∈[0;M ]

(
5
6

)t

(10b( �x + t))2 + 3
(
5
6

)M−1
:

Recall that (6) says A + L=50 ¡ x0 ¡ B − L=50, so one can apply this
estimate with M equal to the integral part of L=50 and any �x near x0, after a
re
ection x → −x if �′( �x) ¡ 0. The lemma now follows immediately from
(31). Note that the factor �(t) in (31) can be absorbed into the exponential
term.

5 From L2 bounds to pointwise bounds

Let z1 = inf{x : (x; y) ∈ �} − 2 and z2 = sup{x : (x; y) ∈ �}+ 2: Recall that
the main theorem of [J] says that |z2 − z1| is bounded above by an absolute
constant.

Lemma 5 The error function v(x; y) satis�es

|v(x; y)|5 e(x; y)(1 + |x − x0| | log e(x; y)|)WL
for z1 5 x 5 z2.

Note that e(x; y) is comparable to the distance of (x; y) to @
.
The starting point for the proof is to rewrite the equation (27) as

Poisson equation and split the inhomogeneous term into various parts. Also,
we introduce a cuto� function �(x),

� ∈ C∞0 (z1 − 1; z2 + 1); �(x) = 1 for x ∈
[
z1 − 1

2
; z2 +

1
2

]
:

Clearly, � can be chosen with uniform (independent of N ) bounds on all
derivatives. In the range z1 − 15 x 5 z2 + 1, we then have, using (28),

�(�v) = F1 + F2 + F3 + F4

F1(x; y) = (−�+ �′′)v(x; y) + O(S(x)=L)

F2(x; y) = h′′(x)e(x; y)O(1=L) (34)

F3(x; y) = h′′(x)|x − x0|O(1=L)
F4(x; y) = 2�′(x)vx(x; y) :

The logarithmic term in Lemma 5 comes only from F3.
Let


0 = {(x; y) ∈ 
 : z1 − 1¡ x ¡ z2 + 1} :

Since �v vanishes on @
0; we can write

�v = GF1 + GF2 + GF3 + GF4 (35)
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where the integral kernel of the operator G is the Green’s function for 
0.
We will prove the bounds in the Lemma for each of the four summands in
(35). The point is that the Fi satisfy certain integral estimates with the correct
bounds, and that G satis�es corresponding dual estimates with uniform bounds,
vanishing at the boundary like e (resp. e log e for F3). For F4 estimates on a
derivative of the Green’s function are needed, but these are simple since the
support of F4 has positive distance from [z1; z2].

Proof. (of Lemma 5)
For a function F(�; �) on 
0 and 15 p; q5∞ we will denote

‖F‖Lp� (Lq�) = ‖‖F‖Lq�‖Lp� = (
∫
(
∫ |F(�; �)|qd�)p=qd�)1=p

(for p; q ¡∞, with analogous de�nitions if p or q is ∞).
Then, Lemma 4 gives

‖F1‖L∞� (L2�)
5 W=L :

Regarding F2 and F3, we have

z2+1∫
z1−1

|h′′(�)|d�5 W :

In the term GF4 we can integrate by parts and get

GF4(x; y) = −2∫ ∫

0

@
@�
(G(x; y; �; �)�′(�))v(�; �)d�d� :

Thus, Lemma 5 follows from:

Lemma 6 The Green’s function satis�es the following bounds:

‖G(x; y; �; �)‖L1�(L2�) 5 Ce(x; y) (36)

‖G(x; y; �; �)e(�; �)‖L∞� (L1�)
5 Ce(x; y) (37)

‖G(x; y; �; �)(�− x0)‖L∞� (L1�)
5 Ce(x; y)(1 + |x − x0| | log e(x; y)|) (38)

|G(x; y; �; �)|+ |G�(x; y; �; �)|5 Ce(x; y) for |x − �|= 1=2 : (39)

In the proof of this lemma, and also in Sects. 6 and 7, we will make use of
the following bounds on the Green’s function of a convex domain. Analogous
bounds in dimensions 3 and higher were proved in [GW], and in [F] it is
remarked that only minor modi�cations are needed in two dimensions.

Lemma 7 ([F, GW]) The Green’s function G = G(x; y; �; �) of 
0 satis�es the
following bounds. Here D = |x − �|+ |y − �|.

|G|5 Ce(x; y)D−1 (40)

|3�;�G|5 C min {e(x; y)D−2; D−1} (41)

|3x;y3�;�G|5 CD−2 : (42)
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Proof. (of Lemma 6)
Clearly, (36) and (39) follow directly from (40) and (41). However, for

the estimates (37) and (38) the bounds in Lemma 7 are too weak. We will
prove these estimates for the Green’s function

G0(x; y; �; �) =
1
4�
(log[(x − �)2 + (y − �)2]− log[(x − �)2 + (y + �)2])

of the half plane y ¿ 0; with x = 0 and e(x; y) replaced by y, and the integrals
extended over |�|¡ K := 2(z2 − z1) + 5 and 05 � ¡ 2.

We �rst show that the estimates for G0 imply the estimates for G. Fix
a point P = ( �x; �y) and a point P′ on @
 with minimal distance to P. We
change coordinates so that P′ is the origin, the x-axis does not intersect 

(here the convexity of 
 is essential) and P lies on the positive y-axis. Then
clearly �y=2 5 e( �x; �y) 5 2 �y. For �xed (�; �), the function G − G0 of (x; y)
is then harmonic in 
0 and nonnegative on its boundary, since G0 5 0. By
the maximum principle it is therefore nonnegative on 
0. Also, G 5 0 by the
maximum principle, and therefore |G|5 |G0|. In particular,

|G( �x; �y; �; �)|5 |G0( �x; �y; �; �)|
for all (�; �). This proves the claim.

Now we estimate |G0| = 1
4� log

�2+(�+y)2

�2+(�−y)2
in two ways:

(a) |G0|5 log
�+ y
|�− y| and

(b) |G0| = 1
4�
log
(
1 +

4y�
�2 + (�− y)2

)
5

y�
�2 + (�− y)2

:

In order to prove estimate (37), i.e.

2∫
0
|G0|� d�5 Cy (43)

for all �, we use estimate (a). We are then left with showing

2∫
0
� log

�+ y
|�− y| d�5 Cy ;

a simple exercise.
For estimate (38), i.e.

|�− x0|
2∫
0
|G0|d�5 Cy(1 + |x0| | log y|)

for all � and x0, we prove the two estimates

|�|
2∫
0
|G0|d�5 Cy (38′)
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and
2∫
0
|G0|d�5 Cy(1 + | log y|) : (38′′)

The former follows directly from estimate (b) and the fact that the integral∫
R �(�2 + �2)−1d� is �nite and independent of �. Estimate (38′′) follows from
(a) and the fact

2∫
0
log

�+ y
|�− y|d�5 Cy(1 + | log y|) ;

another exercise.

6 Completion of the proof of Theorem 3

Suppose (x; y) ∈ �. Then v(x; y) = −ũ(x; y), so (26) and Lemma 5 imply that

e(x; y)
|x − x0|

L
5 e(x; y)

W
L
+ e(x; y)|x − x0|W | log e(x; y)|L

;

and this proves the Theorem for |z2−z1|W | log e|¡ 1=2. The remaining region
is the set of points of 
0 where the distance from (x; y) to the boundary of 

is less than e−c=W .
Denote u+(x; y) = max {u(x; y); 0}; u−(x; y) = max{−u(x; y); 0}; 
+ =

{(x; y) ∈ 
 : u(x; y)¿ 0} and 
− = {(x; y) ∈ 
 : u(x; y)¡ 0}. The esti-
mate just proved shows in particular that the rectangle R+={(x; y) : x0 + 1¡
x ¡ z2; 1=45y 5 3=4} ⊂ 
+ and R− = {(x; y) : z1 ¡ x ¡ x0 − 1; 1=45y5
3=4} ⊂ 
−. It follows from Harnack’s inequality that all values of u−(x; 1=2)
for z1+15 x 5 x0−2 are comparable and all values of u+(x; 1=2) for x0+25
x 5 z2−1 are comparable. Furthermore, the generalized maximum principle and
easy barriers of unit width and length z2− z1 show that max
0 u+ ≈ u+(x; 1=2)
for all the values x0 + 25 x 5 z2 − 1 and similarly for u−.
The following is the “crossover” lemma from [J], [J2]:

Lemma 8 Suppose that B1 is a ball of radius r ¡ 1=2 centered at (x; y)
and B2 is the concentric ball of radius 2r. Suppose further that B ⊂ 
− and
@B ∩ �-∅. Then

|u−(x; y)|5 C max
B2

u+

This lemma shows that in a certain sense the control of the maximum
crosses the nodal line so that max u± must be comparable. In order for the
control to pass to the boundary one must also use the Carleson lemma. One
can show as in [J] and [J2] that as a corollary of Lemma 8, the Harnack
inequality and Carleson lemma

max

0

u− ≈ max

0

u+ ≈ u−(x0 − 2; 1=2) ≈ u+(x0 + 2; 1=2):
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We already know that if x = x0 +W and (x; y) ∈ �, then y − f1(x) ¡ t or
f2(x) − y ¡ t, where t = e−c=W . Suppose that there is a point of (x; y) ∈ �
with x = x0 + 5W and y − f1(x) ¡ t. We will show that this leads to a
contradiction.
Consider the region

S = {(x; y) ∈ 
− : x0 +W 5 x 5 x0 + 5W; y¡1=2}
Since this region has a width at most t and a length 4W , we will be able to
prove that u is exponentially small in the middle x = x0 + 3W . One uses the
mean value property for eigenfunctions: If v is an eigenfunction on a disk D
of radius r ¡ 1=2

√
� centered at P, then

v(P) =
c(r
√
�)

s(@D)

∫
@D

v ds

where ds represents arclength and c(r
√
�) 5 2. (In the case � = 0 of a

harmonic function the constant c is 1.) If D is a disc of radius 5t centered
at a point (x; y) ∈ S, and x0 + W + 5t ¡ x¡ x0 + 5W − 5t, then u vanishes
on the portions of @(D ∩ S) that are interior to D. One can compare u by the
generalized maximum principle to an eigenfunction on D to obtain

−u(x; y)5
2

s(@D)

∫
@(D∩S)

u5
2s((@D) ∩ S)

s(@D)
max
(@D)∩S

u− 5
1
2
max
(@D)∩S

u−

It follows by induction that

max
Sk

u− 5 2−k max
S

u−

where Sk = S ∩ {(x; y) : x0 + W + 5k t 5 x 5 x0 + 5W − 5k t}. Finally, we
choose K largest so that 5Kt 5 W . Then K ≈ Wec=W and

max
SK

u− 5 2−K max

 0

u−

In particular, SK contains all (x; y) ∈ S such that x0 + 2W 5 x 5 x0 + 4W .
Let Z be the point (x0 + 3W;f1(x0 + 3W ) + W=2). Then Z ∈ 
+. Let B1 be
the largest disk centered at Z contained in �
+. The radius of B1 is less than,
but comparable to W=2. This disk is tangent to � at at least one point and B2,
the concentric double of B1, satis�es B2 ∩
− ⊂ SK . It follows from Lemma 8
that

u(Z)5 C2−K max

 0

u−

Next, the Harnack inequality, applied to a chain of balls of radius 2jW;
j = 1; : : : ; J with J = C log(1=W ), implies that

u(x0 + 2; 1=2)5 CJu(Z) ≈ W−Cu(Z)

Putting all these inequalities together we have

max

 0

u− 5 C2−KW−C max

 0

u− ;
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where C is an absolute constant. Finally, for W su�ciently small, the factor
on the right-hand side is less than 1/2 and this contradicts the fact that u−
is nonzero is 
0. All other cases lead to a similar contradiction so we have
proved that the nodal line has a width bounded by 5W , and, renaming W , this
concludes the proof of the �rst part of Theorem 3.
We now prove the second part of Theorem 3, i.e. the slope estimate. Let

( �x; �y) ∈ � and assume e( �x; �y)¿�. Since the vector (ux; uy) is normal to �, it
is clearly enough to prove that, at ( �x; �y), we have

|uy=ux|¡ C�W : (44)

As before, we write

u(x; y) =  (x)e(x; y) + v(x; y) :

First, we estimate |3v|. From the analogue of equation (34) without the factor
� and from Lemma 5 we have

|v|; |�v|5 CW=L

on 
0, and this implies
|3v|5 CW=L (45)

near �, see (48) in Section 7.
In order to estimate the derivatives of �u, we �rst remark that the �rst part

of the theorem, together with (26), implies that

| ( �x; �y)|5 CW=L :

From this and (18), we see that |ex |¡ CW 2=L, and therefore the conclusion
of Lemma 2 implies that at ( �x; �y),

ũx = ex + e x = c�=L

for large L. Finally,
ũy = ey = O(W=L) ;

and together with (45) this implies (44) and �nishes the proof of the theorem.

7 Proof of Theorem 4

We begin the proof of Theorem 4 by choosing the point x2; a ¡ x2 ¡ b equal
to the zero of the second eigenfunction for the ordinary di�erential operator on
[a; b]

− d2

dx2
+

�2

h(x)2
(46)

with Dirichlet boundary conditions. Choose A = x2 − L=40 and B = x2 + L=40.
Theorem B of [J] says that if (x0; y0) ∈ �, then |x0 − x2|¡ K where K is an
absolute constant. In particular, (6) is satis�ed.
In Section 8 we will prove the following lemma.
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Lemma 9 If |x − x2|¡ L=10 then

h(x)= 1− L−2 :

This clearly implies the estimate (7).
To prove the bound (8), assume, without loss of generality, that max u+ = 1

and � = u(B; 1=2)¿ 0. Consider the function

v(x; y) = sin(5�(x − x2 + K)=L)sin(�y)

which has eigenvalue � = �2(1 + 25=L2) ¿ �2. Note also that v(B; 1=2) is
comparable to 1 because 5�(B− x2 + K)=L is bounded between absolute con-

stants strictly between 0 and �. Furthermore, ue
√

�2t and ve
√

�t are harmonic
functions of three variables. Both functions are positive in 
 within a unit
distance from (B; 1=2). Carleson’s lemma (see [J] Proposition 3.4) implies that
u(x; y)5 C� for |x−B|¡ 1, and then the generalized maximum principle, ap-
plied with a barrier that is an explicit radial eigenfunction vanishing on a circle
that touches 
 from the outside, gives decay at the boundary. Thus we obtain
u(B; y) 5 C�v(B; y) for all y. (This fact can be proved by a simpler direct
argument, but we have prepared the way for a similar argument in which v is
a less explicit eigenfunction.) The generalized maximum principle (see [PW]
and [J]) says that if �v = −�v and �u = −�u on a domain D; v ¿ 0 on �D,
and �= �, then u=v attains its maximum on the boundary,

max
D

u=v = max
@D

u=v:

We can apply the generalized maximum principle in the region D = {(x; y) ∈

 : x2 − K ¡ x ¡ B}. For a direct application of the generalized maximum
principle as stated, one needs strict positivity for v, but one can widen slightly
the rectangle on which we have de�ned v and then take a limit so that the
strict positivity is not necessary. The generalized maximum principle implies
u(x; y)5 C�v(x; y), for all x ¡ B. In particular, maxD u+ 5 C�.
Next, we wish to carry out a similar barrier argument with a function u1

which is the �rst eigenfunction for the region 
1 = {(x; y) ∈ 
 : x ¿ B−L=50}.
Let 
 be the eigenvalue for u1. Because 
1 is a subset of the set where
u ¿ 0; 
 ¿ �2. Therefore we can also apply the generalized maximum principle
to u and u1. Normalize u1 so that max u1 = 1. Proposition A of [J] and Lemma
9 imply that there is an absolute constant � ¿ 0 such that u1(B; 1=2) = �.
Using Carleson’s lemma the same argument as for v above shows that u(B; y)5
C�u1(B; y) for all y and the generalized maximum principle on the set of points
(x; y) in 
 such that x ¿ B implies u(x; y)5 C�u1(x; y) for all x ¿ B.
Combining the estimates of the two preceding paragraphs, we have 1 =

max u+ 5 C�. Since u(A; 1=2)5 0, we have u(B; 1=2)−u(A; 1=2)= c1, as de-
sired. Let us remark that it is also possible to prove, using the techniques of [J],
that u(B; 1=2) = c1 and u(A; 1=2) 5 −c1 hold simultaneously. In other words
the values max u+ and max u− are comparable. This requires a more compli-
cated argument using the fact that on a unit scale, the control of the maximum
crosses the boundary maxR1 u+ 5 C maxR1 u− for the region R1 of points of
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 within a unit distance of �. But this is not needed here and in fact follows
from our estimates in the main part of the paper. See especially (26).
Finally, we prove (9). The particular form of v implies

u+(x; y)5 C(max u+)(1 + |x − x2|)=L for all x ¡ B : (47)

In the remaining portions of 
, the same inequality holds trivially since
|x − x2|=L is larger than an absolute, positive constant. Furthermore we can
replace x2 by x0 since their di�erence is bounded by a constant. This estimate
and the similar bound for u− imply the part of (9) involving just u. The full
estimate (9) now follows from the well-known estimate

max

 1

|3w|5 C max

 2
(|w|+ |�w|) (48)

where 
1 = {(x; y) ∈ 
 : c− 1¡ x ¡ c+ 1} and 
2 = {(x; y) ∈ 
 : c− 2¡
x ¡ c + 2}, and w is a function vanishing on the part of the boundary of 
2
that lies in some neighborhood N of 
1. This follows from the estimates on
the Green’s function in the convex domain 
2 stated in Lemma 7: One writes

�(�w) = (��)w + 23�3w + ��w

where � is a smooth cut-o� function that is one in 
1 and zero outside N.
Integrating against the Green’s function, integrating by parts in the mixed term
and then applying 3 one obtains (48).

8 The lower bound for h(x) near the nodal line

In this section we prove Lemma 9. It should be noted that for our proof of the
main theorem the bound h(x)= 1− CL−2 for |x − x2| ¡ L=10 would su�ce,
with any constant C (only in that case the interval [A; B] would have to be
chosen shorter in order for the argument in Section 3 to work). To show that
C = 1 works is barely harder, and the fact is aesthetically pleasing. It involves
keeping track precisely of some numerical constants, though.
Let [�; �] be the interval used in the de�nition of L, i.e.

� − � = L

and h(x)= 1− L−2 on [�; �].
By the considerations in the Introduction (see the de�nition of x1 there),

Lemma 9 follows from the following lemma.

Lemma 10 Let � = 1=9 and set �x = �+ �L. Let


− = 
 ∩ {x ¡ �x}; 
+ = 
 ∩ {x ¿ �x} :

Then; for su�ciently large L;

�1(
−)¿ �1(
+) :
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In the proof we will need precise estimates on the �rst eigenvalue of a
long, thin triangle. Given a slope s ∈ [0; 1] and a height H ∈ [1=2; 2], let Ds;H

be the isosceles triangle

Ds;H = {(x; y) : |y|¡ sx=2; 0¡ x ¡ H=s} :

Recall that the �rst positive zero of the Bessel function J� has the asymp-
totic expansion

�+ c1�1=3 + O(�−2=3); c1 ≈ 1:85 (49)

for large �.

Lemma 11 The �rst Dirichlet eigenvalue satis�es

�1(Ds;H ) =
�2

H 2 (1 + c0s2=3 + O(s4=3))

with c0 = 2c1�−2=3 ≈ 1:72.
Proof. De�ne the circular sector

�s;R =
{
(�; r) : |�|¡ tan−1

s
2
; 0¡ r ¡ R

}
in polar coordinates. We have

�s;H=s ⊂ Ds;H ⊂ �
s;H
√
1+s 2=s

:

The �rst eigenfunction for �s;R is

J�(
√

�1r)cos ��

where � = �=tan−1(s=2); �1 is the eigenvalue and
√
�1R equals the �rst positive

zero of J�. Using (49) one gets the result after a straightforward calculation.

Proof. (of Lemma 10) The lemma will follow if we can construct domains

 ′
−; 


′
+ with


 ′
− ⊃ 
−; 
1+ ⊂ 
+

and prove �1(
 ′
−)¿ �1(
 ′

+) by direct calculation.
We begin with 
 ′

+: By assumption, 
+ is convex and h(x)= 1− L−2 on
[ �x; �]. Therefore, the parallelogram with corners

( �x; f1( �x)); ( �x; f1( �x) + 1− L−2); (�; f1(�)); (�; f1(�) + 1− L−2)

is contained in 
+. Since the slopes of the upper and lower sides are at most
2L−2, this parallelogram contains a rectangle 
 ′

+ with sides

l1 = 1− L−2 − O(L−4); l2 = � − �x − O(L−2) = (1− �)L− O(L−2)

and so

�1(
 ′
+) = �2(l−21 + l−22 ) (50)

= �2
[
1 +

(
2 +

1
(1− �)2

)
L−2 + O(L−4)

]
: (51)
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We now construct 
 ′
−. If � is the left endpoint a of 
 then we take for 
 ′

−
the rectangle [�; �x ]× [0; 1], which has eigenvalue �2[1 + �−2L−2]¿ �1(
 ′

+).
If � is not the left endpoint of 
 then 
 ′

− will be a triangle. To simplify
notation, we will assume that 
− is symmetric with respect to a horizontal
axis, which we choose as x-axis; that is,


− = {(x; y) : a ¡ x ¡ �x; |y|¡ h(x)=2} :

This is actually no loss of generality since the �rst eigenvalue decreases upon
symmetrization (see [S]).
Denote

s = h′(�−); S = L3s :

Since max[�; �]h = 1 − 12L−3 by Lemma 2.1 in [J] and h(�) = 1 − L−2 by
de�nition of L, convexity of h implies

S = L3(L−2 − 12L−3)=L = 1− O(L−1) : (52)

Fix a constant S0, to be determined below. We will distinguish two cases,
according to whether the slope s is small or big. We will take for 
 ′

− an
isosceles triangle formed by the vertical line x = �x as base and

(Case S ¡ S0) the tangents to 
 of slopes ± s=2 through (�;±h(�)=2) :

(Case S = S0) the lines of slopes ± S0L−3=2 through (�;±1=2) :
Clearly, 
 ′

− ⊃ 
− in both cases. The construction of the �rst case does
not work for S = S0 since the length of the base is too big then, which makes
the �rst eigenvalue of the triangle too small, by Lemma 11.
In the case S ¡ S0; 
 ′

− is congruent to the triangle Ds;H with

H = h(�) + s( �x − �) = 1− L−2 + S�L−2 :

From Lemma 11 we then get

�1(
 ′
−) = �2[1 + 2L−2 − 2S�L−2 + c0S2=3L−2 + O(L−4)]

= �2[1 + (2 + S2=3(c0 − 2�S1=3))L−2 + O(L−4)] ;

and from (52) and (51) we see that, for large L; �1(
 ′
−) ¿ �1(
 ′

+) is
satis�ed if

2 + c0 − 2�S1=30 ¿ 2 + (1− �)−2 : (53)

In the case S = S0; 
 ′
− is congruent to the triangle DS0L−3 ; H with

H = 1 + S0�L−2 :

From Lemma 11 we get

�1(
 ′
−) = �2[1 + L−2S2=30 (c0 − 2�S1=30 ) + O(L−4)] ;
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so we have �1(
′−)¿ �1(
 ′
+) if

S2=30 (c0 − 2�S1=30 )¿ 2 + (1− �)−2 : (54)

It remains to choose S0 and � so that (53, 54) are satis�ed. This is possible
precisely because

c0 ¿ 1 :

One just needs to choose 2�S1=30 smaller than c0−1, and then take � su�ciently
small and S0 su�ciently large. For example, one can take 2�S

1=3
0 = c0=4 and

then � = 1=9.
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