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ASYMPTOTICS OF THE FIRST NODAL LINE

DANIEL GRIESER AND DAVID JERISON

May 1995

INTRODUCTION

In this note, we announce the result that the first nodal line of a convex planar domain
tends to a straight line as the eccentricity tends to infinity.

Let © denote a bounded convex domain in R%. Denote by u a second Dirichlet eigen-

function. Then u satisfies

Au= —)du in
u=~0 on 00

where 0 < A\ < Ay < A3 < ... represent the eigenvalues in increasing order. The first
nodal line A is the zero set of u.

A={z€eQ:u(z) =0}

In order to state a precise theorem, let us normalize the region to lie within an N x 1
rectangle. Let P, and P, denote the orthogonal projection on the x and y axes, respec-
tively. First rotate so that the projection Py{2 is smallest. Then dilate and translate so
that P,Q = (0,1) and P,Q = (0,N). (The choice of orientation of the y axis is crucial for
what follows, but the dilation and translation are merely for notational convenience.)

Theorem 1. With the normalization above, there is an absolute constant C such that

length P,A < C/N

Furthermore, this estimate is sharp. The case of a long, thin, circular sector shows that
C>1/2.
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2 DANIEL GRIESER AND DAVID JERISON
OUTLINE OF THE PROOF
Step 1 O(1) estimate. With the normalization of Theorem 1,

Q={(z,y): fiz) <y < fa(z),0< z < N}

where f; 1s a convex function and f; is a concave function. Define the height function
h(z) = fa(z) — f1(z). Consider the ordinary differential operator £ defined by

d? w2

b= a ey

Recall the following theorem, which implies a weaker version of Theorem 1, namely, the
same estimate without the factor 1/N.

Theorem 2 [J3]. With the normalization of Theorem 1, let ¢ be the second eigenfunction
for L with Dirichlet boundary conditions on [0,N]. Let zo be the unique zero of ¢ in
(0,N). There is an absolute constant A such that

PzA C {CIIO —A,.’IZ() +A]

This theorem says in a very crude sense that u resembles the function

d2(z)sin,(y)

e (v~ ()
™Y — J1\T
L(y) = =7,
(¥) h(z)

The function £,(y) is chosen to be the linear function in y that has the value 0 on the
bottom, (z, f1(z)), of  and 7 on the top, (z, f2(z)), of Q. Thus, sinf,(y) is the lowest
Dirichlet eigenfunction for —(d/dy)? on the interval fi(z) < y < fao(z) of length h(z).
(The fact that we have rotated so that h is as small as possible plays a crucial role.)

In addition to this estimate, we will need another consequence of [J3], expressed in
terms of a parameter L defined as follows.

Definition. The length scale L of S is the length of the rectangle R contained in Q0 with
the lowest (first) Dirichlet eigenvalue.

Up to order of magnitude, L is the largest number such that A(z) > 1 — 1/L? on an
interval of length L. When Q is a rectangle, R = 2 and L = N. When  is a triangle of
length N, then L ~ N'/3, In general, N'/® < L < N. The example of a trapezoid shows
that all intermediate sizes for L are possible.

The heuristic principle behind L is that ¢, resembles sin(27(z — z¢)/L), the second
eigenfunction of the interval [zg — L/2, o + L /2] and u resembles sin(2n(z —z¢)/L) sin 7y,
the second eigenfunction of the rectangle of length L and width 1 with nodal line at
x = xg. This is true to within order of magnitude near the “central” portion of 2, with
an exponential tail in the thin regions of 2. More precisely we have,
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ASYMPTOTICS OF THE FIRST NODAL LINE 3
Proposition. Let ui(z,y) = max{u(z,y),0} and u_(z,y) = max{—u(z,y),0}. Then

up(zo +A+1,1/2) mu_(zg — A —1,1/2) ~ max |u|/L
ut(zo + L/20,1/2) ~ u_(xg — L/20,1/2) ~ max |u|

The proposition follows from the methods of [J3]. (See especially Proposition A of
[J3].)

Step 2. Denote by
e(z,y) = (h(z)/2)7/? sinly(y)

the first Dirichlet eigenfunction on I, = {y : fi(z) < y < fa(x), normalized in L?(I,).
Denote

f2(z)
b= [ e vetandy
fi(z)
Then
u(z,y) = p(@)e(z,y) + v(z,y)
where 1(z) is the “best” coefficient possible and v(z,y) should be a small error term.
Because of Theorem 2, there exists a number z;, such that |z — 21| < 4 and ¥(z;) = 0.

Lemma 1. ¥'(z) = 1/L on |z — xo| < L/20. In particular, ¢ is strictly increasing and
x1 18 the only zero of ¢ on that interval.

Lemma 2. |v(z,y)| < S/L where

_ ' ! —clz—z1| —cL
=, (0 D

The number S represents the slope of the boundary near z; plus the slope at a further
distance decreased by an exponential factor. In the range | — zo| < L/20, |fi(2)] +
|fo(2)| < C'/L3. The ideas of the proofs of Lemmas 1 and 2 will be presented in the next
section. For now let us complete the outline of the proof of Theorem 1.

Step 3. If u(z,1/2) =0, then

Zle —a1] & [(@)] = ol 1/2)]/e(z,1/2) $ S/

Therefore,
|t —z,| < S
Moreover,
S<1/LE<1/N

This is the end of the proof for points of the nodal line in the middle of §2. Near the
boundary 052, the denominator e(z,y) is small, so additional ideas are needed. One uses
maximum principle and Hopf type estimates of [J1,J2,J3] and extra estimates on the rate
of vanishing of v(z,y) at the boundary.
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4 DANIEL GRIESER AND DAVID JERISON
PROOFS OF LEMMAS 1 AND 2

The idea of the proof of Lemma 1 is as follows. One calculates that

2

L = dotp = —" + (h(m)z - Az> =0

where o is small and

2 100

Ay — ——| < ==
2 n(z)?| T L2

in the range |z — o] < L/20. Next one deduces from the proposition above that with the
normalization max [u] = 1,

Y(zo + L/20) — op(zo — L/20) =~ 1

Then comparison with constant coefficient ordinary differential equations gives ¢'(z) ~

1/L for |z — 29| < L/20.

The idea of the proof of Lemma 2 is to follow the Carleman method of differential
inequalities. In that method, one considers a harmonic function, say w, in a region, say
2, which vanishes on a portion of the boundary. Then one considers the function

fa(z)
flz) = / w(z,y) dy
fi(z)

Using the equation Aw = 0, the zero boundary values, and integration by parts, one can
find a differential inequality for f of the form f"(x) > a(z)f(x). This convexity property
makes it possible to deduce rates of vanishing for w.

To prove Lemma 2, one considers

fa2(z) )
g(z) = / v(z,y) dy,

fi(x)
and deduces a differential inequality of the form

9"22<%2(%Z——>\2>9—B\/529—ﬁ\/§

The crucial point is that because we have subtracted the first eigenfunction in the y
direction (v = u — ¥(z)e(z,y)), the coefficient on ¢ involves (27)* rather than =2. It
follows that

cosh(z — 1)

glz) = cosh(L/2)

The first term is exponentially small and the second term is controlled by S, proving
Lemma 2.

+ [ dependence

To illustrate the mechanism of the lemmas explicitly, we carry out a sine series compu-
tation in a special case. Note that the size and sign of (k7)? — A3 for k = 1 versus k > 2 is
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ASYMPTOTICS OF THE FIRST NODAL LINE 5
at 1ssue. We consider the special case in which fi(z) = 0 and fa(z) =1for0 <z < N —1.

Then N -1 < L < N, so N and L are comparable. By comparison with rectangles of
length N and N — 1 we find that

4 4
2 — < < 72 -
T (”N?)*“-“ (”(N-l)?)

For0<z <N -1,
u(z,y) = Y _ ur(z)sin(kry)
k=1
where
1
ur(z) = 2/ sin(kmy)u(z,y)dy
0
Furthermore, the Fourier coefficient uy satisfies
uf(z) + (g — (k7)*)ug = 0.

The function ¢(z) = u1(z)/v/2 and Ay — 7% ~ 1/N? ~ 1/L%. Thus

ui(z) = —cysiny/ A — w2z,

The coefficient satisfies ¢; > 0 because u is negative on the left half and positive on the
right half of . Normalize so that maxu = 1. By the proposition, u4 is large at x¢+ L/20,
and hence c¢; is larger than a positive absolute constant. This yields Lemma 1, as well as
the precise location of z; as a function of As.

On the other hand, the remaining terms of the series are small. Forall k > 1, \y—k?n2 <

—1. Therefore,
up(z) = cgsinh\/(km)? — Az

The unit bound on u implies
Z uk(w)2 <2
k=1

In particular,

2 sinh?[{/(km)2 — (N —1)] €2

NgE

~
i

2

This implies that for k > 2,
lup(z)] < Ce ™™ for |z —z| < NJ/10
Hence v(z,y) is exponentially small, which proves Lemma 2 in the special case.
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6 DANIEL GRIESER AND DAVID JERISON
WHERE IS A?

Recall that the nodal line may be in the exact middle (1 = N/2), as in the case
where () is a rectangle, or it may be very near the fat end of the region, as in the case
of a circular sector with vertex at the origin: z; ~ N — e¢N1/3. Theorems 1 and 2 give
numerical schemes for approximating the location of the nodal line as follows.

Recall that z¢ was defined above as the zero of the eigenfunction ¢2. Since the second
eigenvalue for £ on [0, N] is the same as the first Dirichlet eigenvalue for the operator on
the two intervals [0, zo] and [zo, N|, Theorem 2 implies the following prescription.

ODE Eigenvalue Scheme. Choose zy to be the unique number such that the lowest
Dirichlet eigenvalue for the operator £ on the intervals [0, zo] and [z¢, N] are equal. Then

P, A Clzo— A,z + A

The min-max principle implies that any curve dividing the region 2 into two halves with
equal eigenvalues must intersect the nodal line. Theorem 1 implies that A is particularly
close to a vertical straight line. This leads to the following prescription.

PDE Eigenvalue Scheme. Choose z2 so that the least eigenvalues for the Dirichlet
problem for the Laplace operator on the two regions

QN {(z,y) :z <z} and QN{(z,y):z > a2}
are equal. Then Theorem 1 implies

PIAC [wz —C/N,.’E2+C/N]

The first scheme requires knowledge of the lowest eigenvalue of an ordinary differential
equation, which is in standard numerical packages. The second scheme requires knowledge
of the lowest eigenvalue on a convex domain, which is not quite as standard. Toby Driscoll
[D] has recently developed a very effective program for computing both eigenfunctions
and eigenvalues on polygons. Preliminary experiments with triangles with 3 < N < 150
indicate that A in the first scheme may be 1/100+ 1/N. (This seems too good to be true,
but perhaps A = 1/10+ 1/N will work in general.) The bound C'/N in Scheme 2 seems to
be 1/N as predicted by the case of a sector. We must confess, however, that the rigorous
proofs of these bounds give ridiculous values like C = 10%°,

CONJECTURES

The methods outlined here should also give information about the size of the first
eigenfunction, improving by a factor of v/I the bounds given in [J3].

Conjecture 1. With the normalizations on §2 of Theorem 1, let uy denote the first eigen-
function for  such that max|ui| = 1. Then there is an absolute constant C and a suitable
multiple of the first eigenfunction ¢, for the operator L on [0, N] satisfies

ur(z,y) — ¢1(z)sin ba(y)| < C/L
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Conjecture 1 is motivated by the elementary inequality
|sin(z/L) —sin(z/(L+1))| < C/L on 0<z<nL
The methods used to prove Theorem 1 also show the following.
Corollary. Let (z,y) be a point of A satisfying 1/4 < y < 3/4, that is, far from 0. Let

n be a unit vector tangent to A at (z,y). Then
In-e1] <CS<C/L?

Conjecture 2. The corollary is valid up to the boundary.

(Conjecture 2 implies Theorem 1.)

Finally let us speculate about the higher-dimensional case. We begin by explaining the
significance of L in another way. Let e be a unit vector and define

Qt,e)={z+se:2€Q,0<s <t}
Thus Q(t, e) is Q stretched by t in the direction e. Define

P(e) = = £ (00t Dlimo

This is the first variation of the lowest eigenvalue. It is analogous to the projection body
function in the theory of convex bodies. (See [J4].) In a convex domain normalized as
above,

P(e;) ~minP ~ 1/L* and
P(ey) ¥ maxP =1

Moreover, the direction e; is necessarily within 1/L3 of the values of e for which the exact
minimum is attained.

In R™, n > 3 one can define the same function P on the unit sphere. In the spirit of
quadratic forms, choose vy so that

P(vy) =min P
Choose vy perpendicular to v; such that

P(vg) = rriin P(v)

(One can continue inductively to form an orthonormal basis vy, va,...,v,.)

Conjecture 3. There 1s a dimensional constant C such that if v s a unit vector tangent
to A, then
[0 v1] < CP(v1)/P(v2)

This conjecture is intended to give specific bounds on the way the nodal set tends to
a plane as the eccentricity tends to infinity. It is an analogous conjecture concerning the
shape of the second eigenfunction to conjectures in [J4] concerning the shape of the first
eigenfunction. One could also formulate even more detailed and even more speculative
conjectures relating all the numbers P(v;) to the location of A.
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