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ASYMPTOTICS OF THE FIRST NODAL LINE

DANIEL GRIESER AND DAVID JERISON

May 1995

INTRODUCTION

In this note, we announce the result that the first nodal line of a convex planar domain
tends to a straight line as the eccentricity tends to infinity.

Let Q denote a bounded convex domain in R2. Denote by u a second Dirichlet eigen-
function. Then u satisfies

Au = —\2U in H
u = 0 on 90

where 0 < Ai < A2 < \3 < ... represent the eigenvalues in increasing order. The first
nodal line A is the zero set of u.

A = [z € 0 : u(z) = 0}

In order to state a precise theorem, let us normalize the region to lie within an TV x 1
rectangle. Let P^ and Py denote the orthogonal projection on the x and y axes, respec-
tively. First rotate so that the projection Py^l is smallest Then dilate and translate so
that Py^l = (0,1) and P^ = (0, TV). (The choice of orientation of the y axis is crucial for
what follows, but the dilation and translation are merely for notational convenience.)

Theorem 1. With the normalization above, there is an absolute constant C such that

length P^\ ̂  C/N

Furthermore, this estimate is sharp. The case of a long, thin, circular sector shows that
C ^ 1/2.
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2 DANIEL GRIESER AND DAVID JERISON

OUTLINE OF THE PROOF

Step 1 0(1) estimate. With the normalization of Theorem 1,

^ = {(x,y) : /i(;c) < y < /2(>), 0 < x < N}

where /i is a convex function and f^ is a concave function. Define the height function
h(^x) = /2(^) — /i^)- Consider the ordinary differential operator C defined by

/:--^+-^-^ — T o ~ r » / \odx2 h{x)2

Recall the following theorem, which implies a weaker version of Theorem 1, namely, the
same estimate without the factor 1/JV.

Theorem 2 [J3]. With the normalization of Theorem 1, let ^2 be the second eigenfunction
for C with Dirichlet boundary conditions on [0,7V]. Let XQ be the unique zero of ^2 in
(0,7V). There is an absolute constant A such that

P^A C [xo - A,XQ +A]

This theorem says in a very crude sense that u resembles the function

(f)'2{x)sm£^(y)

where
n (^ - <v-f^
€ x [ y ) ~ h(x)

The function £x(y) is chosen to be the linear function in y that has the value 0 on the
bottom, (re,/i (a;)), of ^ and TT on the top, (;r,/2(^))? of ^- Thus, sin^(y) is the lowest
Dirichlet eigenfunction for —(d/dy)2 on the interval f\{x} < y <^ /2(^) of length h{x\
(The fact that we have rotated so that h is as small as possible plays a crucial role.)

In addition to this estimate, we will need another consequence of [J3], expressed in
terms of a parameter L defined as follows.

Definition. The length scale L of fl, is the length of the rectangle R contained in ^l with
the lowest (first) Dirichlet eigenvalue,

Up to order of magnitude, L is the largest number such that h(x) > 1 — 1/L2 on an
interval of length L. When ^ is a rectangle, R = ^ and L = N . When 0 is a triangle of
length TV, then L w TV1/3. In general, 7V1/3 ^ L < N. The example of a trapezoid shows
that all intermediate sizes for L are possible.

The heuristic principle behind L is that <^2 resembles sin(27r(a; — x o ) / L ) ^ the second
eigenfunction of the interval [XQ — £/2, XQ + L/2\ and u resembles sin(27r(a; — XQ ) / L ) sin Try,
the second eigenfunction of the rectangle of length L and width 1 with nodal line at
x = XQ. This is true to within order of magnitude near the "central" portion of Q, with
an exponential tail in the thin regions of ^. More precisely we have,
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Proposition. Let u^.{x^y) = max{u(;r,y),0} and u-{x^y) = max{—u(a;,y),0}. Then

U^XQ + A + 1,1/2) w u-(xo - A - 1,1/2) w max |n|/L
^+(.ro + L/20,1/2) % ^-(.ro - L/20,1/2) ^ max u|

The proposition follows from the methods of [J3]. (See especially Proposition A of
[J3].)

Step 2. Denote by
e(a l,y)=(^)/2)- l/2sin^(y)

the first Dirichlet eigenfunction on I^ = [y : fi{x) <: y <: /2(^), normalized in L2(J.r).
Denote rh(x)r j 2 { x )

^(^) = / u{x,y)e{x,y)dy
Jfi(x)

(x}= 1

Then
u{x, y} = ̂ {x)e{x, y) + v{x, y)

where ^{x) is the "best" coefficient possible and v ( x ^ y ) should be a small error term.
Because of Theorem 2, there exists a number rci, such that \XQ — x\ \ < A and ^(^i) = 0.

Lemma 1. ^\x) w 1/L on \x — XQ\ < L/20. In particular, ^ is strictly increasing and
x\ is the only zero of ̂  on that interval.

Lemma 2. \v(x^y)\ ^ S / L where

S= max (l/KaOI+l/^De-^-^+e-^
|a;-a;i|<L/20

The number S represents the slope of the boundary near x\ plus the slope at a further
distance decreased by an exponential factor. In the range x — XQ\ < L/20, |/{(^)| +
1/2(^)1 ^ C / L 3 . The ideas of the proofs of Lemmas 1 and 2 will be presented in the next
section. For now let us complete the outline of the proof of Theorem 1.

Step 3. If u{x, 1/2) = 0, then

^\x - x, | ̂  |̂ )| = \v{x^ l/2)|/e(^ 1/2) ^ S / L

Therefore,
\x -x^\ ̂  S

Moreover,
S ^ l/^3 ^ 1/^V

This is the end of the proof for points of the nodal line in the middle of 0. Near the
boundary <9^, the denominator e(<r,y) is small, so additional ideas are needed. One uses
maximum principle and Hopf type estimates of [J1,J2,J3] and extra estimates on the rate
of vanishing of v{x^ y) at the boundary.
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4 DANIEL GRIESER AND DAVID JERISON

PROOFS OF LEMMAS 1 AND 2

The idea of the proof of Lemma 1 is as follows. One calculates that

^-^=-r+(^-A^=.
where a is small and

, 7T2 ^ 100
^2 - , . ,„ < ——
| hW I - L^

in the range \x - XQ\ <, L/20. Next one deduces from the proposition above that with the
normalization max \u\ = 1,

^(a-o + L/20) - ^(a-o - L/20) w 1

Then comparison with constant coefficient ordinary differential equations gives ^(x) w
1/L for |a; - XQ\ <^ L/20.

The idea of the proof of Lemma 2 is to follow the Carleman method of differential
inequalities. In that method, one considers a harmonic function, say w, in a region, say
^, which vanishes on a portion of the boundary. Then one considers the function

fMx)r T t ( x )
f(x) = I w(x,yYdy

Jfi(x)

Using the equation Aw = 0, the zero boundary values, and integration by parts, one can
find a differential inequality for / of the form f"(x) ̂  a(x)f(x). This convexity property
makes it possible to deduce rates of vanishing for w.

To prove Lemma 2, one considers

ff2(x)

g(x)= / v{x,y^dy,
Jfi(x)

rh(x)
9^) = /

Jfl(x)

and deduces a differential inequality of the form

-"^,/(2T)2''"^OS-^)1'-^'^"-^
The crucial point is that because we have subtracted the first eigenfunction in the y
direction {v = u - ̂ {x)e{x,y}\ the coefficient on g involves (27r)2 rather than 7r2. It
follows that

/ . coshfa" — x i )
g^ ^ ——,^/^ + /? dependencecosh(L/2)

The first term is exponentially small and the second term is controlled by 5\ proving
Lemma 2.

To illustrate the mechanism of the lemmas explicitly, we carry out a sine series compu-
tation in a special case. Note that the size and sign of (^7r)2 - X^ for k = 1 versus k > 2 is
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at issue. We consider the special case in which fi{x) = 0 and f^x} = 1 for 0 < x <^ N — 1.
Then N - l < L < , N , s o N and L are comparable. By comparison with rectangles of
length N and TV - 1 we find that

^ (i +^) ̂  .2 (i + ̂ )
For 0 < x < T V - 1 ,

00

u(x,y) = y^fc(.r)sin(fc7n/)
A:=l

where

^A;(^) == 2 y sm{k7ry)u(x^y)dy
Jo

Furthermore, the Fourier coefficient Uk satisfies

^)+(A2-(^^)2)^=0.

The function ^{x) = u^(x)/V2 and X^ - 7r2 w 1/N2 w 1/L2. Thus

u^(x) = —c\ sin \/A2 — Tr2^.

The coefficient satisfies ci > 0 because n is negative on the left half and positive on the
right half of 0. Normalize so that maxn = 1. By the proposition, u^_ is large at XQ ±L/20,
and hence ci is larger than a positive absolute constant. This yields Lemma 1, as well as
the precise location of x\ as a function of \^.

On the other hand, the remaining terms of the series are small. For all k > 1, X^—k2^2 <
—1. Therefore,

Uk{x) = Ck sinh ^/(k7r)2 — X^x

The unit bound on u implies
00

J^uk{x)2 <2
k=l

In particular,

^ 4 sinh^v^Tr)2-^^ - 1)] < 2
k=2

This implies that for k > 2,

\Uk{x)\ ̂  Ce-^ for \x - x^ \ < N/10

Hence v { x ^ y ) is exponentially small, which proves Lemma 2 in the special case.
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WHERE IS A?

Recall that the nodal line may be in the exact middle (a-i = TV/2), as in the case
where ft is a rectangle, or it may be very near the fat end of the region, as in the case
of a circular sector with vertex at the origin: x\ w N — cTV1/3. Theorems 1 and 2 give
numerical schemes for approximating the location of the nodal line as follows.

Recall that XQ was defined above as the zero of the eigenfunction ^2- Since the second
eigenvalue for C on [0, N] is the same as the first Dirichlet eigenvalue for the operator on
the two intervals [0,^o] and [a;o,TV], Theorem 2 implies the following prescription.

ODE Eigenvalue Scheme. Choose .TO to be the unique number such that the lowest
Dirichlet eigenvalue for the operator C on the intervals [0, xo] and [ x o ^ N ] are equal. Then

P^A C [xo - A,XQ + A]

The min-max principle implies that any curve dividing the region ft into two halves with
equal eigenvalues must intersect the nodal line. Theorem 1 implies that A is particularly
close to a vertical straight line. This leads to the following prescription.

PDE Eigenvalue Scheme. Choose x^ so that the least eigenvalues for the Dirichlet
problem for the Laplace operator on the two regions

ft ft { (^ ,y ) : x < x^} and ft D { ( x ^ y ) : x > x^}

are equal. Then Theorem 1 implies

P ^ A C [ X 2 - C / N , X 2 + C / N }

The first scheme requires knowledge of the lowest eigenvalue of an ordinary differential
equation, which is in standard numerical packages. The second scheme requires knowledge
of the lowest eigenvalue on a convex domain, which is not quite as standard. Toby Driscoll
[D] has recently developed a very effective program for computing both eigenfunctions
and eigenvalues on polygons. Preliminary experiments with triangles with 3 < N <^ 150
indicate that A in the first scheme may be 1/100 + I/TV. (This seems too good to be true,
but perhaps A = 1/10 + I/TV will work in general.) The bound C / N in Scheme 2 seems to
be I/TV as predicted by the case of a sector. We must confess, however, that the rigorous
proofs of these bounds give ridiculous values like C == 1020.

CONJECTURES

The methods outlined here should also give information about the size of the first
eigenfunction, improving by a factor of \f~L the bounds given in [J3].

Conjecture 1. With the normalizations on ft of Theorem 1, let u\ denote the first eigen-
function for ft such that max \u\\ = 1. Then there is an absolute constant C and a suitable
multiple of the first eigenfunction (f>\ for the operator C on [O.TV] satisfies

|^i(^y) - <^i(.r)sin4(y)| < C / L
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Conjecture 1 is motivated by the elementary inequality

[ sm{x/L) - sm{x/(L + 1))| < C / L on 0 < x < TrL

The methods used to prove Theorem 1 also show the following.

Corollary. Let {x^y) be a point of A satisfying 1/4 < y < 3/4^ that is, far from <9Q. Let
rj be a unit vector tangent to A at (a^y). Then

l ^ - e i l <CS ^ C / L 3

Conjecture 2. The corollary is valid up to the boundary.

(Conjecture 2 implies Theorem 1.)

Finally let us speculate about the higher-dimensional case. We begin by explaining the
significance of L in another way. Let e be a unit vector and define

fl{t, e) = {x + se : x € ,̂ 0 <, s < t}

Thus n(<, e) is 0 stretched by t in the direction e. Define

P(e)=-^AiW,e))|,=o

This is the first variation of the lowest eigenvalue. It is analogous to the projection body
function in the theory of convex bodies. (See [J4].) In a convex domain normalized as
above,

P(ei) w minP ^ 1/L3 and
e

P(e2) ̂  max? ̂  1

Moreover, the direction e\ is necessarily within 1/L3 of the values of e for which the exact
minimum is attained.

In R71, n >: 3 one can define the same function P on the unit sphere. In the spirit of
quadratic forms, choose v\ so that

P(z;i) =minP

Choose 1:2 perpendicular to v\ such that

P(^) = minP(?;)
v-Lvi

(One can continue inductively to form an orthonormal basis ^i, ^2? • • • ^ n ' )

Conjecture 3. There is a dimensional constant C such that if v is a unit vector tangent
to A^ then

\V'Vl\ < CP{V^/P{V2)

This conjecture is intended to give specific bounds on the way the nodal set tends to
a plane as the eccentricity tends to infinity. It is an analogous conjecture concerning the
shape of the second eigenfunction to conjectures in [J4] concerning the shape of the first
eigenfunction. One could also formulate even more detailed and even more speculative
conjectures relating all the numbers P(^fc) to the location of A.
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