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Basics of the b–Calculus

Daniel Grieser

Abstract. R. B. Melrose’s b-calculus provides a framework for dealing with
problems of partial differential equations that arise in singular or degenerate
geometric situations. This article is a somewhat informal short course intro-
ducing many of the basic ideas of this world, assuming little more than a
basic analysis and manifold background. As examples, classical pseudodiffer-
ential operators on manifolds and b-pseudodifferential (also known as totally
characteristic) operators on manifolds with boundary are discussed.
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1. Introduction

This article gives a leisurely introduction to the b-calculus of R. B. Melrose.
Here, we use the term ’b-calculus’ in a broad sense: A geometrically inspired way of
viewing and solving problems about smooth functions and distributions (especially
their asymptotic and singular behavior) and differential equations (especially as
they arise in singular geometric situations); a set of concepts introduced to realize
this view mathematically; and a set of basic and general theorems about these
concepts. The b-calculus in the narrower, technical sense (as a set of operators)
will also be discussed.

The style of this article is rather informal. We emphasize examples, motiva-
tions and intuition and often refer to the literature for full proofs and the most
general definitions. While the ultimate goal is to extend the classical pseudodif-
ferential operator (ΨDO) calculus, large parts (Sections 2 and 3) are interesting
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in other contexts as well. Knowledge of the classical ΨDO calculus is not a pre-
requisite. Rather, it will be introduced, if sketchily, as the simplest instance of the
more general theory to be developed.

We begin with some general considerations on solving linear partial differential
equations (PDE), to show in which direction we aim. Since it is usually impossible
to get an explicit solution, one wants to study existence and uniqueness, and
qualitative properties of solutions. The PDE may contain parameters, then one
wants to study how these things depend on the parameters. (For example, spectral
problems are of this kind.)

To fix ideas, let us look at the case of an elliptic partial differential operator
P with smooth coefficients on some manifold X0 (for example, the Laplacian on a
Riemannian manifold) and at the equation

Pu = f.(1.1)

Solving for u in terms of f means finding an inverse Q of P (which we assume to
exist for the moment, between suitably chosen function spaces). ’Knowing’Q would
mean knowing its Schwartz kernel, that is the distribution, also denoted Q, onX0×
X0 satisfying (Qf)(x) =

∫

X0
Q(x, x′) f(x′) dx′ (also known as Green’s function).

Many important properties of equation (1.1) may be read off from certain partial
information on Q:

A. The location and nature of the singularities of Q (i.e. places where the
distribution Q is not a C∞ function).

B. The asymptotic behavior of Q when approaching the ’boundary’ ofX0×X0

(i.e. when leaving any compact subset).

We will refer to this information as the singularity structure of Q.
Then we reformulate problem (1.1) as:

Main Problem: Given the singularity structure of P , determine
the singularity structure of Q = P−1.

(Here P is also identified with its Schwartz kernel.) If P depends smoothly on
parameters in a space T , then one wants to find the singularity structure of Q on
the spaceX0×X0×T .1 2 Since the coefficients of P are smooth functions onX0×T ,
the singularity structure of P only depends on their asymptotic behavior ’near the
boundary’ of X0 × T (i.e. when leaving any compact subset); for example, they
may blow up or degenerate (’non-uniform ellipticity’) in various ways. If P is not
invertible then one asks the same questions for approximate inverses (parametrices)
of P .

1 In applications, if we start with an operator that has ’singular’ coefficients (at some place
or parameter value) then we take X0 and T to be the set where the coefficients are smooth.
Similarly, if we start with an operator on a ’singular space’ (e.g. a manifold with boundary) then
X0 is the smooth part of that space (the interior of the manifold with boundary).

2Note that many problems of linear analysis are specializations of the Main Problem, for
example: asymptotics of eigenvalues and eigenfunctions under singular perturbations, mapping
and Fredholm properties of elliptic operators, heat kernel asymptotics (the latter in the analogous
parabolic setup).
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For example, if X0 is compact (and P elliptic as before) and there are no
parameters then the singularity structure is given by point A above only, and the
classical pseudodifferential calculus tells us that Q is smooth outside the diagonal
and has ’conormal’ singularities on the diagonal, and gives a recipe for calculating
these modulo smooth functions (i.e. the complete symbol of Q). As an example
with parameter, consider Pz = −∆+z on a compact Riemannian manifold X0, for
z ∈ [1,∞). Then the singularity structure of P−1

z describes not only the conormal
singularity at the diagonal, but also the asymptotic behavior of the resolvent kernel
as z →∞.

The goal of the b-calculus is to solve the Main Problem for a fairly broad class
of singularity structures of P , the so-called boundary fibration structures. This
general goal still seems out of reach, but a growing list of instances shows the
versatility of the b-calculus in treating problems arising in geometric analysis (see
the references given below).

Figure 1 shows a rough outline of the b-calculus approach to the Main Prob-
lem. An arrow means ’is used for’. A calculus is a set of operators with a fixed

Q
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�
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Find a ’calculus’ which contains P and in which (a variant of) the
classical parametrix construction may be done

Understand inversion
of symbols

Model calculations,
guesses

Understand composition

Understand pull-back and push-forward

’Hard analysis’: Calculations with Fourier transforms,
remainder estimates, etc.

Figure 1. The b-calculus hierarchy for inverting P

singularity structure, which is closed (at least conditionally) under composition,
together with a collection of symbols, i.e. rules that assign to each operator certain
’simplified’ operators, usually by some sort of (partial) freezing of coefficients. ’Un-
derstanding’ composition etc. means determining the singularity structure of the
composition from the singularity structures of the factors. In particular, under-
standing inversion of symbols is another instance of the Main Problem itself, but
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for a simpler class of operators, and this shows the iterative nature of the prob-
lem. The lowest level of the iteration is inversion of constant coefficient operators,
which may be done directly using the Fourier transform.

Therefore, in the construction of a calculus one expects the Fourier transform
to play a central role, and this is reflected in the definition and occurrence of
conormal distributions. However, calculations involving the Fourier transform tend
to be messy and to obscure essential structures; this is why it is banished to
the bottom level in Figure 1: The Fourier transform is only used explicitly in
analyzing pull-back and push-forward of conormal distributions; composition is
then reduced to a combination of pull-back and push-forward operations.3 The
’essential structures’ are added on the higher levels and encoded geometrically.
This parallels the b-calculus way of describing singularity structure (see below)
and is one of its fundamental characteristics:

Fundamental principles of the b-calculus

1. Many complications may be understood geometrically, the analysis may be
reduced to a few fundamentals.

2. All concepts which are introduced should be defined in a coordinate-invariant
way. If they depend on choices, the exact freedom in these choices should
be determined. This helps in understanding the concepts themselves.

3. Operators are always described by their Schwartz kernels.
4. All differential objects (e.g. densities, differential operators) should be writ-

ten as b-objects (i.e. using dx/x, x∂/∂x etc. instead of dx, ∂/∂x near a
boundary {x = 0}). (This is specific to the b-calculus in the narrow sense.)

The aim of this article is to explain Figure 1 and to illustrate the use and power
of these principles. Our first task is to elucidate what we mean by ’singularity
structure’. The main point will be that complicated behavior of a function (or
distribution) may often be described economically by ’blowing up’ the underlying
space and then looking at a rather ’simple’ function on the new space. The resulting
spaces are manifolds with corners, and this is the reason for the central role they
play in the b-calculus: They are simultaneously simple enough to allow for simple
analysis, and general enough to describe many phenomena.

In Section 2 we introduce manifolds with corners and discuss the singularity
structure of smooth functions.

In Section 3 we discuss the lower three lines of Figure 1 and conormal distribu-
tions. We spend some time to explain the central role played by the Push-Forward
Theorem. As an illustration of the second arrow from below in Figure 1, we define
classical pseudodifferential operators (ΨDOs) and show that they are closed under
composition.

3 This should be taken with a grain of salt, but gives a general guideline. In the ’full b-
calculus’ in Section 4 the Fourier transform, in the guise of the Mellin transform, is also used
for inverting the ’indicial operator’; this belongs to the ’Understand inversion of symbols’ part
in Figure 1.
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Finally, the top levels of Figure 1 are addressed in Section 4. We first recall the
essential ingredients of the classical ΨDO calculus that permit the construction
of a parametrix for elliptic operators. We then show how this may be generalized
to operators P with the simplest non-trivial singularity structure, the so-called b-
differential operators on (the interior of) a manifold with boundary. In applications,
these occur in the context of manifolds with infinite cylindrical ends or with conical
singularities. Starting from a model calculation we construct the small and full b-
calculus and sketch the parametrix construction. Note that, up to now, there does
not seem to be a systematic way to construct a calculus in general (i.e. finding the
right ’Ansatz’). This is the hardest part, and it usually involves a lot of trial and
error.

In the Appendix we collect definitions and basic properties of some objects
which are characteristic for the geometric view of the b-calculus.

Prerequisites for Sections 2 and 3 are minimal (basic analysis and manifold
theory), except for 3.3 where an acquaintance with distributions is assumed. In
addition, in Section 4 some basic functional analysis (e.g. compact operators)
is needed, and some vague ideas about elliptic operators are useful, though not
strictly necessary. The many footnotes mostly give additional details and can be
skipped at first reading.

The reader who wants only a quick impression of the b-calculus should at least
skim the following definitions, remarks, and examples: 2.2, 2.3, 2.5, 2.6, 2.7, 2.8.3,
3.1, 3.2, 3.4, 3.5, 3.8, 3.9, 3.10, 3.12, 3.13.2, 4.1, 4.2; and Subsections 2.3, 3.3 (if
unfamiliar with conormal distributions), 4.1 (if unfamiliar with classical ΨDOs),
and 4.2, 4.3.

Literature: R. Melrose’s ’green book’ [26] gives a detailed exposition of the
b-calculus (in the narrow sense) on manifolds with boundary; the first papers on
this were [23], [31], and its extension to manifolds with corners is discussed in
[14], [33]. Other ’calculi’ (i.e. singularity structures of P , alias boundary fibration
structures) are analyzed in [4], [7], [8], [16], [17], [18], [19], [20], [21], [26], [27],
[28], [30], [32], [34], usually with applications to problems of geometric analysis.
[25] gives a condensed presentation of the basic theorems (Pull-Back and Push-
Forward Theorem) on manifolds with corners. In [24] (an ICM-talk) boundary
fibration structures are introduced and a general strategy for constructing associ-
ated pseudodifferential calculi is outlined. Of an expository nature are also [28],
[29]. The unfinished and long-awaited book [22] will be the ultimate source for all
the details; currently you can get it on the www, so be quick before it disappears
again! Comparisons with other approaches to singular analysis are made in [6],
[12] in this book. See [12] for many references to other approaches.

Why an article about the b-calculus, given all of these beautiful writings? I was
told by some that they would like to learn about the b-calculus, but find it hard
to get into the style in which it is usually presented: Often, things are expressed
in ways that many analysts are not used to. My aim was to bridge this gap by
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explaining some of the basics and highlighting some of the ideas which are usually
hidden between the lines. I hope to make this beautiful world accessible to a larger
audience.

Some specific points in which this presentation differs from others are:

• I propose a notion of ’asymptotic type’ of a function as a blow-up under
which it becomes polyhomogeneous conormal (Definition 2.7). While this is
clearly implicit in existing treatments, the explicit notion suggests naturally
the problem of determining a type of a push-forward (or pull-back) of f
from a type for f . Melrose’s Push-Forward and Pull-Back Theorems answer
this only partially (see Remarks 3.11.2 and 3.13).
• I give an alternative definition of the central notion of b-fibration, which I

believe to be more intuitive (see Definition 3.9).
• I discuss the relation between the notions of ’type’ and ’regimes’; the former

originates in pure mathematics (algebraic geometry) while the latter is
widely used in applied mathematics.
• For reasons of space I do not discuss the general notion of boundary fibra-

tion structures, nor any other instances besides the b-ΨDOs. Also missing
are the b-vector fields and associated b-bundles (but they are implicit in
Principle 4) and the b-Sobolev spaces.

Acknowledgement

I am deeply grateful to R. B. Melrose for introducing me into this world. Clearly, all
the important ideas are due to him. I hope he will not disagree with the particular
slant given to some things here, which reflect my own understanding and interests.

2. Geometry

We begin with the b-calculus way of describing the asymptotic behavior of
smooth functions. Thus, we are given a non-compact manifold Z0 and want to
find a ’good’ way to describe how the value u(z) of a smooth function u : Z0 → C

(or R) behaves when z approaches the ’boundary’ of Z0, i.e. leaves any compact
subset of Z0. Here are a few examples, along with naive attempts to describe their
asymptotic behavior:

Examples 2.1.

1. Z0 = (0,∞), u(x) = 1/x: has a ’first order pole’ at zero and vanishes to
first order at infinity.

2. Z0 = (0, 1)2, u(x, y) = xy: extends smoothly to a neighborhood of [0, 1]2

(i.e. the asymptotics is given by Taylor expansion around any boundary
point of [0, 1]2).

3. Z0 = (0, 1)2,u(x, y) = 1/xy: similar to 2., except that negative powers are
allowed.

4. Z0 = R
2 \ {(0, 0)}, u(x, y) =

√

x2 + y2: ’decays linearly to (0, 0) from all
directions’.
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5. Z0 = (0,∞)2, u(x, y) =
√

x2 + xy + y3: smooth at the coordinate axes
except at (0, 0); near (0, 0): complicated (x2 dominates for x > y, xy for
y > x > y2, and y3 for y2 > x).

6. Z0 = {(x1, x2, x3) ∈ R3 : x2
1 + x2

2 = x2
3, x3 > 0}, u(x1, x2, x3) = x3: similar

to 4.

(In Examples 4.-6. we did not consider the behavior at infinity.)

Observation 1: It is useful to add certain ’boundary’ points to Z0, so that one can
talk for example about the behavior of a function ’at (0, 0)’ when actually
referring to its behavior in Z0 ∩U for U an arbitrarily small neighborhood
of (0, 0). (In Example 1 this means adding a ’point at infinity’ also.)

Observation 2: Descriptions of asymptotic behavior must refer to certain coordi-
nates (e.g. in Example 1 the standard coordinate on R, both near zero and
near infinity; in Example 4 it is natural to use polar coordinates, then u is
just a smooth function of r ≥ 0, vanishing at zero; for Example 5 it is less
clear what ’good’ coordinates would be).

To explain the b-calculus description of asymptotics, we proceed in two steps:

First step: We introduce what is considered model behavior: Z0 is the interior of
a manifold with corners Z, and the functions have joint asymptotic expan-
sions in all variables in the corners. Melrose calls these functions ’polyho-
mogeneous conormal’. We prefer short words here, so we call them ’nice’.

Second step: We show how more general asymptotics may (often) be reduced to
this model case by specifying an identification (diffeomorphism) of Z0 with
the interior of some manifold with corners W . The most common way to
define such a diffeomorphism is by blow-up, which we also discuss.

We will see that this gives a very geometric way to describe the ’asymptotic
type’ of a function. Good references for this section are [25] and [26] (besides the
all-encompassing unpublished [22]).

2.1. Manifolds with corners and nice functions.

Definition 2.2.

1. A manifold with corners (mwc) is a topological space locally modelled on
pieces of the form [0,∞)k × Rn−k, for various k ∈ {0, . . . , n} (in the same
sense as a manifold is modelled on pieces Rn and a manifold with boundary
(mwb) on pieces Rn and [0,∞)× Rn−1).

2. A mwc Z is the union of its interior Zo and its boundary ∂Z. The boundary
is the union of the boundary hypersurfaces (bhs’s) of Z which are themselves
mwc’s.4

4When mwc’s are defined this way, a bhs may happen to be only immersed rather than em-
bedded, see Figure 2. In the b-calculus it is also always assumed that the boundary hypersurfaces
are embedded (and connected); this detail won’t matter for a while.
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3. A boundary defining function (bdf) of a boundary hypersurface H of Z is
a function ρ : Z → [0,∞) such that ρ−1(0) = H , ρ is smooth up to the
boundary, and dρ 6= 0 on H . (See below for the definition of smoothness.)5

All bhs’s embedded Bhs not embedded

Figure 2.

The simplest examples are R,R+ := [0,∞),R+ × R (all mwb) and R
2
+ (the

simplest corner). Also, [0, 1]n is a mwc, but Z = Z0 in Example 2.1.6 is not. See
Figure 5 for a more complicated mwc. On R+, a bdf is given by ρ(x) = x. But
note that many others are possible. The cartesian product of two mwc’s is again a
mwc (and the product of two mwb’s is a mwc, but not a mwb, which is one reason
for introducing the notion of mwc; for another reason see 2.5.1).

Every mwc can be embedded in a manifold: For example Rk
+ × Rn−k →֒ Rn

in the obvious way; by definition, an embedding is a map which looks locally like
that.

If Z is a mwc then we will speak of a ’function u on Z’ even if u is only defined
in the interior of Z.

The role of bdf’s is that they are the coordinates in terms of which the as-
ymptotic behavior of functions will be described.

We now define nice functions. These should be thought of as slightly more
general than functions smooth up to the boundary, so we discuss these shortly.

2.1.1. Functions smooth up to the boundary. These are, per definition, restric-
tions to Z of smooth functions on M , where Z →֒ M is some embedding into a
manifold. However, it is desirable to characterize this intrinsically, just using the
values of the function on the interior Zo. Seeley’s extension theorem (see [22]) says
that

u is smooth up to the boundary iff all derivatives of all orders of u
are bounded on bounded subsets of Zo.

(Of course, a bounded subset is one whose closure in Z is compact.) For a charac-
terization in terms of asymptotics see Remark 2.4.3 below.

5 The assumption on H to be embedded implies the existence of a bdf for H.
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2.1.2. Nice (polyhomogeneous conormal) functions. These are functions that
behave like sums of products of terms like xα

i logp xi, i ∈ I, near a corner defined
by {xi ≥ 0, i ∈ I}. We call them nice since their behavior under integration can
be analyzed fairly easily (see Section 3), and a discrete set of numbers is sufficient
to describe their asymptotic behavior completely.

To set the stage, we consider a manifold with boundary first:

Definition 2.3. Let Z be a manifold with boundary H = ∂Z.

1. An index set is a discrete subset F ⊂ C×N0 such that every ’left segment’
F ∩ {(z, p) : Re z < N}, N ∈ R is a finite set. Also, it is assumed that
(z, p) ∈ F, p ≥ q =⇒ (z, q) ∈ F .

2. Given an index set F , a smooth function u on Zo is called polyhomogeneous
conormal (in short, nice) with respect to F if, on a tubular neighborhood
[0, 1)×H of H , one has

u(x, y) ∼
∑

(z,p)∈F

az,p(y)x
z logp x as x→ 0(2.1)

with az,p smooth on H .678

Thus, an index set tells us which terms xz logp x may occur in the asymptotics
of u at the boundary. The finiteness condition on F ensures that (2.1) makes sense.
log’s are allowed since they often appear naturally, e.g. when integrating smooth
functions (see Example 3.2.2). Note that x is a bdf for H (at least near H , which
is all that matters).

Remarks 2.4 (Contents and limitations of Definition 2.3).

1. In the simplest case of Z = R+, we allow functions like x−3, log x, but no
’fast oscillation’ like sin 1/x. But e−1/x is nice (for any index set F , e.g.
F = ∅).

2. The exponents α are not allowed to depend on y; thus the ’variable asymp-
totics’ of Schulze ([36], Section 2.3) is excluded.

3. Exercise: u is nice with respect to the index set 0 := {(n, 0) : n ∈ N0} iff u
is smooth up to the boundary.

6 The meaning of ∼ is this: Let uN (x, y) be the sum of (2.1) restricted to Re z ≤ N . Then

|u(x, y) − uN (x, y)| ≤ CN xN(2.2)

for all N , uniformly on compact subsets of H, plus analogous estimates when taking any number
of x∂x and ∂y derivatives.

7It is easy to check that this definition is independent of the choice of identification of a
neighborhood of H with [0, 1) × H, if one assumes that F satisfies

(z, p) ∈ F ⇒ (z + 1, p) ∈ F.(2.3)

In any case, any index set can be ’completed’, i.e. enlarged to a smallest index set having this
property.

8 Instead, one could consider finite asymptotics, but it messes up the notation. We prefer
complete asymptotics (and C∞ functions) so we can focus on more important things.
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We now turn to manifolds with corners, and this is where the story gets really
interesting.

For simplicity, we will only consider the mwc R2
+. The extension to the general

case is not difficult, see for example [4], [19], [22], [25] (for corners of higher
codimension use induction, for additional R-variables assume smooth dependence).

An index family E for a mwc Z is an assignment of an index set to each bhs.
For Z = R2

+ we simply write E = (E,F ) if E is associated with the x-axis (i.e.
{y = 0}) and F is associated with y-axis (i.e. {x = 0}).

Definition 2.5. Let (E,F ) be an index family for R2
+. A function u on R2

+

is polyhomogeneous conormal (in short, nice) with respect to (E,F ) if it has an
asymptotic expansion in x as in (2.1), where the coefficients az,p are functions on
R+ that are nice with index set E (in the sense defined above for the mwb R+).9

Again, it is easy to see that u is smooth on R2
+ iff u is nice with respect

to the index family (0, 0), with 0 from Remark 2.4.3. Examples 2.1.1-3 are nice.
(However, in Example 1 this describes only the behavior near zero; see below for
the behavior near infinity.)

Remark 2.6. The MAIN POINT is that all coefficients in the expansion (2.1)
lie in the same singularity class. As a non-example, let us consider the function

u(x, y) =
√

x2 + y2 on R2
+. Clearly, u extends smoothly to the boundary except

at (0, 0). Therefore, for each fixed y > 0, one has an asymptotic expansion

√

x2 + y2 ∼
∞
∑

i=0

ai(y)x
i as x→ 0,

and similarly with x and y interchanged. But the coefficient functions ai(y) become
more and more singular as i→∞. This is seen easily by writing

√

x2 + y2 = y
√

1 + (x/y)2 = y

∞
∑

0

ci(
x

y
)2i(2.4)

= y +
1

2

x2

y
− 1

8

x4

y3
+ . . .(2.5)

with the Taylor series
√

1 + t =
∑∞

0 cit
i = 1 + t/2− t2/8 + . . . (for |t| < 1). It is

easy to see from this that u is not nice with respect to any index family.
Therefore, niceness means having a ’joint’ (or uniform) asymptotic expansion,

simultaneously as all variables tend to zero, in the corner.

9 Here, a good definition of ∼ is harder to come by since the remainder in (2.2) should be
allowed to be singular in y (at y = 0), but not too singular. One way around this is to require

|u(x, y) − uN (x, y)| ≤ CN y−M xN

for some fixed M and all N (plus similar remainder estimates for the derivatives), plus an anal-
ogous expansion and estimate with x and y interchanged. Again, one has coordinate invariance.
See also 2.5.1.
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2.2. More general asymptotic behavior. Asymptotic type. Though

u(x, y) =
√

x2 + y2 is not nice on R2
+, we saw in (2.4) (and its analogue with x

and y interchanged) that:

u is nice as a function of y and x/y (for x/y bounded), and

u is nice as a function of x and y/x (for y/x bounded).
(2.6)

We want to take this as a characterization of the ’asymptotic type’ of u. A
beautiful way to do this is through the following construction:

Definition 2.7. Let Z0 be any manifold. Let W be a compact mwc and
β : W o → Z0 a diffeomorphism. Call a function u on Z0 of (asymptotic) type β if
β∗u is a nice function on W .10

We then also say that u is resolved by β. Some people would call β a ’singular
coordinate change’. Of course, we may also specify an index family E on W and
then speak of ’type β with index family E ’. The compactness of W means that
the asymptotics of u is controlled ’in all directions’. We will freely consider non-
compact W as well, when we are only interested in the behavior of β∗u on a
compact part of W .

Examples 2.8.

1. To describe the behavior of Example 2.1.1 at infinity, one should say in
which sense [0,∞] is a mwc (actually, a mwb). This may be done by choosing
any diffeomorphism β : (0,∞)→ (0, 1) which is equal to the identity near
zero and to the map x 7→ 1 − 1/x near infinity11. Then u from Example
2.1.1 has type β with index sets {(−1, 0)} at zero and {(1, 0)} at one.

2. Let β : R2
+ → R2

+, (ξ, η) 7→ (ξη, η). Then u has type β iff u(ξη, η) = v(ξ, η)
with v nice. Writing ξη = x, η = y we see that this means exactly that u is
nice as a function of y and x/y (for bounded y and x/y).

3. (Polar coordinates) Let W = R+ × [0, π/2], Z = R2
+ and

β(r, θ) = (r cos θ, r sin θ).(2.7)

If u(x, y) =
√

x2 + y2 on R
2
+ then β∗u(r, θ) = r, so u has type β. We will

see below that (2.6) is equivalent to u having this type β (see Remarks
2.9). Of course, the same formula (2.7) works for Z0 = R2 \ {(0, 0)} and
W = R+ × S1 (with S1 = [0, 2π]/0 ∼ 2π the circle), which makes u in
Example 2.1.4 of type β.

Note that by considering β∗u we ’spread out’ the values of u near 0
over a whole strip (a neighborhood of {0} × S1).

4. Let β : R+ → R+, ξ 7→ e−1/ξ. Then β(ξ) = x iff ξ = (log 1/x)−1, so u
has type β iff u is nice as a function of (log 1/x)−1. This is used in [7], for
example.

10 Here β∗u = u ◦ β, the pull-back. One can think of β as a distortion lens, then β∗u is
simply u, looked at through this lens. Of course, a function has many types.

11 This corresponds to the common usage in complex analysis, where behavior of u(z) ’at
infinity’ is described by behavior of u(1/z) at zero.
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5. Exercise: Find a type for Examples 2.1.5 and 6 (near (0, 0)).

Often, Z0 is given as dense subset of a mwc Z, but the functions u of interest
are not nice (see Example 2.1.4 when considered on R2

+, or Example 5). In this
case, a space W and map β can often be obtained by a procedure called ’blow-up’.
We discuss this next.

2.3. Blow-up. Blow-up is a way to obtain new mwc’s from old. It is used to
resolve functions on a mwc and to desingularize (algebraic) subsets of a mwc (see
Subsection 2.4).

The simplest non-trivial case of a blow-up is given by polar coordinates (Ex-
ample 2.8.3). We will discuss this case in some detail and then sketch the general
construction.

2.3.1. Blowing up (0, 0) in R2
+. Consider the ’polar coordinates map’ (2.7).

Note that, for p ∈ R2
+, β−1(p) is a point unless p = (0, 0) when it is the interval

{0}× [0, π/2]. Therefore, we say that W is obtained from Z by ’blowing up (0, 0)’.
We write W = [Z, (0, 0)] and call β the blow-down map. The bhs’s of W are called
lb = {θ = π/2}, rb = {θ = 0} (the left and right boundary) and ff = {r = 0} (the
front face).

=

(c)

∆b

ρ

(a)

1

lb

(b)

B

A rb

lb

ff

∆b
rb

τ

ff

η2

η1

ξ2

ξ1

−1

β−→

y

x

Figure 3. The blow up [R2
+, (0, 0)] of R2

+

When drawing pictures, some people prefer to draw W as in Figure 3(b) while
others prefer 3(a). In spirit these correspond roughly to using two different sets of
coordinate systems on W , which are often more convenient to use than (r, θ):12

Coordinate systems on [R2
+, (0, 0)]

12 The occurrence of the transcendental functions sin and cos in (2.7), with all their special
properties (e.g. sin′ = cos) is rather accidental and usually distracts from what really matters,
e.g. the asymptotic behavior when approaching the boundary. There is no way to completely
erase such accidents, but the following two options come close to it.
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1. (Projective coordinates) For y ≪ x, we have r =
√

x2 + y2 ≈ x and θ =
arctany/x ≈ y/x. This suggests considering

ξ1 = x, η1 =
y

x
(2.8a)

as coordinates on W . Indeed, from ξ1 = r cos θ, η1 = tan θ we see that they
define local coordinates for θ 6= π/2, i.e. on W \ lb, with ξ1 a bdf for ff and
η1 a bdf for rb. Similarly,

ξ2 =
x

y
, η2 = y(2.8b)

define coordinates on W \ rb, with ξ2 a bdf for lb and η2 a bdf for ff. In
these two coordinates systems β takes the simple form

β1(ξ1, η1) = (ξ1, ξ1η1)

β2(ξ2, η2) = (ξ2η2, η2).
(2.8c)

2. (’Rational polar coordinates’) Define (for x, y > 0)

ρ = x+ y, τ =
x− y
x+ y

.(2.9)

Writing x = r cos θ, y = r sin θ one easily sees that ρ = ra(θ), τ = b(θ)
with a > const > 0 and b : [0, π/2] → [−1, 1] a diffeomorphism, thus
(ρ, τ) ∈ R+ × [−1, 1] may be regarded as new coordinates on W .

Solving (2.9) for x, y one obtains the form of the blow-down map as

β(ρ, τ) = (
1

2
ρ(1 + τ),

1

2
ρ(1− τ)).

Bdf’s are given by ρ for ff, 1 + τ for lb, and 1− τ for rb.

Remarks 2.9.

1. Rather than beginning with polar coordinates one may define W and β
directly by glueing two coordinate patches, i.e.

W = R
2
+ ⊔ R

2
+/ ∼(2.10)

where (ξ1, η1) ∼ (ξ2, η2) :⇔ β1(ξ1, η1) = β2(ξ2, η2)

with β1/2 from (2.8c). This identification is done precisely in order for β to
be injective on W o. Note that injectivity is essential for the whole idea of
defining asymptotic types of functions on Z0 using the map β.

2. The first remark together with (2.8a) and (2.8b) shows that (2.6) holds iff
β∗u is nice on [R2

+, (0, 0)].
3. (2.10) is the way that blow-up is usually defined in algebraic geometry,

except that R+ is replaced by C, so that all spaces involved are smooth
complex varieties without boundary.
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4. An advantage of the (ρ, τ) coordinates is that they are global on W . While
the projective coordinates may feel cumbersome at first since they are not
global, they have several advantages: The bdf’s are simply the ξi and ηi,
calculations tend to be very simple, and in many problems they occur nat-
urally (see [6], for example).

2.3.2. More general blow-ups. In general, given mwc’s Z and Y ⊂ Z (sat-
isfying certain conditions), one constructs W = [Z, Y ], the ’blow-up of Z along
Y ’, together with a smooth map β : W → Z, the ’blow-down map’, which is a
diffeomorphism W o → Zo \ Y . This is done as follows:

1. Blow-up of an interior point of a 2-dimensional mwc replaces it by a circle,
see Example 2.8.3.

2. In higher dimensions, blow-up of an interior point replaces it by a sphere.
For example,

[Rn, 0] = R+ × Sn−1, β(r, ω) = rω

for r ∈ R+, ω ∈ Sn−1. Similarly, [Rn
+, 0] = R+×Sn−1

+ where Sn−1
+ = Sn−1∩

Rn
+. (r, ω) provide polar coordinates on [Rn, 0]. Projective coordinates are

ξ1 = x1, ξ2 = x2/x1, . . . , ξn = xn/x1 on {ω1 6= 0}, and similarly on all
other {ωi 6= 0}.

3. More generally, one can blow up closed submanifolds Y ⊂ Z: Assume first
that Y lies in the interior of Z. Locally, the pair (Y, Z) is just (Rk ×
{0}n−k,Rn), and we simply set

[Rn,Rk × {0}n−k] = R
k × [Rn−k, 0],

with β as in 2. above. One can check that this is independent of the co-
ordinates chosen (up to diffeomorphism that intertwines the β’s) and can
therefore be glued together to a global blow-up β : [Z, Y ] → Z. A more
intuitive model for the space [Z, Y ] is Z \ Ur(Y ), where Ur(Y ) = {z ∈ Z :
dist (z, Y ) < r} with respect to some Riemannian metric on Z, for r suffi-
ciently small (at least when Y is compact). (But then β is more complicated
to write down.)

4. The construction from 3. can be extended directly to mwc’s Y hitting the
boundary of Z, if this ’hitting’ is transversal in a suitable sense. (As a non-
example, consider the parabola Y = {x, x2} ⊂ Z = R × R+ and try to
define a blow-up!) The exact condition is that near any p ∈ Y coordinates
can be chosen such that p = 0 and, locally, Z = Rk

+×Rn−k and Y = Z ∩S
for some coordinate subspace S. Such Y are called p-submanifolds. [Z, Y ]
is a mwc.

Remarks 2.10.

1. As already indicated, all these blow-ups are defined invariantly (i.e. no
choices are made, beyond Z and Y , to define [Z, Y ] up to diffeomorphism
that preserves β).
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2. The construction above yields an elementary blow-up. Sometimes, one needs
an iterated blow-up. That is, one chooses a p-submanifold Y ′ in [Z, Y ] and
considers [[Z, Y ], Y ′], or iterates even further. This is needed when describ-
ing more complicated asymptotics of functions. For example, blowing up
first (0, 0) in R2

+ and then the point B in Figure 3(b) resolves the function

u(x, y) =
√

x2 + xy + y3 from Example 2.1.5 (exercise!). Also, the ’triple b-
space’ in the b-pseudodifferential calculus is an iterated blow-up (see Figure
5).

3. When using an (iterated) blow-up β : W → Z to describe asymptotic
behavior of functions we have:

(a) If u is nice then u is of type β.
(b) The behavior of u on a compact part of Z is reflected by the behavior

of β∗u on a compact part of W . (Cf. the remark on compactness after
Definition 2.7.)

(a) follows from the fact that β is a b-map (see below), and (b) is just the
properness of β (i.e. β−1(compact) = compact).

2.3.3. b-maps. An important property of blow-down maps is that they are
b-maps. We define these now. Recall that if w is any point in a mwc W then a
neighborhood of w can be identified with Rk

+ × Rn−k, with w corresponding to 0
(k depends on w).

Definition 2.11. A map f : W → Z between mwc’s is a b-map at w ∈ W if
for some (and therefore any) identification of neighborhoods of w and z = f(w)

with Rk
+×Rn−k and Rk′

+ ×Rn′−k′

, respectively, sending w, z to zero, the map has
’product type’, i.e.

f = (f1, . . . , fn′),

fi(x1, . . . , xk, xk+1, . . . , xn) = ai(x)

k
∏

j=1

x
αij

j , for i = 1, . . . , k′,(2.11)

with ai smooth and non-vanishing near zero, and non-negative integers αij .
f is a b-map if it is a b-map at every point.13

In particular, b-maps are smooth up to the boundary. Examples 2.8.2 and 3
are b-maps, while 4 is not.

Remarks 2.12. (Intuition and properties of b-maps)

1. Condition (2.11) is an algebraic counterpart to the weaker geometric con-
dition that, near z, the zero set f−1

i (0) is a union of bhs’s through z (more
globally: The preimage of any bhs of Z is a union of bhs’s of W ). See 3.1
for a more detailed discussion of the boundary geometry of b-maps.

13 Melrose calls such maps interior b-maps. For a general b-map he allows that instead of
(2.11) one has fi ≡ 0 for some i, i.e. that f(W ) ⊂ ∂Z (assuming W connected). In this article
we never use these general b-maps.
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2. The composition of b-maps is a b-map. Projective coordinates show that the
blow-down map for an elementary blow-up (and therefore for any blow-up)
is a b-map.

3. If β is a b-map then β∗(nice) = nice since log xy = log x+ log y and log a is
smooth for a > 0. For a more precise statement see the ’pull-back theorem’,
Theorem 3.12.

4. If β is just smooth then β∗(smooth) = smooth, but in general β∗(nice) is
not nice; for example, for β : R

2
+ → R+, (x, y) 7→ x+ y and u(t) = log t we

get β∗u(x, y) = log(x+y) which is not nice on R2
+. Similarly,

√
x+ y is not

nice.

2.4. Embedded blow-up. So far, we have not addressed Example 2.1.6.
Z = Z0 is not a manifold with corners, so the blow-up construction above does not
apply directly to the construction of an appropriate ’blow-up space’ W . However,
Z0 is embedded in R3, which is a manifold. So one may blow up 0 (the singular
point of Z) in R3 and then take W to be the closure of the preimage of Z0:

W := β−1(Z0), with β : [R3, 0]→ R
3 the blow-down map.

Using polar coordinates on [R3, 0] = R+ × S2, i.e. β(r, ω) = rω, β−1(x) =
(|x|, x/|x|), we get

W = R+ × C, C = {ω2
1 + ω2

2 = ω2
3 , ω3 > 0} ⊂ S2.

C is a smooth curve – a circle – on S2, so W is a mwb and β : W o → Z0 a
diffeomorphism, and

β∗x3 = rω3.

Since ω3 is a smooth function on S2, this is a nice function by Definition 2.3.
This procedure is called ’embedded blow-up’ (or embedded desingularization).

Hironaka showed in his famous ’resolution of singularities’ work that such an em-
bedded blow-up exists for any (semi-)algebraic set (and (semi-)algebraic function
on it) in Rn, and can be obtained by an iterated blow-up. (These authors use the
’projective’ blow-up, but it should be easy to transfer the result to our situation.)
See [9], [1].

2.5. Invariance, regimes, etc. Here we collect some more remarks on the
idea of ’asymptotic type’.

2.5.1. On invariance. Definition 2.5 (and its generalization to any mwc) is co-
ordinate invariant if all index sets in E satisfy the condition (2.3). This means: Let
x̃, ỹ be any other bdf’s for the y- and x-axis in R2

+, respectively. (In particular x̃, ỹ
define coordinates near (0, 0).) Then u is nice with index family E when expressed
in terms of x̃, ỹ iff it is in terms of x, y. The reason is that both x/x̃ and y/ỹ are
smooth and non-zero up to the boundary.

Thus, although coordinates (i.e. bdf’s) are needed to write down the particular
asymptotics of u,
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the class of nice functions on a mwc with a given index family E is
defined independent of coordinates,

and therefore defined purely by the geometry (the mwc) and the discrete set E .
In contrast, there is no ’natural’ class of coordinate functions describing ap-

proach to (0, 0) in R2: Both
√

x2 + y2 and
√

x2 + 2y2 would be equally good
candidates as ’defining functions of (0, 0)’, but their quotient does not extend
smoothly to (0, 0).

This shows the special role played by mwc’s and is one reason for their central
role in the b-calculus.

2.5.2. On invariance, II. Because of the invariance of the blow-up construc-
tion, 2.5.1 can be generalized to types other than nice. For example, the following
data:

• a compact mwc Z and a p-submanifold Y ⊂ Z (see 2.3.2, point 4), and
• an index family E on [Z, Y ], satisfying (2.3)

define the class of functions on Z \ Y which have type β : [Z, Y ] → Z with index
family E . Again, this is a piece of discrete data (E) and a piece of geometric data
(which is actually also discrete, since it is natural to consider diffeomorphic pairs
(Z, Y ) as equal).

2.5.3. On ’regimes’ and ’matching conditions’. Characterizations like (2.6) are
often expressed in terms of so-called regimes: In the regime y/x < C, x < C, u has
a certain asymptotics and in the regime x/y < C, y < C it has another. Of course,
these two pieces of data are not independent: Since both asymptotics describe the
same function, certain relations (called matching conditions) hold between their
coefficients.

The notion of ’type β’ beautifully and economically combines regimes and
matching conditions into a single geometric picture; in the case of [R2

+, 0] this is
the content of Remark 2.9.1.

The correspondence between the ’regime’ language and the mwc picture can
be described roughly as follows:

regime ←→ minimal face
matching condition between
regimes A,B

←→ hypersurface containing the
faces corresponding to A,B

(A face of a mwc is a non-empty intersection of hypersurfaces, and faces are
ordered with respect to inclusion.)

Example 2.13. In Example 2.1.5 there are three regimes (corresponding to
each of the three terms being dominant), and these correspond to the three corners
in the mwc used to resolve it (see Remark 2.10.3).

2.5.4. How many blow-ups to make? In a given problem (usually involving
differential equations) one often expects certain type of asymptotic (or singular)
behavior for the solution (for example, from making a model calculation). This
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may indicate on which blown-up space one should best consider the problem, in
order to stay in the realm of nice functions.

However, one has to be careful not to blow up too much: Although nice func-
tions remain nice after blow-up (Remark 2.10.3a), differential operators become
’worse’ ! Thus, one needs to find a balance between these forces. We will not ad-
dress this important problem any further. This is one of the difficulties in solving
the Main Problem in the Introduction. See the references given there for solutions
in some cases.

3. Analysis

In this section we discuss two of the basic processes of analysis: pull-back
and push-forward, and how they affect asymptotic behavior of smooth functions
(as discussed in the previous section) and conormal distributions, which we also
introduce.

What are pull-back and push-forward, and why are they important? Pull-back
is composition, push-forward is integration. They are important since they may be
used as building blocks for other operations. This allows to carry out recurring ugly
calculations (e.g. those involving Fourier transform) once in the proof of theorems
about pull-back and push-forward, and then never look at them again. Let us
illustrate this in two simple but central examples:14

Examples 3.1.

Applying an operator to a function: Let π1, π2 : R2 → R be the projec-
tions onto the first and second coordinate. If v is a function on R then its
pull-back π∗

2v = v ◦π2 is the function (x, y) 7→ v(y) on R2. If u is a function
on R2 then its push-forward π1∗u is the function

π1∗u(x) =

∫

u(x, y)dy.(3.1)

If A is an operator, acting on functions v on R, with integral kernel A(x, y)
then

(Av)(x) =

∫

A(x, y)v(y) dy = π1∗(A · π∗
2v).(3.2)

Though this may look like an exercise in formal nonsense, it shows that
mapping properties of Amay be read off from the structure (e.g. asymptotic
type) of the function (distribution)A, if one understands how such structure
is affected by pull-back and push-forward.15

14 In the examples, R may be replaced by any manifold, equipped with a fixed density. For
the moment we naively neglect the distinction between functions, distributions and the respective
densities; also, we neglect such tedious matters as integrability.

15 Also, one needs to understand how structure is affected by multiplication. This is trivial
for nice functions, geometrically non-trivial for functions with different asymptotic types, and
analytically non-trivial for distributions. See Subsection 3.3 for the latter case.
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Composition of operators: If A,B are operators, acting on functions on
R, with integral kernels A(x, y), B(y, z), then C = A◦B has integral kernel
C(x, z) =

∫

A(x, y)B(y, z) dy, i.e.

C = π2∗(π
∗
3A · π∗

1B)(3.3)

where π1, π2, π3 : R3 → R2 are the projections leaving out the first, second
and third variable, respectively. Again, understanding how pull-back, push-
forward and product affect the structure of distributions allows to predict,
for example, whether a class of operators with a given structure of its kernels
is closed under composition.

Another place where one needs to understand the behavior of distributions
under push-forward is in the ’specializations’ mentioned in Footnote 2 in the In-
troduction, since many of them are obtained from the full kernel ofQ by integration
(i.e. push-forward).

The maps used for pull-back and push-forward in the examples are rather
trivial projections, so it’s legitimate to ask: Why be so formal, why not talk simply
of ’integration in y’ instead of ’push-forward by π1’? The answer is given by:

Principle

The push-forward of a complicated function by a simple map should
be analyzed by rewriting it as push-forward of a simple function by
a complicated map.

The point is that the ’complication’ of the map lies mainly in its global geom-
etry, so by a partition of unity the problem can be reduced to the sum of relatively
simple local problems. (In contrast, the ’complication’ of the function is local, typ-
ically.) Melrose’s Push-Forward Theorem gives the result of this analysis, for the
case of smooth functions. In Subsection 3.1 we discuss all these matters, starting
from an example. We also sketch the idea of a proof of the Push-Forward Theorem
in the special case that the target space is R+.

When integrating one needs measures. Therefore, push-forward is best defined
as acting on measures (or densities) rather than functions. The push-forward of
a smooth density may be not smooth, and (what’s equivalent) the pull-back of a
distribution is not always defined. For the reader unfamiliar with these matters, we
give the precise definitions and a short discussion of pull-back and push-forward,
and how they act on smooth functions, distributions and smooth and distributional
densities, in the Appendix.16

In Subsection 3.2 we state Melrose’s Pull-Back Theorem, which tells how pull-
back by a b-map affects nice functions. This is rather trivial in comparison to the
Push-Forward Theorem.

16The reader who prefers to neglect the distinction between functions and densities is invited
to do so, but will probably begin to acknowledge their usefulness when making computations
herself.
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Finally, in Subsection 3.3 we introduce conormal distributions and discuss
how pull-back, push-forward and multiplication affect them. As an illustration, we
define pseudodifferential operators and study their composition.

3.1. Push-forward and asymptotic type. We begin by analyzing a few
examples of push-forward under the projection R2

+ → R+, (x, y) 7→ x. In other
words, we set

ũ(x) =

∫ ∞

0

u(x, y) dy, x > 0.(3.4)

Assuming that u is smooth in (0,∞)2 and suppu is bounded, we ask how the
behavior of u near the boundary of R

2
+ affects the behavior of ũ near 0.

Examples 3.2.

1. If u is smooth up to the boundary then so is ũ (by first-year analysis). More
generally (and just as easy),

u nice with index family (E,F )⇒ ũ nice with index set F

if the integral (3.4) exists at all, i.e. if

Re z > −1 for (z, p) ∈ E.(3.5)

2. If u(x, y) = y−1v(x/y, y) with v smooth on R2
+ and compactly supported

then

ũ(x) =

∫ ∞

0

v(
x

y
, y)

dy

y
∼

∞
∑

i=0

(aix
i + bix

i log x) as x→ 0,(3.6)

i.e., ũ is nice, but not smooth (the index set is N0×{0, 1}).17 More generally,
if v has index sets (E,F ) then ũ is nice with index set18 19

E∪F := E ∪ F ∪ {(z, p′ + p′′ + 1) : (z, p′) ∈ E, (z, p′′) ∈ F}.(3.8)

17 Proof: Taylor expand v(ξ, η) at ξ = 0 (for each fixed η), then Taylor expand each coeffi-
cient and the remainder at η = 0 to obtain, for any N ,

v(ξ, η) =

N−1
∑

α=0

ξαηN aα(η) +

N−1
∑

β=0

ηβξN bβ(ξ) +

N−1
∑

α,β=0

cα,βξαηβ + ξNηN r(ξ, η)(3.7)

with aα, bβ , r smooth up to the boundary. Assume supp v ⊂ [0, C]2. Then in the integral (3.6)

one may replace
∫ ∞
0

by
∫ 1
x/C

. To obtain the asymptotics, simply integrate (3.7) term by term,

using the substitution z = x/y in the second sum.
Note that the log-terms only come from the terms α = β in the third sum.
18 Same proof, after the (non-trivial) analysis argument that our definition (2.5) of niceness

implies an expansion like (3.7). Alternatively, one may define niceness by this expansion.
19Why did we write the integral (3.6) with dy/y instead of simply dy? Since then the result

(3.8) is beautifully symmetric! Cf. ’b-densities’ below.
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3. For u(x, y) =
√

x2 + y2 explicit integration shows (restricting to y ≤ 1 for
integrability – this does not affect the essential point)

ũ(x) = (smooth near zero) − 1

2
x2 log x.(3.9)

Thus, ũ is nice, and again a logarithm appears.

The common feature of Examples 2 and 3 is that u has asymptotic type β,
where β is the blow-up of 0 in R2

+.

Claim: This already suffices to explain the similarity of the results (3.6) and
(3.9).

Proof. We first show this by a simple calculation and then explain how it
may be seen directly by ’looking at pictures’.

Calculation: Consider any u of type β, so that w = β∗u is nice onW = [R2
+, 0],

and assume w has no logarithmic terms in its expansions. We split up the integral
∫ ∞

0

u(x, y) dy = A+B

’smoothly near y = x’. That is, with any cut-off function φ ∈ C∞
0 (R+) which

equals one near 0, and with ψ = 1− φ, we set

A =

∫ ∞

0

u(x, y)φ(y/x) dy =

∫ ∞

0

xu(x, xη1)φ(η1) dη1 =

∫ ∞

0

xw1(x, η1)φ(η1) dη1

B =

∫ ∞

0

u(x, y)ψ(y/x) dy =

∫ ∞

0

w2(x/y, y)ψ(y/x)y
dy

y
.

Here, w1 is just w expressed in projective coordinates near the point A in Figure
4(a) (i.e. w1(ξ1, η1) = u(ξ1, ξ1η1) or w1 = β∗

1u with β1 from (2.8c)); the integral A
is like Example 1 (with u(ξ, η) = ξw1(ξ, η)φ(η)). Similarly, w2 is just w expressed
in projective coordinates near B in Figure 4(a) (i.e. w2(ξ2, η2) = u(ξ2η2, η2) or
w2 = β∗

2u); the integral B is like Example 2 (with v(ξ, η) = w2(ξ, η)ψ(ξ−1)η).
Since by assumption w1/2 have no log’s in their expansions and in Example 1

no logarithms are created, we conclude: The log terms in Examples 2 and 3 are of
the same nature.20

Pictures: We now show how the same result can be ’seen’ geometrically. Since
β∗u = w and β is a diffeomorphism in the interior, we have u = β∗w, so

ũ = π1∗u = π1∗β∗w = f∗w(3.10)

20 But we also see that for general β-singular u infinitely many log terms will appear.

For u(x, y) =
√

x2 + y2 only one log-term appears (see (3.9)); this is due to the fact that in
√

x2 + y2 = y
√

1 + (x/y)2 = xξ−1
2

√

1 + ξ2
2 only one power of x occurs. Such fine points are

lost under (regular) coordinate changes and therefore invisible in the geometric setup of the
Push-Forward Theorem.
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B

y

x

η2

ξ2
B

(ξ2, η2) 7→ ξ2η2 (ξ1, η1) 7→ ξ1

η1

ξ1

(a) (b) (c)

π1 ◦ β
AA

y/x

y/x =const

Figure 4. Level lines for push-forward under [R2
+, (0, 0)]→ R+

with f = π1 ◦ β : W → R+. This says simply that ũ(x) equals the integral of
w over the fiber f−1(x) for each x (let’s postpone the question of measures for a
moment). This is clear since the values of w on f−1(x) are precisely the values of
u on π−1

1 (x), which are integrated to obtain ũ(x).
Some fibers of f are shown in Figure 4(a), some of π1 in Figure 4(c) and some

of g(ξ, η) = ξη in Figure 4(b). Pictorially, we see:21

• Near A, Figure 4(a) looks like Figure 4(c),
• near B, Figure 4(a) looks like Figure 4(b).

Therefore, push-forward of w by f is the sum of push-forward (of w near A)
by π1 and push-forward (of w near B) by g, and this was precisely the calculation
above. This also explains why the cut-off had to be chosen as a smooth function
of y/x, see Figure 4(a).

In summary, we may say that the log terms in Examples 2 and 3 arise from
the fact that the fibers of g and of f = π1 ◦ β approach the corner as in Figure
4(b) for x→ 0.

In Melrose’s Push-Forward Theorem these considerations are generalized to
any b-map f : W → Z: Under certain conditions on f , it says that the push-
forward of a nice density µ on W is a nice density on Z, and computes the index
sets of the latter from the index sets of the former and the ’boundary geometry’
of f .

The conditions on f are best understood if we consider the special case Z = R+

first. Before we can state them, we need some definitions.

21 This can be made precise by expressing f in projective local coordinates (2.8):

• On W \ lb (’near A’) f is expressed as f1(ξ1, η1) = ξ1 (using β1 in (2.8c)), i.e. f1 = π1,
• on W \ rb (’near B’) as f2(ξ2, η2) = ξ2η2 (using β2), i.e. f2 = g.
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From now on, we assume that all index sets satisfy (z, p) ∈ E =⇒ (z+1, p) ∈
E, the condition ensuring coordinate invariance of niceness, and that bhs’s are
embedded and connected (see Definition 2.2 and Footnote 4).

Densities on manifolds with corners. If W is a mwc, then a density on W is,
by definition, a density on the interior W o (concerning densities see the Appendix
and Footnote 16). The notion of niceness carries over to densities immediately, e.g.
on R2

+:

Definition 3.3. A density µ = u dxdy on R2
+ is nice with index sets E,F if

u is nice with index sets E,F .22

The following is a slight variant in book-keeping, which makes lots of things
more transparent23 (though it may seem artificial to the uninitiated):

Definition 3.4. A b-density on R2
+ is just a density, except that we write it

as µ = u(x, y)dx
x

dy
y instead. When talking about smoothness or the index family

of µ then we mean smoothness or the index family of u in such a representation.

Of course, a b-density on R+ × R is of the form u(x, y) dx
x dy. That is, the dx

x
factor only occurs in the variables x defining some bhs. It is easy to see that the
index family of a b-density is well-defined on any mwc.

Boundary geometry of a b-map f : W → R+.

Definition 3.5. Let f : W → R+ be a b-map. For any bhs G of W define
ef (G) to be the order of vanishing of f at G.

In other words, in the local Definition 2.11 with w ∈ G, we set ef(G) = α1j0 if
f(w) = 0 and xj0 is a bdf for G, and ef (G) = 0 if f(w) 6= 0. This is clearly locally
constant and therefore constant on G by connectedness, so ef(G) is well-defined.
Note that

f−1(0) =
⋃

{G : ef (G) > 0}.(3.12)

Theorem 3.6 (Push-Forward Theorem, special case Z = R+). Let W be a man-
ifold with corners and f : W → R+ a b-map which is a fibration over (0,∞).24 Let

22 As usual, this should be checked for coordinate independence. But only under coordinate
changes (x, y) 7→ (x̃, ỹ) for which x̃, ỹ are still bdf’s of the coordinate axes! Cf. 2.5.1.

23Examples:

1. µ locally integrable ⇐⇒ Re z > 0 whenever (z, p) ∈ E ∪ F (rather than −1).
2. The transformation under projective coordinates becomes especially simple: Say ξ1 = x, η1 =

y/x, then

dx

x

dy

y
=

dξ1

ξ1

dη1

η1
.(3.11)

3. See Footnote 19 after Example 3.2.2.

24 I.e. f : f−1((0,∞)) → (0,∞) is a fibration in the sense of Footnote 65 in the Appendix,
except that L is allowed to be a mwc.
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E be an index family for W . Assume that f, E satisfy the integrability condition
(3.13) below.

If µ is a compactly supported b-density on W , nice with index family E, then
f∗µ is a b-density on R+, nice with index family f#E (defined in (3.15) below).

The integrability condition is:

inf E(G) > 0 whenever ef (G) = 0(3.13)

where for any index set E

inf E := inf{Re z : (z, p) ∈ E}(3.14)

(which is actually a minimum).25 To define f#E , associate to every face F (i.e.
non-empty intersection of boundary hypersurfaces) of W the index set

Ẽ(F ) =
⋃

G

{

(
z

ef (G)
, p) : (z, p) ∈ E(G)

}

where the extended union (defined in (3.8)) is over all bhs’s G containing F and
having ef(G) > 0. Then, define

f#E =
⋃

F

Ẽ(F ).(3.15)

Remarks 3.7.

1. f needs to be a fibration in the interior to ensure that f∗µ is smooth in the
interior.

2. The definition of f#E given above is a little more precise than the one given
in [25] (which may yield an index set that is ’too big’). But the Push-
Forward Theorem with this ’smaller’ f#E follows directly from Melrose’s
by introducing a suitable partition of unity.26

3. The proof was essentially done above: Localize as in the discussion of Exam-
ple 3.2.3, this reduces to the cases of Examples 3.2.1/2 (modulo replacing
x, y by powers xν , yµ with ν, µ > 0 determined by the ef(G), and modulo
straight-forward generalization to higher dimensions.)

4. See the article [6] in this book for a discussion of the relation of the Push-
Forward Theorem (with Z = R+) and the ’Singular Asymptotics Lemma’
by Brüning and Seeley ([2]).

Push-Forward Theorem with general target space. Here, some additional as-
sumptions on the map f are needed. Before we can state these, we need to look a
little closer at the geometry of b-maps:

25 Geometrically, ef (G) = 0 means that f > 0 on G, so the fibers f−1(x), x > 0, will hit
only these G, and actually transversally as in Figure 4(a) at the x-axis. So (3.13) generalizes

(3.5) and comes from the fact that
∫ 1
0 xz dx

x
exists iff Re z > 0.

26 Clearly, in (3.15) it is enough to take the union over all minimal faces (with respect to
inclusion), for example the corners A, B in Figure 4(a). Thus, any ’regime’ on W (see 2.5.3)
contributes some asymptotic terms.



26 DANIEL GRIESER

Boundary geometry of b-maps. By definition, f : W → Z is a b-map iff

fH := ρH ◦ f : W → R+(3.16)

is a b-map for all bhs’s H of Z, and bdf’s ρH of H . So we can define:

Definition 3.8. The exponent matrix of a b-map f : W → Z is the set of
integers

ef(G,H) = efH
(G), G bhs of W, H bhs of Z.

Thus, ef (G,H) 6= 0 iff f(G) ⊂ H , and in this case if p ∈W has small distance
ε fromG and distance≥ const> 0 from all other bhs’s ofW , then f(p) has distance
of order εef (G,H) from H (say in Euclidean metric for any local coordinate systems
based at points of G and H).

Referring to the Definition 2.11 of b-maps, we have ef (G,H) = αij in (2.11)
if G = {xj = 0} and H = {x′i = 0} locally.

Recall that a face of a mwc W is a non-empty intersection of boundary hy-
persurfaces, or W itself. Each face is a mwc. A b-map f induces a map

f : faces of W → faces of Z

characterized by

x ∈ F o =⇒ f(x) ∈ (f(F ))
o
.(3.17)

Alternatively, f(F ) = the intersection of the bhs’s H of Z satisfying f(F ) ⊂ H .
In summary, the ’combinatorics’ of a b-map f can be described either by giving

the pairs (G,H) with f(G) ⊂ H , or equivalently by the map f , or (a little more
refined) by the matrix ef .

Definition 3.9. A b-map f : W → Z is a b-fibration if for each face F of W ,

(a) codim f(F ) ≤ codimF (it is enough to require this of bhs’s F ), and

(b) f is a fibration F o → (f(F ))
o
. 27

For example, if Z = R+ then f is a b-fibration iff f is a fibration over (0,∞)
(here (a) is empty). The polar-coordinate map is not a b-fibration (since ff gets
mapped to a codimension two face), nor is any other non-trivial blow-down map.
An important example of a b-fibration where condition (a) is non-empty is given
by the projection from the ’triple b-space’ in (3.21).

For a b-map f : W → Z and an index family E on W , define the index family
f#E on Z by

f#E(H) = (fH)#E ,(3.18)

27 Melrose’s definition in [25] looks different, but is equivalent: As is easily seen, condition
(a) is equivalent to his ’b-normality’ (we assume all b-maps to be interior), and, assuming (a),
condition (b) is equivalent to his ’b-submersion’ condition, at least for proper maps (for which
submersion ⇐⇒ fibration), which is all that matters anyway.
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with the right hand side defined by (3.15) and (3.16). The integrability condition
is:

inf E(G) > 0 whenever ef (G,H) = 0 ∀ H.(3.19)

(The latter condition means that f(G) 6⊂ ∂Y .)

Theorem 3.10 (Push-Forward Theorem). Let W,Z be manifolds with cor-
ners and f : W → Z a b-fibration. Let E be an index family for W , and assume
(3.19).

If µ is any compactly supported b-density µ on W , nice with index family E,
then the push-forward f∗µ is a b-density on Z, nice with index family f#E (defined
in (3.18)).

See [25] for a proof.

Remarks 3.11.

1. Why the b-fibration conditions are needed: For example, (a) is violated for
the polar-coordinate map, and this map does not preserve niceness (this
was the reason for doing blow-ups in the first place!). Also, if f∗µ is to be
nice then the expansion coefficients in the asymptotics at any face should
be smooth in the interior of the face, so one should require a fibration
condition here, which explains (b). (Thus, (a) ensures good behavior of f∗µ
when approaching the boundary, while (b) does so in the boundary and
locally in the interior.)

2. On determining the asymptotic type of g∗µ from the asymptotic type of µ,
for a map g : Z → Z ′ between mwc’s:

For Z ′ = R+ the answer is given essentially by Theorem 3.6: If g : Z →
R+ is a fibration in the interior and µ has type β : W → Z then applying
the theorem to f = g ◦ β shows that g∗µ is nice on R+. Compare (3.10)
where g = π1. Clearly, this only works if (β−1)∗ maps nice densities on
Z to nice densities on W ; for blow-ups β this is clearly true, see (3.11) in
Footnote 23.

For general Z ′ the problem is: Given g : Z → Z ′ and a blow-up β :
W → Z, find a blow-up β′ : W ′ → Z ′ such that densities of type β are
pushed forward to densities of type β′. By the Push-Forward Theorem, this
would be satisfied if g̃ = (β′)−1 ◦ g ◦ β : W →W ′ was a b-fibration.

W
g̃−−−−→ W ′

β





y





y
β′

Z
g−−−−→ Z ′

(3.20)

Note that even for g̃ to be a well-defined map implies restrictions on β′.
The problem when this is possible, and how to find β′, seems to be difficult.

3. The support condition on µ in Theorem 3.10 merely excludes problems of
non-integrability at infinity. Clearly, it could be weakened to: f is proper
on suppµ. (We need this extension when we discuss ΨDOs.)
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3.2. Pull-back and asymptotic type. Though just as important as the
Push-Forward Theorem, this is child’s play in comparison. The main point was
already mentioned in Remark 2.12.1. Doing the book-keeping on the index sets
easily yields:

Theorem 3.12 (Pull-Back Theorem). Let f : W → Z be a b-map. Then, for
any function v on Z which is nice with index family F , the pull-back f∗v is a nice
function on W with index family f#F defined by: If G is a bhs of W then

f#F(G) =
{

(q +
∑

H

ef(G,H)zH ,
∑

H

pH) : q ∈ N0 and

for each bhs H of Z:

{

(zH , pH) ∈ F(H) if ef (G,H) 6= 0,

(zH , pH) = (0, 0) if ef (G,H) = 0.

}

.

Remarks 3.13.

1. On determining the asymptotic type of g∗v from the asymptotic type of v.
Here one is given g and a blow-up β′ in diagram (3.20), and needs to find
a blow-up β such that g∗v has type β whenever v has type β′. By the Pull-
Back Theorem, this is satisfied if g̃ is well-defined and a b-map (and g is
surjective). Note that (β′)−1 ◦ g is usually only defined on the interior since
β′ is not a diffeomorphism on the boundary, so W has to be chosen ’big’
enough so that g̃ may extend continuously from the interior to all of W .

2. The triple b-space. As example consider the case relevant for composition in
the b-ΨDO calculus: g = π1 : R3

+ → R2
+ is the projection π1(x1, x2, x3) =

(x2, x3). The solution is easy: If β′ : W ′ → R2
+ is any blow-up then let

W = R+ ×W ′, β = idR+
× β′ : R+ ×W ′ → R+ × R2

+. In the case relevant
for us, where W ′ = [R2

+, 0] is just the blow-up of zero, W is the blow-up of
the x1-axis.

However, in the composition problem W and β need to work for several
maps g simultaneously, and this makes the problem more interesting. Let
πi : R3

+ → R2
+ be the projection that forgets the i’th coordinate, for i =

1, 2, 3.

Problem: Find a blow-up β : W → R3
+ such that whenever v

has type β′ : [R2
+, 0]→ R2

+ then π∗
i v has type β for i = 1, 2, 3.

In other words, π̃i = (β′)−1 ◦ πi ◦ β : W → [R2
+, 0] must be a b-map for

i = 1, 2, 3. It is clear that at least all three coordinate axes must be blown
up. The most naive thing to try is to blow up one axis (say the x1-axis)
and then (the preimages of) the other two. However, it is easily seen that
π2 and π3 are still not well-defined on the resulting space.

But there is a beautiful solution which even preserves the symmetry:
First, blow up zero in R3

+. Then, blow up the preimages of the three co-
ordinate axes (in any order, since they are separated now!). the result is
called triple b-space X3

b and shown in Figure 5.
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fff

∆3b

ff1

b2b1

ff2

x1

π̃3

b3

rb
x1

ff

∆b

x3

x2

x2

lb

ff3

∆
(3)
b

Figure 5. The triple b-space (and projection π̃3)

Let us convince ourselves pictorially that the maps

π̃i : X3
b → X2

b := [R2
+, (0, 0)](3.21)

are well-defined and b-fibrations. By symmetry, it is enough to consider π̃3.
It is well-defined since the x3-axis was blown up. Denote the bhs’s of X3

b by
b1, b2, b3 (the ’old’ bhs’s from R

3
+), ff1,ff2,ff3 (the front faces of the axis

blow-ups), and fff (the front face of the point blow-up) as in Figure 5. The
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bhs’s are mapped as follows:

ff2, b1 7→ lb

ff1, b2 7→ rb

fff,ff3 7→ ff

b3 7→ X2
b ,

(3.22)

and all these maps are onto. Also, (X3
b )

o → (X2
b )

o
. Therefore, the preimage

of each bhs is a union of bhs’s, which almost shows that π̃3 is a b-map
(see Remark 2.12.1; of course one may check the full condition (2.11) by
direct calculation). Also, (3.22) defines the map π̃3 (see 3.17) on bhs’s and
this determines π̃3 for all faces. Since all faces on the right of (3.22) have
codimension at most one, condition (a) in the Definition 3.9 of a b-fibration
is satisfied.

Condition (b) is easily checked for each face: For example, b1
o → lbo

is basically the same map as [R2
+, (0, 0)] → R+ from 4, and so is fffo →

ffo near the boundary. All maps from codimension two faces are either
diffeomorphisms or constant, so they are fibrations trivially.

3.3. Distributions. So far, all singular behavior occurred at the boundary.
Now we turn to the description of singularities in the interior of a mwc Z. This
means talking about distributions28. In many situations only a very special class of
distributions occurs, the ’step 1 polyhomogeneous conormal’ (here called ’conor-
mal’) ones29. They are smooth outside a submanifold, and at the submanifold have
a special explicitly describable kind of singular behavior, which is in some sense
similar to the behavior of a nice function at the boundary.

In the case of manifolds most of this material is quite standard (see e.g. [11],
[39]); we will briefly recall the definition, give some examples and state the push-
forward and pull-back theorems. As an illustration, we use this to show that the set
of (properly supported) classical pseudodifferential operators on R is closed under
composition. The extension of the definition and basic properties of conormal
distributions to manifolds with corners is quite straight-forward if the singular
submanifold hits the boundary in a ’product-type’ way.

For lack of space we do not treat the transformation of the principal symbol
under pull-back and push-forward. However, this is important for the composition
formula for pseudodifferential operators (see the references above).

3.3.1. Conormal distributions on manifolds.

Definition 3.14. Let Z be a manifold and Y ⊂ Z a submanifold. A distri-
bution u ∈ D(Z) is conormal with respect to Y if, for some m ∈ R,

• u is smooth on Z \ Y , and

28 There are also distributions whose singular support is contained in the boundary. We will
not discuss them here (although they are not really more difficult). See [22], for example.

29 This is not the most general kind of what’s usually called conormal distributions, but
they are easy to define and sufficient for many purposes.
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• in any local coordinate system x : U ⊂ Z → Rn sending Y ∩ U to Rk ×
{0}n−k ⊂ Rn there is a representation

u(y, z) =

∫

Rn−k

eizζa(y, ζ) dζ(3.23)

where y = (x1, . . . , xk), z = (xk+1, . . . , xn) and a is a smooth function on
(Y ∩ U)× Rn−k with asymptotics

a(y, ζ) ∼
∞
∑

j=0

am−j(y, ζ),(3.24)

as |ζ| → ∞, where al is homogeneous of degree l in ζ, for each l.30

Note that (3.23) is simply the inverse Fourier transform in z (i.e. ’transversal’
to Y ), with smooth dependence on the parameter y ∈ Y .

Examples 3.15.

1. For Z = R and Y = {0} the distributions δ and p.v. 1x are conormal, and
also all of their derivatives and anti-derivatives, which include for example
xα

+ for α ∈ N0 (the function vanishing for x ≤ 0 and equal to xα for x > 0).

Any (−1)-homogeneous distribution is a linear combination of δ and p.v. 1x ,
so a conormal distribution (with m ∈ Z) may be thought of as ’series’ of
such terms, of increasing regularity.31

2. For Z = Rn, n > 1, and Y = {0} there is much more freedom since now
the space of l-homogeneous distributions is infinite-dimensional for each l.
The simplest example is δ again.

3. For Z = Rn × Rn (with coordinates w,w′ ∈ Rn) and Y = {w = w′} (the
diagonal) the conormal distributions are the integral kernels of classical
pseudodifferential operators on Rn since (3.23) precisely amounts to their
’usual’ definition, in the coordinates y = w, z = w − w′, see for example
[38], Section 3.7. (And similarly for ΨDOs on any manifold.) The order of
the conormal distribution is the order of the operator in the usual sense.
For example, the differential operator P =

∑

α aα(w)(∂/∂w)α has kernel

P (w,w′) =
∑

α aα(w)δ(α)(w − w′).

30 The meaning of the asymptotics is that, for any N , if a(N) is the sum up to the term
a−N then |a(y, ζ)−a(N)(y, ζ)| ≤ C|ζ|−N−1, plus analogous estimates for all derivatives in y and
ζ.

The order of u is defined to be m + (n − 2k)/4, if am 6≡ 0.
31 More generally, one can define conormality without reference to the Fourier transform:

(3.23) and (3.24) are equivalent to the existence of distributions us(y, ·) ∈ D′(Rn−k)∩C∞(Rn−k\
0), homogeneous of degree s and depending smoothly on the parameter y, such that

u −
N

∑

j=0

uj+n−k−m ∈ C∞(Rk, CN′

(Rn−k))

(locally) for all N , where N ′ = N −C, with C only depending on n. This may look weaker than
the definition above, but is actually equivalent (exercise!).
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Remarks 3.16.

• It’s not obvious, but the definition is actually independent of the chosen
coordinate system x, see [11]. Of course, a will depend on the choice of
coordinates, but its leading term am is invariant if considered as section
of the conormal bundle of Y . It is called the principal symbol of u. One
easily sees that it depends only on the restriction of u to arbitrarily small
neighborhoods of Y .
• The definition carries over immediately to distribution densities or, more

generally, to distributions with values in any bundle over Z.

We now consider push-forward and pull-back of distributions under a smooth
map f : W → Z. The proofs of the following theorems are quite easy, given the co-
ordinate invariance of Definition 3.14. They can be found in [22]. The push-forward
of any distribution density µ on W is a distribution density on Z (supposing, as
usual, that f is proper on suppµ), see the Appendix. The question arises whether
conormality of µ with respect to a submanifold X ⊂W implies conormality of f∗µ.
The answer is no in general32; it is a very tricky problem to determine precise con-
ditions when it is true. It depends essentially on the behavior of the fibers of f and
their tangency to X . We only consider the simplest case of a fibration whose fibers
meet X transversally in isolated points only, which is enough for many purposes.

Theorem 3.17 (Push-forward of conormal distributions). Let f : W → Z be
a fibration between manifolds. Let X be a submanifold of W such that for each
x ∈ X, the tangent spaces to X and to the fiber f−1(f(x)) through x intersect only
in zero.33 Let µ be a distribution density on W , conormal with respect to X, and
assume f is proper on suppµ.

(a) If f|X is a diffeomorphism onto Z then f∗µ is smooth.
(b) Otherwise, f(X) is a proper submanifold of Z and f∗µ is conormal with

respect to f(X).

Thus, the ’vertical’ (in fiber direction) singularities get integrated out, while
the others remain, as in the simple example of f : R2 → R, (x, y) 7→ x:
For X = {(x, 0) : x ∈ R} one has, for example, f∗(δ(y) dxdy) = 1 · dx (case (a)),
and for X = {(0, 0)} one has f∗(δ(x)δ(y) dxdy) = δ(x) dx (case (b)). (Calculations
done using (App.1).) See Remark 3.11.3 concerning the support condition.

For pull-back the situation is different: While the pull-back for general dis-
tributions is only defined under fibrations (and conormality is always preserved
under a fibration), a weaker condition on f already allows to pull back conormal
distributions:

32 Example: If f is bijective and smooth then singsupp f∗µ ⊃ f(singsupp µ). The latter need
not be (contained in) a submanifold even if singsupp µ is, therefore f∗µ may be not conormal
even if µ is.

33 Equivalently, d(f|X) is injective.
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Theorem 3.18 (Pull-back of conormal distributions). Let Y ⊂ Z be a sub-
manifold, and assume that f : W → Z is transversal 34 to Y .Then f−1(Y ) is a
submanifold of W , and if u is a distribution on Z, conormal with respect to Y ,
then f∗u is a distribution on W which is conormal with respect to f−1(Y ).

We saw in Examples 3.1 that we also need to multiply distributions. A complete
discussion of when this is possible would lead us too far astray, so we’ll just sketch
the procedure which allows to define a product in this context.

For two functions u1, u2 on a manifold Z, we can translate the trivial identity
u1(x)u2(x) = u1(x)u2(y)|x=y into geometric terms as

u1u2 = i∗(u1 × u2)

where i : Z → Z × Z, x 7→ (x, x) is the diagonal inclusion and (u1 × u2)(x, y) =
u1(x)u2(y) defines the direct product of u1 and u2 as function on Z × Z.

When trying to generalize this to distributions u1, u2 on Z, we first note that
the direct product is well-defined as a distribution on Z × Z (since u1 and u2

’depend on different sets of variables’ in Z×Z). The problem arises with the pull-
back: i is certainly not a fibration (it’s not even surjective), so one would hope to
apply Theorem 3.18. But this fails since usually u1 × u2 is not conormal, even if
u1 and u2 are conormal; for example for Z = R and u1 = u2 = p.v. 1x one gets

(p.v. 1x )(p.v. 1y ), which is not conormal (since its singular support, the union of both

coordinate axes, is not a manifold).

The following theorem allows a way out (at least in some situations):

Theorem 3.19 (Direct product of conormal distributions). Let ui be distri-
butions on manifolds Zi, conormal with respect to submanifolds Yi, for i = 1, 2.
Then the direct product u1 × u2 can be written u1 × u2 = v +w where v is conor-
mal with respect to Y1×Y2 and w has wave front set contained in any given conic
neighborhood of (Z1 ×N∗Y2) ∪ (N∗Y1 × Z2).

We will not define wave front sets here, see [10]. N∗Xi denotes the conormal
bundle. The point is that in the applications we have in mind (Examples 3.1) the
product is integrated in the end, and then the position of WF (w) guarantees that
the term resulting from w is smooth (by a generalization of Theorems 3.17(a) and
3.18), so the singularities are determined only by the conormal part v.

3.3.2. Composition of pseudodifferential operators. Let us check how these re-
sults show that the composition of two pseudodifferential operators on a manifold
X is a pseudodifferential operator35. For simplicity we take X = R although the
general case works precisely the same way.

Thus, we are given distributions A,B on R2, conormal with respect to the
diagonal (see Example 3.15.3). To avoid confusion later on, we will write A ∈

34 I.e. if z = f(x) ∈ Y then TzZ is spanned by TzY and df(TxW ).
35The support condition in Theorem 3.17 translates into the condition that at least one of

the factors is properly supported (i.e. the two projections X2 → X are proper on the support of
the integral kernel). We will neglect this in the following discussion. See also Remark 4.4.3.
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D′(X1 ×X2), B ∈ D′(X2 ×X3) although X1 = X2 = X3 = R. The diagonals will
be denoted ∆A ⊂ X1 ×X2 and ∆B ⊂ X2 ×X3.

The composition of A and B has integral kernel given by (3.3). Here, the
product should be expanded, as explained above, as diagonal pull-back of the
direct product. However, matters can be simplified slightly. The π1, π3 pull-backs
can be omitted since clearly one also has

C = π2∗(i
∗(A×B))(3.25)

where i is the embedding

i : X1 ×X2 ×X3 → X1 ×X2 ×X2 ×X3, (x1, x2, x3) 7→ (x1, x2, x2, x3).

Using Theorem 3.19 we write

A×B = v + w,(3.26)

with v conormal with respect to ∆A×∆B andWF (w) close to (X1×X2×N∗∆B)∪
(N∗∆A ×X2 ×X3).

We first analyze π2∗(i
∗v): i is transversal to ∆A ×∆B since the image of di is

{(α, β, β, γ)} and the tangent space of ∆A×∆B is {(δ, δ, ε, ε)} (all free variables in
braces range over R), and these two subspaces clearly span R4. Therefore, Theorem
3.18 shows that i∗v is conormal with respect to ∆′ := i−1(∆A × ∆B) = {x1 =
x2 = x3}, the space diagonal. Finally, the tangent spaces to ∆′ and the fiber of π2

are {(α, α, α)} and {(0, β, 0)}, so they have zero intersection, and π2(∆
′) = ∆C ,

the diagonal in X1 ×X3. Therefore, Theorem 3.17(b) applies, so

π2∗(i
∗v) is conormal with respect to the diagonal.(3.27)

Finally, we analyze w, using standard results on wave front sets. First, by
Theorem 8.2.4 in [10], the pull-back i∗w is defined as a distribution if WF (w) ∩
N∗(Im i) = ∅, and then WF (i∗w) ⊂ i∗(WF (w)). Now N∗(Im i) = {(0, α,−α, 0)}
at every point, and this has non-zero angle with the fiber ofN∗∆A×X2×X3, which
is {(α,−α, 0, 0)}, and similarly with the fiber of X1 ×X2 ×N∗∆B . Therefore, by
choosing WF (w) close enough to these latter sets, we may assume that WF (w)∩
N∗(Im i) = ∅. Also, WF (i∗w) is contained in a small conic neighborhood of i∗

of these sets, i.e. of (fiberwise) {(α,−α, 0)} ∪ {(0, α,−α)}. By another standard
theorem (see [39], ex. 6.7.8) the push-forward π2∗u of a distribution u on X1 ×
X2×X3 is smooth unless WF (u) hits the conormal space to the fiber of π2. Since
the latter is {(α, 0, β)}, this is clearly not the case for u = i∗w, so finally we obtain:

π2∗(i
∗w) is smooth.

This together with (3.27), (3.25) and (3.26) shows that C is conormal with respect
to the diagonal, i.e. the integral kernel of a pseudodifferential operator.

3.3.3. Conormal distributions on manifolds with corners. The definition of
conormal distributions depends in an essential way on the fact that ’normal slices’
to Y in Z look the same at every point of Y . Therefore, it would be problematic
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to try to define conormality for Z = R2
+, Y = {(x, x) : x ∈ R+}: At zero, there is

not even a reasonable candidate for a ’normal slice’ !
However, if Z looks like Rn−k × Y near Y then Definition 3.14 makes sense

literally even if Y is a mwc, when we require the y-dependence to be smooth
up to the boundary everywhere. For example, this is the case for Z = R+ × R,
Y = R+ × {0} or Z = [R2

+, 0], Y = ∆b := {θ = π/4} (using polar coordinates on
Z, see Figure 3(b)).

Thus, we have defined distributions on a mwc Z which are conormal with
respect to an interior p-submanifold, smoothly at the boundary (cf. 2.3.2.4; ’interior’
means that Y 6⊂ ∂Z). One may actually allow nice (rather than smooth) behavior
at the boundary, with respect to a given index family. This gives nice conormal
distributions. The precise definitions are quite straight-forward, we leave them as
exercise to the reader. (See [22].)

The push-forward for nice conormal distributions may be analyzed by a com-
bination of Theorems 3.10 and 3.17. Since the point of Theorem 3.10 was to allow
maps f more general than fibrations, the assumption on f should be: f is a b-
fibration, and a fibration (of mwc’s) in some neighborhood of X , satisfying the
additional transversality condition in Theorem 3.17. Then the result of the push-
forward is nice conormal again. The proof is straightforward by use of a partition
of unity, and is left as an exercise.

Similarly pull-back of nice conormal distributions is easy by combining Theo-
rems 3.12 and 3.18. f needs to be a b-map transversal to Y , then the pull-back by
f of a nice conormal function is nice conormal with respect to f−1(Y ).

4. Partial Differential Equations

We now turn to the b-calculus in the narrow sense: the construction of para-
metrices for the ’simplest’ class of non-uniformly elliptic differential operators,
the b-differential (or ’totally characteristic’) operators on a manifold with corners.
Since this is an introductory article, we only consider manifolds with boundary
(and mostly even just R+). In this case, the operators are also called Fuchs type or
cone operators. They have been studied by many authors, see e.g. [3], [13], [36];
some of them used pseudodifferential operator (ΨDO) techniques. For a more com-
plete list of references see [12].

In [31] and [26] the central results (on action and composition) were proved
by direct calculation. There is a more systematic way to do this, using the Pull-
Back and Push-Forward Theorem (as indicated in Figure 1 and Examples 3.1),
and this shows more clearly the geometric reasons for the precise form of these
results. Melrose alludes to this often in [26], and (probably) proceeds like this in
the part of [22] that is not publicly available yet. Therefore, we will follow this
systematic method here, but will be sketchy otherwise.

Definition 4.1. A differential operator on a manifold with boundary X is
a b-differential operator of order m, in symbols P ∈ Diffm

b (X), if it has smooth
coefficients and, in any coordinate system around a boundary point in which x
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denotes a boundary defining function and y = (y1, . . . , yn−1) coordinates in the
boundary, it has the form

P =
∑

j+|α|≤m

ajα(x, y) (x∂x)j∂α
y(4.1)

(α runs over multi-indices in Nn−1, and ∂x = ∂/∂x etc.) with functions ajα that
are smooth up to the boundary.36

On manifolds without boundary the power of the ΨDO calculus derives from
two facts:

• The (principal) symbol of a ΨDO describes the operator fairly precisely
(up to lower order), and
• symbols are easy to invert.

We discuss this shortly in Subsection 4.1. Recall from Example 3.15.3 that a ΨDO
on a manifold X is just a distribution on X ×X which is conormal with respect
to

∆ = {(p, p) : p ∈ X} ⊂ X ×X (the diagonal),(4.2)

and that the (principal) symbol is determined purely by the singular behavior at
∆ (see Remark 3.16).

Therefore, for an extension of this theory to b-(pseudo)-differential operators
(on R+, say) one expects that it should be useful to define a class of distributions
on R+ × R+ by giving precise descriptions of their behavior in all possible limits.
These are37:

(a) Approaching (and at) the interior of the diagonal ∆.
(b) Approaching ∂(R2

+) \ (0, 0).
(c) Approaching the corner (0, 0).

While there are obvious candidates for (a) and (b) (conormal singularity and
complete asymptotics (’niceness’ in Definition 2.3), respectively), it is unclear what
a good description for (c) might be: Simultaneously one needs to describe the
behavior of the conormal singularity on ∆ when approaching zero, and of the
coefficients in the asymptotics of (b).

This is most elegantly solved by blowing up the corner (0, 0), which has the
effect of separating the sets ∆ and ∂R

2
+ \ (0, 0). Let us illustrate this by a simple

example:

Example 4.2. On R+, consider the simplest non-trivial b-equation
(

x
d

dx
+ c

)

u(x) = v(x),

36 For Fuchs type operators or cone operators one usually multiplies this with x−µ for
some positive number µ. This is inessential for parametrix constructions since the factor can be
transferred to the parametrix. However, it makes an essential difference for the spectral theory
(the analysis of the resolvent), which we don’t consider here. See for example [3], [5], [15].

37 As already in Section 2 we always restrict attention to compact parts of the spaces
involved. Therefore, we do not consider limits ’at ∞’.
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for some fixed c ∈ C. Multiplying by xc−1 we get d
dx(xcu(x)) = xc−1v(x), which

can be integrated to yield

u(x) = x−ca0 + x−c

∫ x

0

(x′)c−1v(x′) dx′

with a0 = (xcu(x))|x=0 (assuming (x′)c−1v(x′) is integrable near zero). For sim-
plicity, consider only the solution with a0 = 0. We can write it as

u(x) =

∫ ∞

0

K(x, x′)v(x′)
dx′

x′

with

K(x, x′) =

(

x′

x

)c

H(x− x′).(4.3)

Here, H(t) = 1 for t > 0 and H(t) = 0 for t ≤ 0. Thus, K is (the kernel of) an
inverse of the operator x d

dx + c (on suitable function spaces), so it should be an
example of a b-pseudodifferential operator.

As expected, K is singular at the two coordinate axes (actually only at {x′ =
0})and at the diagonal ∆ = {x = x′} ⊂ R

2
+ (unless c happens to be a pos-

itive integer). Looking at K on the blow-up space [R2
+, (0, 0)] (i.e. at β∗K for

β : [R2
+, 0]→ R2

+ the blow-down map) means rewriting K in terms of coordinates
on this space; using projective coordinates x and

s = x′/x,

for example, we get:

β∗K(x, s) = scH(1− s).
This is much nicer than (4.3) since:

• The submanifolds at which β∗K is singular are disjoint.38 (They are lb =
{s =∞}, rb = {s = 0} and ∆b = {s = 1}, see Figure 3(b).)39

• β∗K is nice outside ∆b.
• β∗K has a conormal singularity at ∆b, smoothly up to the boundary (i.e.

up to {x = 0}).

38 This is better than needed. ’Normal crossings’ (i.e. locally looking like coordinate sub-
spaces in a suitable coordinate system) would be enough. This is satisfied by the boundary faces
of a mwc (and by the four distinguished submanifolds lb, rb,ff,∆b of [R2

+, (0, 0)], see below), but

not by the singular support of K.
39 Strictly speaking, one should also check β∗K in the x′, x/x′ coordinates (in the sequel we

will neglect this when it gives no information). Alternatively, you may use instead the coordinates
ρ = x + x′, τ = (x − x′)/(x + x′) (see 2.3), then

β∗K(ρ, τ) =

(

1 − τ

1 + τ

)c

H(τ)

and lb = {τ = −1}, rb = {τ = 1}, ∆b = {τ = 0}.
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Thus, we are lead to define (kernels of) b-ΨDOs on a manifold X with bound-
ary as a certain class of distributions on a blown-up space X2

b (where X2
b =

[R2
+, (0, 0)] for X = R+). These are then considered as kernels on X2 by use

of the identification of the interiors of X2
b and X2 via the blow-down map.

What should we expect the symbol of a b-ΨDO to be?X2
b has four distinguished

submanifolds: lb, rb,ff and

∆b = β−1(interior(∆)) = {s = 1},(4.4)

and b-ΨDOs are characterized by their behavior at them. Just as the symbol
in the boundaryless case describes the leading behavior at ∆ (which is the only
distinguished submanifold then), one might expect the symbol in the b-calculus to
describe the leading behavior at ∆b,ff, lb, rb. In fact, it turns out that only the
former two are needed since their vanishing implies compactness (between spaces
that are determined by the latter two!).

The b-calculus is introduced in two steps. They are motivated by the con-
struction of a parametrix of an elliptic b-differential operator P . First, the ’small
calculus’ Ψ∗

b is constructed; it allows inversion of the symbol on ∆b and thus, by
the usual iterative procedure, inversion of P modulo errors that are smooth on ∆b.
Since this game is played away from lb, rb, operators in Ψ∗

b are assumed to vanish
to infinite order there. However, as we saw in the example above, the inverse of
even the simplest b-differential operator is not of this type. This is reflected in the
fact that the ’remainders’ in the parametrix construction, i.e. elements of Ψ−∞

b ,
are not compact operators, even if X is compact. Therefore, in a second step the
’full calculus’ is introduced. This allows inversion of the symbol at ff (the ’conormal
symbol’ or ’indicial operator’); the price to pay is non-trivial asymptotic behavior
at lb, rb.

For the sake of presentation we mostly work with the simplest manifold with
boundary, R+; most ideas may be understood already in this case.40 At the end
of the chapter we add some remarks on the changes necessary when dealing with
a general manifold with boundary.

4.1. Classical pseudodifferential operators. We shortly summarize the
essential ingredients of the classical ΨDO calculus, and how they are used to find
parametrices, i.e. approximate inverses, for elliptic (pseudo-)differential operators
on a compact manifold X . Extensive treatments can be found in [11] and [38], for
example. A similar (and more general) axiomatic treatment was given in [35].

Given, for each m ∈ R:

(Op) Classes Ψm of distributions on X2, with Ψm ⊂ Ψm+1. (Ψm is taken
to be the set of distributions on X2 conormal with respect to the diagonal
∆, of order m.)

40 Of course, one must resist the temptation to use simpler arguments only suited for
ordinary differential equations.
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(Symb) Classes Sm of symbols, with Sm ⊂ Sm+1, and symbol maps σ :
Ψm → S[m] := Sm/Sm−1. (Sm is taken to be the set of smooth functions
on T ∗X with complete asymptotic expansions in homogeneous components
of order ≤ m. Homogeneity refers to the covariable ξ, and the asymptotics
is for ξ →∞.

σ(u) is defined by the principal symbol of u ∈ Ψm, which is a function
on N∗∆ (see Remark 3.16), using the canonical identification N∗∆ ∼= T ∗X .
Note that S[m] ∼= smooth functions on T ∗X \ 0, homogeneous in ξ of order
m.)

The essential properties of these objects are:

(Alg)
⋃

m Ψm and
⋃

m Sm are graded algebras, and σ is an algebra homo-
morphism. (The products are taken as composition, defined by (3.3), and
pointwise multiplication, respectively, and ’graded’ means P ∈ Ψm, Q ∈
Ψl =⇒ PQ ∈ Ψm+l, and similarly for symbols; the main point is that σ
respects products.)

(Exact) The sequence

0→ Ψm−1 →֒ Ψm σ→ S[m] → 0(4.5)

is exact for every m. This means:
(E1) For each a ∈ Sm there is P ∈ Ψm with σ(P ) = a mod Sm−1.
(E2) If P ∈ Ψm and σ(P ) = 0 then P ∈ Ψm−1.

Part of (Alg) was checked in 3.3.2, and (Exact) is straight-forward from the defi-
nitions.

Finally, we define: An element P ∈ Ψm is elliptic if σ(P ) is invertible (then its
inverse lies in S−m necessarily). A parametrix of order k for P ∈ Ψm is a Q ∈ Ψ−m

such that both PQ− Id and QP − Id lie in Ψ−k.
The main fact is:

Theorem 4.3 (Parametrix construction for elliptic ΨDO). (Alg) and (Exact)
above imply: If P ∈ Ψm is elliptic then it has a parametrix of any order.

Let us quickly recall the proof: By ellipticity of P , σ(P )−1 is invertible

with inverse in S−m. By (E1), there is Q ∈ Ψ−m with σ(Q) = σ(P )−1.

Then, by (Alg), σ(PQ − Id) = σ(P )σ(Q) − σ(Id) = 0, so by (E2) (with

m = 0) we have R := Id − PQ ∈ Ψ−1. Thus, Q is a ’right’ parametrix of

order 1. Set Qk = Q(Id + R + . . . + Rk−1), then PQk = (Id − R)(Id +

R + . . . + Rk−1) = Id − Rk and Rk ∈ Ψ−k, so Qk is a right parametrix

of order k. By the same procedure we get a left parametrix Q′
k order k.

Evaluating Q′
kPQk in two ways one obtains that Qk −Q′

k ∈ Ψ−m−k, and

from this that Qk is also a left parametrix of order k.

This may be refined slightly: One also has

(AC) Asymptotic completeness: If Pi ∈ Ψm−i for i ∈ N0 then there is

P ∈ Ψm with P −∑N
i=0 Pi ∈ Ψm−N−1 for all N .
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This clearly implies that elliptic elements have parametrices of order ∞ (usually
just called parametrices). This improvement is mainly cosmetic and not needed in
most applications.

Note that these arguments were purely formal and did not use any properties
beyond (Alg), (Exact) and (AC). Therefore, the same result holds with different
choices of Ψ∗, S∗, σ.

However, in order to apply Theorem 4.3 to problems of differential equations,
one needs:

(Diff) Diffm ⊂ Ψm, where Diffm denotes the differential operators of order
m (with smooth coefficients).

(Ell) The ’usual’ elliptic operators one is usually interested in (Dirac, Laplace)
are elliptic in the sense above.41

Finally, in order to make all of this useful for analysis (e.g. for proving regu-
larity of solutions of elliptic PDE) one needs:

(Map) Mapping properties of P ∈ Ψm (e.g. continuity on Sobolev spaces).
(Neg) The remainders, i.e. the elements in Ψ−∞, are actually ’negligible’
(e.g. compact, trace class, smoothing, etc.).

Of course, the usual ΨDO calculus has all of these properties.

Remarks 4.4.

1. The motivation for the definition of Ψ∗ lies in solving differential equations
by Fourier transform, which gives precise solutions for constant coefficient
equations. In this case, it suffices to invert the symbol. The rest is just the
algebra that’s needed to make this method work for non-constant coefficient
equations.42 Note that the Fourier transform does not appear explicitly.
It is stowed away in the definition of conormal distributions, and is only
used in the proofs of pull-back and push-forward theorem for these (cf. the
hierarchy in Figure 1).

2. When trying to construct Ψ∗, one has to find a compromise between oppos-
ing forces: It has to be large enough to contain elliptic differential operators
and their parametrices, but small enough for Ψ−∞ to be actually negligible.

3. If X is not compact then composition of P,Q ∈ Ψ∗ may be undefined (since
the integral

∫

P (x, y)Q(y, z) dy may diverge ’at ∞’). The simplest remedy
is to replace Ψ∗ by

Ψ∗
prop = {P ∈ Ψ∗ : K ⋐ X =⇒ (suppP ) ∩ (X ×K) is compact},

41 For example, this is not satisfied if one takes Ψm as above but lets Sm = Ψm, σ = id,
which satisfies all other requirements!

42 In other words, inversion of the symbol σ(P )(x0, ξ) corresponds to inversion of (the
principal part of) the constant coefficient operator P (x0, D) obtained by freezing coefficients
at x0 (which acts on Tx0

X), and the parametrix construction shows how to patch these local

inverses together.
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the set of properly supported ΨDOs. Then everything goes through as
before, except that remainders are still smoothing but not compact, so
that (Neg) should be localized:

(Neg’) If P ∈ Ψ−∞
prop and φ ∈ C∞

0 (X) then φP (i.e. P followed by multi-
plication by φ) is negligible (i.e. compact, trace class, etc.).

4.2. The small b-calculus. The small b-calculus takes care of the conormal
singularity on the diagonal and its behavior near the boundary of the diagonal.
However, it does not admit non-trivial asymptotics near the boundary of X2 away
from the corner (0, 0).

We will first motivate the definition of the small b-calculus by calculating the
kernels of b-differential operators as distributions on X2

b , then discuss the annoying
but non-negligible question of (half-)densities (but see Footnote 16), and finally
define the small calculus and check its properties, in particular composition.

Recall that we work on X = R+, and that X2
b = [R2

+, (0, 0)].

4.2.1. Kernels of b-differential operators. For a start, let’s be naive and con-
sider as integral kernel of an operator P a distribution KP (x, x′) on X2 such that

(Pu)(x) =

∫

KP (x, x′)u(x′) dx′ (’naive kernel’).(4.6)

The simplest b-differential operator is the identity Id. Its kernel (onX2) is δ(x−x′).
To obtain the kernel as distribution on X2

b , we simply rewrite this in terms of
coordinates on X2

b , for example of the projective coordinates x, s = x′/x. Since δ
is homogeneous of degree −1, we get

KId = δ(x− x′) = δ(x(1 − x′

x
)) =

1

x
δ(1 − s).

Next, let us consider x∂x. Since δ′ is homogeneous of degree −2, we get

Kx∂x
= xδ′(x− x′) =

1

x
δ′(1− s).

Iterating this, one sees easily:

Theorem 4.5 (b-differential operators as naive kernels). The ’naive’ kernels
(as in (4.6)) of b-differential operators on R+ are precisely the distributions of the
form

1

x

∑

finite

aj(x)δ
(j)(1− s)(4.7)

with aj smooth up to x = 0.

4.2.2. Densities, half-densities and their b-rethren. Since we want to switch
between different coordinate systems (as above), we have to know how objects
transform under such changes; to put it differently, we should define things in-
variantly. The idea of ’integral kernel’ involves integration and therefore measures.
There are three obvious possibilities to take care of these:
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• Integral kernel is a function, acts on densities.
• Integral kernel is a density, acts on functions.
• Integral kernel is a ’density in x′’, acts on functions.

In the first case, the result
∫

K(x, x′)µ(x′) would be a function. Therefore, this
would describe an operator mapping densities to functions. But then two such
operators cannot be composed43. The same problem occurs in the second case:
Here functions are mapped to densities. The third possibility avoids this problem,
here functions are mapped to functions, but now the symmetry between x and x′

is broken. There is a way to overcome this flaw as well:

• Integral kernel is a half-density, acts on half-densities.

For a very short introduction to half-densities, see the Appendix. Now there is only
one kind of objects: Operator kernels are half-densities, and they map half-densities
to half-densities, so they can be composed without making additional choices. Also,
an integral kernel is a ’symmetric’ object, i.e. x, x′ can be interchanged freely.44

Since (half-)densities are differential objects, we should, by Principle 4 in the
Introduction, use b-half-densities instead. Let us illustrate this by an example:
Consider the identity again. Now using the same letter for kernels and operators,
we have

Id = δ(x− x′)|dx dx′|1/2 as half-density

= xδ(x − x′)
∣

∣

∣

∣

dx

x

dx′

x′

∣

∣

∣

∣

1/2

as b-half-densities

= δ(1− s)
∣

∣

∣

∣

dx

x

ds

s

∣

∣

∣

∣

1/2

as b-half-densities on X2
b

where in the second line we used (x′)1/2δ(x−x′) = x1/2δ(x−x′) and in the last line
the calculation before Theorem 4.5, together with (3.11). In general, one sees easily
that the x−1 factor in Theorem 4.5 is always canceled when we use half-densities,
i.e.

∑

j

aj(x)(x∂x)j =
∑

j

aj(x)δ
(j)(1− s)

∣

∣

∣

∣

dx

x

ds

s

∣

∣

∣

∣

1/2

.(4.8)

43 unless one identifies functions with densities by (non-canonical) choice of a fixed density,
which is what we wanted to avoid in the first place!

44 The pedantic reader will notice that now the formula (3.2) translating action into the
pull-back/push-forward world does not make sense directly: Although π∗

2v is well-defined for a

half-density v since π2 is a fibration, the product A · π∗
2v is not quite a density on X2 (a half-

density in the first factor is missing), so its push-forward is not defined. This can be remedied
easily: Fix any non-vanishing half-density µ on X. Then the push-forward π1∗(π∗

1µ ·A · π∗
2v) is a

well-defined density on the first factor X, and dividing it through µ one obtains the result, which
is immediately checked to be independent of the choice of µ (see [22]). A similar remark applies
to composition (3.3).
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Recall that {s = 1} is just the b-diagonal ∆b. An expression like
∑

aj(x)δ
(j)(1−s)

is called a Dirac distribution on ∆b. We may now restate Theorem 4.5 in a very
simple form (Lemma 4.21 in [26]):

Theorem 4.6 (b-differential operators as b-half-density kernels). When consid-
ered as b-half-densities on X2

b , the kernels of b-differential operators on X = R+

are precisely the Dirac distributions on ∆b which are smooth up to the boundary.

4.2.3. Definition and properties of the small b-calculus. Theorem 4.6 suggests:

Definition 4.7. The small b-calculus Ψm
b (X), m ∈ R, is defined as the set of

(b-half-density-valued) distributions u on X2
b satisfying

(a) u is conormal of order m with respect to ∆b, smoothly up to the boundary
ff,

(b) u vanishes to infinite order at lb and rb.45

We now want to see that the ’ΨDO machine’ from Subsection 4.1 works for
Ψ∗

b as well. We address the essential properties listed there, in varying degrees of
completeness.

(Symb) For a b-differential operator as in (4.1) the principal symbol is
defined as

p(x, y, λ, η) =
∑

j+|α|=m

ajα(x, y)λjηα.

We don’t give the definition for general b-ΨDOs here. We only remark
that, in order to make this defined invariantly, it should be considered as
function on a bundle called bT ∗X (the b-cotangent bundle) by Melrose. See
[26], Sections 2.2 and 4.10.

Ellipticity means that p(x, y, λ, η) 6= 0 whenever (λ, η) 6= 0, x ≥ 0.46

(Alg) Let us check that Ψ∗
b is closed under composition.47 (That the symbol

map preserves products is then done precisely as in the classical case.) As
we discussed in Remark 3.13.2, for a systematic analysis of composition
one needs to blow-up the space X3, and a good way to do this is to first
blow up zero and then the preimages of the three coordinate axes. The
resulting space is called ’triple b-space’ X3

b , see Figure 5. Recall that the
three projections πi : X3 → X2, i = 1, 2, 3 lift to b-fibrations πib : X3

b → X2
b

45 Requiring u to vanish in a neighborhood of lb and rb would work as well, but would be
somewhat less natural in the context of the full calculus.

46Schulze’s definition (see [37]) of ellipticity requires, in addition, that the ’conormal op-
erator’ (the operator family on the boundary given locally by

∑

j,α ajα(0, y)λj∂α
y , λ ∈ C) be

invertible on a ’weight line’ Re λ = n
2
−γ, where γ is a parameter. This condition will be imposed

also in the parametrix construction in the full calculus, see Remarks 4.10 below. It is satisfied for
all but countably many values of γ and ensures that P is Fredholm between suitable γ−weighted
Sobolev spaces (if X is compact). Lesch shows ([13]) that Fredholmness holds even without this
condition, for any closed extension of P (whose domain may then not be a Sobolev space).

47 Assuming, as in 3.3.2, that there is no problem with integrability at infinity, i.e. that at
least one factor is properly supported. Compare Footnote 35 and Remark 4.4.3.
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(called π̃i before). The composition formula (3.3), rewritten in terms of b-
spaces, reads:

P ◦Q = π2b∗(π
∗
3bP · π∗

1bQ).(4.9)

We give the argument purely in geometric terms. Some details are left
to the reader. Let P,Q be distributions on X2

b , conormal with respect to
∆b and supported near ∆b. We only check condition (a) in Definition 4.7.
Condition (b) will be discussed shortly in the context of the full calculus
(see the proof of Theorem 4.9).

1. The maps πib are transversal to ∆b. By the pull-back theorem for conormal
distributions (see 3.3.3) ∆ib := π−1

ib (∆b) are p-submanifolds (see Figure 5
for ∆3b), and π∗

3bP, π∗
1bQ are conormal with respect to ∆3b, ∆1b, respec-

tively.

2. The behavior of the space X3
b and the maps πib transversal to ∆

(3)
b :=

∆1b∩∆3b (the space diagonal in X3
b ) remains the same at the boundary (i.e.

at fff) as in the interior (cf. the discussion in 3.3.3), and π2b(∆
(3)
b ) = ∆b.

Therefore, the discussion of product and push-forward in 3.3 carries over
literally, as far as the part v in (3.26) is concerned.

3. The map π2b is a fibration near ∆1b and ∆3b and satisfies the transversality
condition in the push-forward Theorem 3.17. Case (a) of that theorem and
the arguments after (3.27) apply, therefore part w in (3.26) is smooth. Since
P and Q are supported near ∆b, P ◦ Q is supported near ∆b.

4. It remains to check the smoothness of the conormal singularity of P ◦Q up
to the boundary, i.e. at ff. By the Pull-Back Theorem 3.12 (or rather its
trivial extension to the present context), π∗

3bP and π∗
1bQ have index set 0

at fff (recall that 0 stands for smooth behavior, see Remark 2.4.3)48 , then
so does their product, and then the Push-Forward Theorem 3.10 shows
that P ◦ Q has index set 0 at ff.

(Exact) Checking the short exact sequence (4.5) is almost trivial (as in the
classical case), once symbols are defined.

(AC) Asymptotic completeness is easy, just the same as in the classical
case.

(Diff) We have Diffm
b ⊂ Ψm

b by construction.
(Map) See the section on the full calculus.
(Ell) Typical elliptic b-operators are the Laplacian and Dirac operators on
Riemannian manifolds with infinite cylindrical ends, or (up to a conformal
factor) with conical points.

(Neg) This is the main difference between the small calculus and the classi-
cal ΨDO calculus, and the point that makes an extension (the full calculus)
necessary:

Elements in Ψ−∞
b are not necessarily compact.(4.10)

48 Here one needs to check that the (half-)density factors do not introduce extra powers of
bdf’s. Compare Footnote (3.11).
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This is due to the 1/x factor that always occurs in b-densities49. More
precisely, since X = R+ is not compact we should look at (Neg’) instead:
Choose φ ∈ C∞

0 (R+) with φ(0) = 1. Then:

φP ∈ Ψ−∞
b is compact ⇐⇒ P|ff ≡ 0.(4.11)

This is not hard to check directly, see [26], Section 4.14. We’ll just check
the even easier:

φP ∈ Ψ−∞
b is Hilbert-Schmidt ⇐⇒ P|ff ≡ 0.

Proof. Note that the condition on a half-density α to be L2

(square-integrable) is independent of the choice of a measure, since
|α|2 is a density. Similarly, for an operator A acting on half-densities
on a space X, being Hilbert-Schmidt is equivalent to

∫

X2 |A|2 < ∞
for the Schwartz kernel. Assume for (notational) simplicity that P
is supported in a compact set disjoint from lb and rb. When we
use projective coordinates x, s = x′/x on X2

b then P ∈ Ψ−∞
b means

P (x, s) = p(x, s)| dx
x

ds
s
|1/2 with p smooth in x ∈ R+, s ∈ R+; φP

has kernel φ(x)p(x, s), which by assumption is supported in x ≤ C,
C−1 ≤ s ≤ C, for some positive C. Therefore,

∫

X2

|φP |2 =

∫ C

0

(
∫ C

C−1

|φ(x)p(x, s)|2
ds

s

)

dx

x
,(4.12)

and this is finite iff the smooth function in parentheses vanishes at

x = 0, i.e. iff p(0, s) = 0 for all s.

In summary, we have seen that the small calculus has all properties required for
the ΨDO machine described in Subsection 4.1, except (Neg). Therefore, applying
the machine one can find a parametrix Q ∈ Ψ−m

b for an elliptic element P ∈ Ψm
b ,

that is an inverse modulo Ψ−∞
b . However, since this error term is not compact

(even after localization), this is not enough to draw many conclusions about the
analytic properties of P .

Therefore, more work is needed: The full calculus.

4.3. The full b-calculus. Introducing the full b-calculus in detail would ex-
ceed the scope of this article. We refer the reader to [26], chapter 5, for an extensive
treatment. Here we will only state its definition and main properties, check how
it acts on nice function (which gives, again, a nice illustration of Pull-Back and
Push-Forward Theorem), and then outline how this definition arises when one tries
to improve the parametrix construction for elliptic b-differential operators.

Definition 4.8. The full b-calculus on X = R+ is the collection of spaces

Ψm,E
b defined as follows: Let m ∈ R and let E = (Elb, Erb) be an index family for

X2. Then a distribution u on X2
b is in Ψm,E

b iff u = u1 + u2 + u3 with

(a) u1 ∈ Ψm
b , the small calculus,

49 in other words, the 1/x-factor in Theorem 4.5, so this is not an artifact of the b-formalism!
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(b) u2 is nice on X2
b , with index family (Elb, 0, Erb) at (lb,ff, rb) (0 is the

’smooth’ index set, see Remark 2.4.3),
(c) u3 = β∗v, where β : X2

b → X2 is the blow-down map and v is nice on X2

with index family E .
Thus, the conormal singularity at ∆b is the same as in the small calculus,

but in addition one allows non-trivial asymptotic expansions at lb and rb, plus an
additional ’residual’ term which is even nice on X2.50

The main properties of the full calculus are:

Theorem 4.9. The full calculus acts on nice functions and is conditionally
closed under composition, more precisely:

Action: Let P ∈ Ψm,E
b and w be a nice function on R+ with index set F . If

inf Erb + inf F > 0

then Pw is nice with index set Elb∪F .

Composition: Let P ∈ Ψm,E
b , Q ∈ Ψm′,F

b and F = (Flb, Frb). If

inf Erb + inf Flb > 0

then P ◦Q ∈ Ψ
m+m′,(Elb∪Flb,Erb∪Frb)
b .

(To avoid problems at infinity, assume P to be properly supported.)

Proof. These are Proposition 5.52 and Theorem 5.53 in [26]. The proofs
there avoid the systematic use of Pull-Back and Push-Forward Theorem. Let us
check the statement on action in the systematic way. Write the kernel of P as
u1 + u2 + u3 as in Definition 4.8. Let us assume P = u2 for simplicity, this is the
most interesting part.

Let π1/2 : X2 → X be the projections onto the first and second factor and

πib = πi ◦ β : X2
b → X their analogues on X2

b . Then, formula (3.2) becomes

Pw = π1b∗(P · π∗
2bw).

Using the Pull-Back and Push-Forward Theorem, we can now read off the result
from Figure 6:

Since π−1
2b (0) = ff ∪ rb, the Pull-Back Theorem shows that π∗

2bw has index
family (0, F, F ) (at (lb,ff, rb)); therefore, P · π∗

2bw has index family (Elb, F, Erb +

F ).51 Finally, since π1b is a b-fibration and π−1
1b (0) = lb ∪ ff, the Push-Forward

Theorem shows that π1b∗(P · π∗
2bw) is nice with index set Elb∪F , provided the

integrability condition inf(Erb + F ) > 0 holds (since rb is the only face which is
not mapped to 0 under π1b).

50 u3 can not be absorbed into u2 since it has index family (Elb, Elb ∪ Erb, Erb) by the
Pull-Back Theorem; however, it is much better than just any function with these index sets.

51 Addition of index sets E,F is defined in the obvious way:

E + F = {(z + w, k + l) : (z, k) ∈ E, (w, l) ∈ F}.

If u, v are nice with index families E,F then clearly uv is nice with index family E + F .



BASICS OF THE B–CALCULUS 47

↓ π1b

π−1
1b (0)

rb

ff

0

0

π−1
2b (0)

←−π2b

lb

Figure 6. Applying an operator to a function in the full calculus

The proof for composition proceeds similarly. Here one needs to know in ad-
dition that π̃2 : X3

b → X2
b , the lift of the ’middle’ projection X3 → X2 already

used in (4.9), is a b-fibration. This was checked in Remark 3.13.2.

Remarks 4.10 (Parametrix, why full calculus, etc.).

1. Let us see how terms of type u2 arise from improving the parametrix
construction in the small calculus. Let P ∈ Diffb be elliptic52, and Q1

a parametrix in the small calculus, i.e. PQ1 = Id +R with R ∈ Ψ−∞
b (and

similarly for Q1P ).
• As we saw in (4.11), the obstruction to compactness of the remain-

der R is the restriction of its Schwartz kernel to the front face ff.
Therefore, in order to improve the parametrix we must ’cancel’ this
obstruction.
• For any A ∈ Ψ∗

b define the indicial operator I(A) ∈ Ψ∗
b by

A = A(x, s)

∣

∣

∣

∣

dx

x

ds

s

∣

∣

∣

∣

1/2

=⇒ I(A) = A(0, s)

∣

∣

∣

∣

dx

x

ds

s

∣

∣

∣

∣

1/2

,(4.13)

i.e. by ’freezing coefficients’ at x = 0.53 Since ff = {x = 0}, we have

A|ff = 0 ⇐⇒ I(A) = 0.

If P is a b-differential operator then (4.8) shows that

P =
∑

j

aj(x)(x∂x)j =⇒ I(P ) =
∑

j

aj(0)(x∂x)j ,(4.14)

52 In the case X = R+ this simply means am(x) 6= 0 for all x, in (4.1).
53 For a satisfying discussion of I(A) it now actually matters that its kernel is not properly

supported. Melrose deals with this by compactifying, i.e. adding suitable points at x = ∞, see
Section 4.15 in [26]; we neglect this here.
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i.e. I(P ) has constant coefficients as a b-operator.
• Since I(P ) has constant coefficients it can be inverted easily: Substi-

tute x = et, so that x∂x = ∂t, and then solve a constant coefficient
ordinary differential equation.
Alternatively, this may be done using the Mellin transform (which
is just the Fourier transform under this change of variables), since it
transforms I(P ) into a multiplication operator. The latter method
works for any elliptic A ∈ Ψ∗

b instead of P .
The calculation shows (see [26], equation (5.28) and Lemma 5.16)
that the inverse of I(P ) (for elliptic P ∈ Diff∗

b) has kernel of the type
u1 + u2. Two important points are:

– For the index sets of u2 one has54

Elb ∪ (−Erb) = SpecbI(P ) :=

:= {(z, l) :
∑

j

aj(0)zj has a zero of order ≥ l + 1 at z}(4.15)

(with −Erb := {(−z, p) : (z, p) ∈ Erb}).
– There is not a unique inverse, but a whole family, (I(P )−1)γ ,

parametrized by a real parameter γ. In terms of kernels, γ de-
termines how SpecbI(P ) splits up into Elb and Erb. Functional
analytically, γ is the weight of a pair of suitable Sobolev spaces
on which I(P ) is actually invertible with inverse (I(P )−1)γ .
γ is restricted to lie in R \ {Re z : (z, 0) ∈ SpecbI(P )}, and
(I(P )−1)γ is locally constant on this set (as a distribution).
See [26], Proposition 5.15, and Footnote 46.55

• Finally, a parametrix for P may be constructed as follows: Set Q =
Q1 + Q2, where Q2 is any (compactly supported) operator with
I(Q2) = −I(P )−1I(R). Then one checks easily that PQ = Id + R′

with I(R′) = 0.56 Since R is smoothing, Q2 is of the type u2. R
′ is

in Ψ
−∞,Eγ

b and vanishes on ff, so it is compact by a similar argument
as before (after localization). More precisely, one has a parametrix
for each admissible parameter γ, and R′ is compact on the Sobolev
spaces with weight γ.

54 Melrose’s definition of Specb, (5.10) in [26], differs from this by a 90 degree rotation.
Our convention fits better to our definition of index sets (which is the same as Melrose’s in [26];
but in [22] index sets are also rotated by 90 degrees; this is more consistent with conventions in
(mathematical literature on) scattering theory).

55 In Example 4.2, we have I(P ) = P and SpecbI(P ) = {(−c, 0)}. The inverse we con-
structed there had Elb = ∅, Erb = {(c, 0)}. It corresponds to γ > −Re c. As an exercise, check
that it maps xγL2

comp(dx/x) → xγL2
loc(dx/x). The latter space may be improved to a suitably

defined H1-Sobolev space.
56 Here one needs that I preserves products. This is clear from (4.14) for b-differential

operators, but requires a little work in general.
In fact, this is the reason why we identify P|ff with the operator I(P ): This is done precisely

in order to make P 7→ P|ff an algebra homomorphism (the ’second symbol map’, see below)!
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2. This parametrix construction may be formalized analogous to the classical
ΨDO calculus in 4.1: Regard the set of constant coefficient operators as
second symbol space (just like for the usual symbols, their inversion is
easier than that of P itself) and I as second symbol map. The central fact
is again a short exact sequence:

0→ ρΨm,E
b →֒ Ψm,E

b
I→ Ψm,E

b,const coeff → 0,

where now ρ is a boundary defining function for ff, and m ∈ R and the
index family E are (almost) arbitrary (see (5.160) in [26]). The parametrix
is obtained by combined use of both symbol maps and both short exact
sequences. (The first symbol is defined from the singularity of u1 at ∆b as
in the small calculus.)

3. The parametrix constructed above does not contain a term of type u3. But
u3 is contained in the calculus since it arises when composing two terms
of type u2. In particular, such compositions are necessary when improving
the parametrix further (for example, making R vanish to higher than first
order at ff, see the proof of Theorem 4.3). The index set E will have to be
enlarged in this process. Such a more precise parametrix is constructed in
[26], Sections 5.18-5.25.

4.4. General manifolds with boundary. We describe shortly the changes
needed in small and full calculus when considering a general manifold with bound-
ary X instead of R+. For simplicity, we assume ∂X to be connected. x, y will
denote local coordinates as in (4.1):

• Definition of X2
b and X3

b : In X2, one has boundary defining functions x
(for the boundary of the first factor) and x′ (for the second). The ’corner’
in X2 is the submanifold of codimension two (∂X)2 = {x = x′ = 0}. Then

X2
b := [X2, (∂X)2].

If y, y′ are local coordinates in the boundary of the first and second factor,
then local coordinates on X2

b are x, s = x′/x, y, y′ (and x′, x/x′, y, y′).
In other words, everything is as before, only with y, y′ as parameters. The
b-diagonal is defined by the first equation in (4.4), in coordinates

∆b = {s = 1, y = y′}.
X2

b again has three boundary hypersurfaces, denoted lb, rb, ff as before
and locally given by {s =∞}, {s = 0}, {x = 0}, respectively.

The triple b-space X3
b is defined by first blowing up (∂X)3 in X3 and

then the (now disjoint) preimages of (∂X)2×X , ∂X×X×∂X , X× (∂X)2.
Again, this means doing the same as for R+, carrying the y-variables along
as parameters.
• Small calculus: Theorem 4.6 and Definition 4.7 extend literally, and also

the discussion of properties (except that in (4.12) an additional dy dy′ in-
tegration is needed).
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• Full calculus: Definition 4.8 and Theorem 4.9 (and its proof) and the first
and last point of Remark 4.10.1 (the parametrix construction) extend liter-
ally, as well as Remarks 4.10.2 and 3. I(A) is now defined on R+×∂X , and
defined as in (4.13), except that A depends on y, y′ also (in local coordinates

on the boundary) and the half-density factor is
∣

∣

dx
x

ds
s dydy

′
∣

∣

1/2
. Similarly,

in (4.14) the aj depend on y also and in I(P ) are replaced by aj(0, y). But
now I(P ) has constant coefficients only in x, not in y!57 Therefore, it should
be considered as ordinary differential operator (in x) whose coefficients are
partial differential operators on ∂X :

I(P ) =
∑

Aj · (x∂x)j , Aj ∈ Diff(∂X).

Then the inversion using Mellin transform works as before.
Specb is defined as in (4.15), with aj(0) replaced by Aj . Since I(P, z) :=
∑

j Ajz
j is now an operator58 on ∂X for every z, the notion of ’zero’ must

be interpreted suitably: as a point z where I(P, z) is not invertible. (’Order’
may also be defined easily, see Section 5.2 in [26].) The role of SpecbI(P ) in
determining the asymptotic type of a parametrix at lb and rb is as before
(except that, for coordinate invariance, Elb, Erb have to be ’completed’, cf.
Footnote 7). The only essentially new features are:

– SpecbI(P ) may be an infinite set (but – in case ∂X is compact – it is
still discrete and finite for Re z bounded, which is proved by ’analytic
Fredholm theory’).

– SpecbI(P ) is global on the boundary, i.e. determined by the (global)
solvability of some partial differential equation on ∂X .

– The algebra of symbols is not commutative. (But this does not matter
in the parametrix construction since commutativity was never used.)

Appendix: Pull-back, push-forward, densities etc.

Let f : M → N be a smooth map between manifolds.
The pull-back by f of a function v on N is the function

f∗v = v ◦ f
on M . Clearly, f∗v is smooth if v is.

Pull-backs appear everywhere. Depending on context and personal taste, they
may be interpreted as ’plugging in’, ’reinterpretation’, or ’distortion’. For example,
v(xy) (plugging in xy into v) is the pull-back of v under the map f(x, y) = xy;
π∗

2v from Example 3.1.1 is just v reinterpreted as function on R2; and if f is a
diffeomorphism, then f∗v is just v looked at through the ’distortion lens’ f . (For
example, if f : (0,∞) → (0,∞), x → x2 then the graph of f∗v is obtained from
the graph of v by a stretching for x < 1 and a compression for x > 1.)

57 This is the ’partial freezing of coefficients’ mentioned in the Introduction.
58 I(P, z) is called ’conormal symbol’ by some authors, e.g. Schulze [37], see Footnote 46.
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Related, though quite different at first glance, is push-forward by f . The idea
is that, for a function u on M , (f∗u)(y) for y ∈ N should be ’the integral of u over
the fiber f−1(y)’. Now this clearly depends on the choice of a measure59 on this
fiber (e.g. dy in (3.1)). Rather than to consider u and this measure separately, or
to consider a measure on each fiber, it is more convenient to start with a measure µ
(Borel, complex) on all of M . For measures, push-forward is a standard operation:
f∗µ is the measure on N defined by (f∗µ)(V ) = µ(f−1(V )) (= measure of the
union of all fibers over V ), V ⊂ N .60 In terms of integrals, this is equivalent to

∫

N

(f∗µ)φ =

∫

M

µ f∗φ(App.1)

for all φ ∈ C∞
0 . If f = π1 as in Example 3.1.1 then this easily gives

π1∗(u(x, y) dxdy) =

(
∫

R

u(x, y) dy

)

dx,

which shows that push-forward in the sense of measure theory is integration over
the fiber, as we intended. The additional factor dx may look cumbersome, but this
is the only way to have invariance with respect to coordinate changes on both M
and N .

(App.1) shows that push-forward f∗ is dual to pull-back f∗, under the duality
of functions and measures. Also, (App.1) is not just formal nonsense but actually
a recipe for calculation:

Example A.1. Let f : (0,∞)2 → (0,∞) be such that f(x, y) = xy, and let
µ(x, y) = u(x, y) dxdy. Then (f∗φ)(x, y) = φ(xy), so

∫

(0,∞)2
uf∗φ =

∫ ∞

0

∫ ∞

0

u(x, y)φ(xy) dy dx

=

∫ ∞

0

∫ ∞

0

u(x,
t

x
)φ(t)

dt

x
dx,

(using Fubini and changing variables t = xy in the inner integral) and comparison
with (App.1) gives61

f∗u(t) =

(

1

x

∫ ∞

0

u(x, t/x) dt

)

dx.

In the smooth context we usually deal not with arbitrary measures, but rather
with the more special densities (’smooth measures’) and with the more general
distributional densities, which we introduce next.

59 We are a little sloppy about the use of the word ’measure’: Contrary to standard usage we
only require that a measure be defined on bounded Borel sets (i.e. those contained in a compact
set). Thus, u(x)dx is a measure on R for any locally integrable function u.

60 With our use of the word ’measure’ one needs to require ’integrability’ here. This is
guaranteed for example when f is proper on the support of µ. We always assume this tacitly.

61 Anyone who is still sceptical of densities should once try to calculate (or just make sense
of) the notion of integrating a function over the hyperbola xy = t!
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A (smooth) density µ on a manifold M is a measure such that for any local
coordinate system x : U ⊂ M → Rn one can find a smooth function u on U
such that µ(U ′) =

∫

U ′
u(x)dx for all measurable U ′ ⊂ U . In this case we write

µ = u(x) dx for short.62

A distribution density on M is an object which on every coordinate patch
x : U ⊂M → Rn looks like u(x)dx for a distribution u(x) on U , where u transforms
as for densities.63

The push-forward of a distribution density µ under the map f may be de-
fined by Equation (App.1) again (where

∫

is interpreted as the usual pairing of
distributions and functions), which shows that f∗µ is a distribution density again.

So far, everything was quite straight-forward, the main problem was keeping
the dualities straight. Here comes a more substantial point:

The push-forward of a smooth density need not be a smooth density!

For example, if f : R→ R, x 7→ x3 then f∗dx = 1
3y

−2/3 dy.64

However, if f is a fibration then f∗µ is a smooth density whenever µ is (as-
suming integrability).65

A distribution is a continuous functional on the set of (compactly supported)
smooth densities. Therefore, the pull-back f∗u is defined for a distribution u if f
is a fibration (as the adjoint operation to f∗).

66 Actually, here it suffices that f
be a submersion, i.e. have surjective differential at every point. (This is weaker
than, and the local analogue of, f being a fibration.) f∗u may then be defined by
approximation of u by smooth functions (see [10], chapter VI.1).

62 This definition shows how u transforms under a change of coordinates. Of course one can
use this to define a line bundle over M , usually denoted ΩM , such that densities are just sections
of this line bundle, see [26], Section 4.5.

63 If you want to define this more formally, you can exploit the idea of duality; then a
distributional density on M is simply an element in the dual space of C∞

0 (M).
64 Proof:

∫

dx(f∗φ)(x) =
∫

φ(x3)dx =
∫

φ(y)y−2/3dy/3, and use (App.1).
65Recall the definition of a fibration: For any x the preimage L = f−1(x) is a manifold

and a neighborhood of L ⊂ M can be identified (via a diffeomorphism) with U × L, for some
neighborhood U of x, such that f(x′, l) = x′ for all l ∈ L, x′ ∈ U . I.e., locally f looks like (a
higher-dimensional version of) π1 in Example 3.1.1, and then the assertion is clear.

66 If f is not a fibration, then f∗u may not make sense at all. For example, expressions like
δ(x3) or δ(xy) make no sense.
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Table 1 gives an overview of push-forward and pull-back compatibilities.

α smooth α distributional α conormal distributional

Push-forward f∗α f fibration any f f fibration,

transversality condition

Pull-back f∗α any f f submersion f(M) transversal

to singsuppα

Table 1. Conditions on a smooth map f : M → N to define
push-forward or pull-back of a density (resp. function) α, resulting
in an object of same type as α. For push-forward, it is always
assumed that f is proper on suppα.

Finally, when talking about operators it is useful to have (smooth or distribu-
tional) half-densities. These are defined as objects which look like

u(x)|dx1 · · ·dxn|1/2

in any coordinate system x, with u smooth respectively a distribution. Accordingly,
u transforms with the square root of the Jacobian under coordinate changes. The
reader who prefers more formal definitions may consult [26], Section 4.5 for the
definition of a (trivial) line bundle of which half-densities are sections.
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