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Abstract

In this paper, continuing our earlier article [CGIKO], we study
qualitative properties of solutions of a certain eigenvalue optimization
problem. Especially we focus on the study of the free boundary of our
optimal solutions on general domains.

1 Introduction and Summary of results

In this note, we study some qualitative properties of solutions of a certain
eigenvalue optimization problem. Our note is a continuation and also a
summarization of the key results of our earlier article [CGIKO]. Our problem
can be stated in physical terms as :
Problem(P) Build a body of a prescribed shape out of given materials of
varying densities, in such a way that the body has a prescribed mass and
with the property that the fundamental frequency of the resulting membrane
(with fixed boundary) is lowest possible.

The physical problem can be re-formulated as a more general mathemat-
ical problem. More precisely, we are given Ω ⊂ Rn, a bounded domain with
Lipschitz boundaries and numbers α > 0, A ∈ [0, |Ω|] (with | · | denoting vol-
ume). For any measurable set D ⊂ Ω, let χD be the characteristic function
and λΩ(α,D) the lowest eigenvalue λ of the problem,

− ∆u+ αχDu = λu on Ω (1)

u = 0 on ∂Ω.
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Define,
ΛΩ(α,A) = inf

D⊂Ω,|D|=A
λΩ(α,D). (2)

Any minimizer for (2) will be called an optimal configuration for the data
(Ω, α, A). If D is an optimal configuration and u = uα,D satisfies (1), then
(uα,D, D) will be called an optimal pair (or solution). The mathematical
problem then reads,
Problem (M) Study existence, uniqueness and qualitative properties of
optimal pairs.

We will hereon always work under the nomalization
∫

Ω
u2 = 1, u ≥ 0. (3)

Furthermore, changing D by sets of measure zero does not affect λΩ(α,D)
or u, thus sets D that differ by sets of measure zero will be said to be equal.

A basic tool that we use to analyse our problem is a variational charac-
terization of eigenvalues, precisely,

λΩ(α,D) = inf
u∈H1

0
(Ω)
RΩ(u,D), RΩ(u,D) =

∫

Ω |∇u|2 + α
∫

Ω χDu
2

∫

Ω u
2

.

The minimizer u is well known to exist and is an eigenfunction. Thus, for
ΛΩ(α,A) we have

ΛΩ(α,A) = inf
u∈H1

0
(Ω),|D|=A

RΩ(u,D).

The theorem that follows is basic to the questions we hope to treat in this
paper. The proof of this theorem is to be found in [CGIKO]. To state our
theorem we will need to introduce some notation. First, we will consistently
use the notation {u = t} for {x ∈ Ω; u(x) = t}, and {u ≤ t} for {x ∈
Ω; u(x) ≤ t}.

Theorem 1 ([CGIKO]) For any α > 0 and A ∈ [0, |Ω|], there exists an
optimal pair. Moreover any optimal pair (uα,D, D) has the following proper-
ties:
(a) uα,D ∈ C1,δ(Ω) ∩W 2,2(Ω) ∩ Cγ(Ω) for every δ < 1 and some γ > 0.
(b) D is a sub-level set of uα,D, i.e. there exists t > 0 such that

D = {x ∈ Ω; uα,D(x) ≤ t}.
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(c) The value of α for which ΛΩ(α,A) = α, is unique.
(d) Every level set {uα,D = s}, s 6= t has measure zero. If in addtion
ΛΩ(α,A) 6= α, the free boundary, F = {uα,D = t} has measure zero.

We use the notation αΩ(A) for the unique value of α in part (c) above,
that is,

αΩ(A) = ΛΩ(αΩ(A), A) (4)

We also see right away that our problem to determine an optimal pair
(uα,D, D) which seemed linear is now a non-linear problem,

− ∆uα,D + αχ{uα,D≤t}uα,D = ΛΩ(α,A)uα,D on Ω (5)

uα,D = 0 on ∂Ω.

Another important remark is that because any optimal configuration D is a
sub-level set and uα,D = 0 on ∂Ω, the set D will always contain a tubular
neighborhood of ∂Ω, i.e. D always contains a boundary layer.

For notational convenience, from now on we will drop the subscript Ω
and write Λ(α,A) for ΛΩ(α,A), and use the simpler notation u for uα,D, in
situations where no confusion arises. ‖ · ‖∞ will denote the supremum norm
in L∞(Ω) and ‖ · ‖2 the norm in L2(Ω).

The main focus in this paper will be on the free boundary {u = t} on a
general domain Ω.

Before we state the theorems that we prove in this paper, we continue
summarizing some of the salient results of [CGIKO]. It is proved there that
problem (M) generalizes problem (P). In fact for α ≤ αΩ(A), the solutions
of problem (M) and (P) are in one to one correspondence. Another natural
questions that arises is if D inherits natural symmetries that Ω possesses, and
if given Ω, does there exist a unique optimal configuration D. The answer is
negative on general domains unless Ω has very strong topological restrictions.
Symmetrization and rearrangement invariant integral methods allow one to
prove the next theorem.

Theorem 2 ([CGIKO]) Assume Ω is symmetric and convex with respect
to the hyperplane {x1 = 0}. That is for each fixed x′ = (x2, · · · , xn) the set

{x1 : (x1, x
′) ∈ Ω}

is either empty or an interval of the form (−c, c). Then any optimal solu-
tion (u,D) is symmetric with respect to the hyperplane {x1 = 0} and u is
decreasing in x1 for x1 ≥ 0.
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Theorem 2 implies the next corollary, which is the only uniqueness result
proved in [CGIKO].

Corollary 1 Let Ω = {|x| < 1} be the ball. Then the optimal configuration
is unique for any α,A and furthermore D is an annular region,

D = {x; r(A) < |x| < 1}.

On other domains we encounter the phenomenon of symmetry breaking.
Specifically in [CGIKO] we show symmetry breaking phenomena on annular
domains in R2 and on dumbbell shaped domains. We have

Theorem 3 ([CGIKO]) Fix any α > 0 and δ ∈ (0, 1). Let Ωa = {x ∈
R2; a < |x| < a + 1}. Then there exists a0 = a0(α, δ), such that whenever
a > a0 and D is an optimal configuration for Ωa with parameters α and
A = δ|Ωa|, then D is not rotationally symmetric.

Because Ωa is rotationally invariant, Theorem 3 implies that there are in-
finitely many choices for the optimal configuration D on annuli. On dumb-
bell shaped domains we have, in addition to symmetry breaking, some extra
information on D. We define the dumbbell shaped domain Ωh by

Ωh = B1((−2, 0)) ∪B1((2, 0)) ∪ ((−2, 2) × (−h, h)), (6)

where Br(p) = {x ∈ R2; |x − p| < r}. We call the disks Br(p), the lobes of
the dumbbell and the strip (−2, 2) × (−h, h) the handle. We have

Theorem 4 ([CGIKO]) For any given α > 0 and A ∈ (0, 2π), there exists
h0 > 0 such that for domains Ωh of (6) with h < h0,
(a) Any optimal pair (u,D) is not symmetric with respect to the x2−axis.
(b) If A > π, then for any optimal pair (u,D), Dc is totally contained in one
of the lobes B1((±2, 0)).

We end our summary of results from [CGIKO] with a theorem on convex
domains.

Theorem 5 ([CGIKO]) Suppose Ω is convex and has a smooth boundary.
Then there exists α0(Ω, A) > 0, such that for any α < α0 and any optimal
configuration D, one has
(a) ∂D ∩ Ω is real-analytic.
(b) Dc is convex.
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Theorem 5 should be compared with the basic theorem of Brascamp-Lieb
[BL] that establishes the convexity of level lines of the first eigenfunction on
convex domains, when α = 0. Theorem 5 extends the result of [BL] to some
values of α > 0, but it is completely open if Theorem 5 extends to the case
of all α > 0.

We now turn to the results that we prove in this paper. Our focus will
primarily be on general domains and in particular on the free boundary for
the optimal pair (u,D). In a general domain Ω the first eigenfunction ψ
(with standard L2 normalization) that is,

− ∆ψ = µ1ψ on Ω (7)

ψ = 0 on ∂Ω,
∫

Ω
ψ2 = 1,

is real-analytic in the interior and this places very strong restrictions on the
exceptional sets, i.e. places on the level sets of ψ, where ∇ψ = 0. If we were
in R2, the exceptional set would consist of points. In this analysis unique
continuation plays a role, since we easily see that if w = ψxi

then from (7),
−∆w = µ1w, and thus unique continuation yields some information on the
zero set of w. Thus in our problem it is clear the free boundary {u = t}
on a general domain will possess an exceptional set, since ψ in general has
one, but any attempt to understand the fine structure of the exceptional
set, Hausdorff measure, rectifiability etc., through a unique continuation ap-
proach is difficult. The reason being, unique continuation will not apply,
since u is only weakly regular. This prevents us from obtaining an equation
for w1 = uxi

. In addition a further difficulty is that (5) is an equation of
the type −∆u + V (x)u = 0, and this prevents us from obtaining a homoge-
neous equation that is satisfied by w2 = u− t to which we may apply unique
continuation to study the level surface {u = t}, t 6= 0.

Another approach is to view our problem (5) as a perturbation in α from
the problem (7). This approach suffers from the fact that we do not get
additional information for large α. One may view this again as a difficulty
arising from lack of continuation properties in α. Two results in this direction
are proved in [CGIKO]. We reproduce the statements and proof here.

Theorem 6 For s ≥ 0, let [Ω]s = {ψ ≤ s}, where ψ is the normalized
first eigenfunction of problem (7). Fix A ∈ [0, |Ω|] and choose tΩ such that
|[Ω]tΩ | = A. Then for any δ > 0, there is α0 = α0(δ,Ω) such that if α < α0
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and D is an optimal configuration for (α,A), then |t− tΩ| < δ and

[Ω]tΩ−δ ⊂ D ⊂ [Ω]tΩ+δ.

The basic lemma that is used to prove Theorem 6 can be used to analyse the
limiting behavior as A→ |Ω|. We have

Theorem 7 Let Ω be a smooth bounded domain. Let α > 0 be fixed. Let ψ
be the function of (7) and let

M = max
Ω

ψ.

Then for any δ > 0, there is A0 = A0(δ, α,Ω) < |Ω|, such that whenever
A > A0 and D is an optimal configuration for (α,A), then

Dc ⊂ {ψ > M − δ}.

The meaning of Theorem 6 is that the free boundary for our optimization
problem, that is the set {u = t}, is “trapped” between the levels tΩ − δ and
tΩ+δ of the first eigenfunction ψ for the domain Ω. However, this information
is too weak to conclude anything fine about the free boundary even for small
α > 0. Theorem 7 on the other hand indicates that as A→ |Ω|, Dc coalesces
onto the set where ψ achieves its maximum, ψ being the first eigenfunction
on Ω, see (7). Now, keeping in mind part (b) of Theorem 4, it is likely thatDc

may coalesce onto a strict subset of the set where ψ achieves its maximum.
Even though we have been unable to apply unique continuation to study

the free boundary for large α, it is still possible to apply the Hopf lemma
[GT, Lemma 3.4] and get some information on the free boundary.

A typical result we prove is:

Theorem 8 Let α ≥ Λ(α,A). Let F = {u = t} denote the free boundary
set. Then there is a subset E of F such that
(a) E is a Gδ set.
(b) F \ E is a real-analytic, n− 1 dimensional sub-manifold of Rn.
(c) If moreover α > Λ(α,A), then for every x0 ∈ F and every ǫ > 0, the
ball Bǫ(x0) contains points of both {u > t} and {u < t}.

We refer to the set E as the exceptional set. From the construction of the
exceptional set, we will deduce further geometric information regarding the
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free boundary. This is the content of Proposition 2, which we do not state
here (see section 2).

We now give a sufficient condition that ensures that the hypothesis of
Theorem 8, α ≥ Λ(α,A) is fulfilled.

Proposition 1 Let α > µ1(Ω), where µ1(Ω) is the first Dirichlet eigenvalue
for −∆ on Ω. Then there exists A0 = A0(α), such that α ≥ Λ(α,A) for all
A < A0. Furthermore, for C1 = ||ψ||−2

∞ and for fixed A ∈ (0, C1), there exists
α0 such that α ≥ Λ(α,A) for all α ≥ α0.

We lastly investigate the effect of the curvature of ∂Ω on the free boundary
and the “thickness” of the optimal configuration. As observed earlier in the
remarks after Theorem 1, D always contains a tubular neighborhood of the
boundary. The theorem that follows demonstrates in the model case of an
annulus in R2, that at places where ∂Ω has large “negative” curvature, one
finds that D is “thin”. To state our result we will set up some notation. Let

Ωǫ = {x ∈ R2; ǫ < |x| < 1}, B = {x ∈ R2; |x| < 1}.

For fixed ǫ0, let A < π(1 − ǫ20). For ǫ < ǫ0 and any fixed α > 0, let (uǫ, Dǫ)
denote the optimal pair for Ωǫ, with lowest eigenvalue ΛΩǫ

(α,A), with con-
straint |Dǫ| = A. We now claim that for µ1(B), the first Dirichlet eigenvalue
of the unit disk, we have

ΛΩǫ
(α,A) > µ1(B). (8)

Since Ωǫ ⊂ B, using (uǫ, Dǫ) as a trial pair in the variational characterization
for ΛΩǫ

(α,A), we have

ΛΩǫ
(α,A) =

∫

Ωǫ

|∇uǫ|
2 + α

∫

Ωǫ

χDǫ
u2

ǫ >
∫

Ωǫ

|∇uǫ|
2 ≥ µ1(B).

This establishes, (8). As a consequence of (8), imposing the hypothesis α ≤
µ1(B), ensures that for every ǫ ≥ 0, α < αΩǫ

(A) (see the definition (4) ).
Next, if α < αΩǫ

(A), and if Dǫ is radially distributed, Theorem 2 of [CGIKO],
yields that Dǫ has the form,

Dǫ = {x ∈ R2; ǫ < |x| < rǫ or Rǫ < |x| < 1} (9)

for some rǫ, Rǫ, ǫ < rǫ < Rǫ < 1. Thus if α ≤ µ1(B) we may assume that if
Dǫ is radially distributed, then the set Dǫ has the form described by (9) for
every ǫ > 0. We have
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Theorem 9 Assume α ≤ µ1(B), and A > 0 is prescribed. Given this choice
of α and A, let (uǫ, Dǫ) be an optimal pair with |Dǫ| = A. Assume Dǫ is
radially distributed and hence of the form (9). Then,

lim sup
ǫ→0

rǫ = 0.

Thus the implication is that Dǫ thins out on the boundary layer in contact
with {x; |x| = ǫ}, the inner boundary of ∂Ωǫ. As ǫ → 0, the curvature of
{x; |x| = ǫ} is increasing and negative as seen from Ωǫ. Thus in this model
case one may conclude that diam (D) is small on parts of D which are in
contact with pieces of ∂Ω, where the curvature of ∂Ω is large and where ∂Ω
is concave as seen from Ω.

The paper [CGIKO] discusses the historical antecedents of this problem
and the interested reader is referred to this paper for a discussion. Further-
more the optimization problem discussed here, is amenable to being modelled
on a computer. Details of the numerical simulation are available in [CGIKO]
and the interested reader may find the source of the algorithms used and the
shape of the optimal configuration in many types of domains obtained by
these numerical studies.

2 Proofs of the Theorems

In this section we prove Theorems 6-9 and Proposition 1. We begin with
the proof of Theorem 6. We need a preparatory Lemma, that is well-known
in perturbation theory and in the Physics literature [B, Appendix 39, p.
469]. We want a slightly more precise form, though the technique of proof is
standard and the basic idea follows from [B].

Lemma 1 Fix D ⊂ Ω. Let uα,D be the ( positive, L2 normalized ) first
eigenfunction of −∆+αχD with eigenvalue λ(α,D). Then there is a constant
C = CΩ such that for 0 ≤ α ≤ 1 (ψ, µ1 refers to (7)),
(a) 0 ≤ λ(α,D) − µ1 ≤ α,
(b) ‖uα,D − ψ‖H2(Ω) ≤ Cα,
(c) ‖uα,D − ψ‖L∞(Ω) ≤ Cα.

Proof of Lemma 1: Recall we have set uα,D = u. Note

λ(α,D) ≤
∫

Ω
(|∇ψ|2 + αχDψ

2) ≤ µ1 + α
∫

Ω
ψ2
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≤ µ1 + α.

Thus, λ(α,D) − µ1 ≤ α. Next,

λ(α,D) =
∫

Ω
(|∇u|2 + αχDu

2) ≥ µ1 + α
∫

Ω
χDu

2.

Thus, λ(α,D) − µ1 ≥ 0, and we have (a). To prove (b), let {ψk}
∞
k=1 be an

orthogonal basis of eigenfunction of −∆ with Dirichlet boundary conditions
(Note ψ1 = ψ of problem (6)). The corresponding eigenvalues will be denoted
by {µk}

∞
k=1, where it is well-known that µ1 is simple. Expanding u, we have

u =
∑∞

j=1 βjψj , and thus (−∆ − µ1)u =
∑∞

j=2 βj(µj − µ1)ψj and

‖(∆ + µ1)u‖
2
2 =

∞
∑

j=2

β2
j (µj − µ1)

2, (10)

where ‖ · ‖2 denotes the L2(Ω) norm. From −∆u+αχDu = λ(α,D)u, we get

(−∆ − µ1)u = (λ(α,D) − µ1)u− αχDu.

Therefore applying (a), ‖(∆ + µ1)u‖2 ≤ Cα. Since µ1 is simple, there exists
δ > 0, δ = δ(Ω), such that µj − µ1 ≥ δ > 0 for j ≥ 2. Then from (10) we get

∞
∑

j=2

β2
j ≤

Cα2

δ2
. (11)

We re-write u as u = β1ψ1 + Ψ, and (11) gives ‖Ψ‖2 ≤ Cαδ−1. Now 1 =
‖u‖2 = β2

1 + ‖Ψ‖2
2, thus

|β1 − 1| ≤
‖Ψ‖2

2

1 + β1

≤
Cα2

δ2
.

Here we used the fact that β1 = (u, ψ1) > 0, because both u and ψ1 are
positive. Therefore,

‖u− ψ1‖
2
2 = (β1 − 1)2 + ‖Ψ‖2

2 ≤
Cα2

δ2
≤ Cα2. (12)

All the remaining consequences follow from (12). From (6),

− ∆(u− ψ1) = (λ(α,D) − µ1)u+ µ1(u− ψ1) − αχDu. (13)
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We re-write (13) as

−∆(u− ψ1) − µ1(u− ψ1) = (λ(α,D) − µ1)u− αχDu = g.

Now from [GT, Theorem 8.15] again, it follows that

‖u− ψ1‖∞ ≤ C‖u− ψ1‖2 + Cα.

Using (12) on the right side,

‖u− ψ1‖∞ ≤ Cα,

which is part (c). Using ‖g‖∞ ≤ Cα and part (c), we conclude ‖∆(u −
ψ1)‖∞ ≤ Cα, which is (b). 2

Theorem 6 and 7 are now consequences of Lemma 1.
Proof of Theorem 6: Apply Lemma 1 (c) to the optimal pair (u,D).
Choose α0 = δ/(2C), so that ‖u−ψ1‖∞ ≤ δ/2 for α ≤ α0. From Theorem 1,
if x ∈ D, u(x) ≤ t, and so ψ(x) ≤ t + δ/2 and hence D ⊂ [Ω]t+δ/2. In a
similar way we establish [Ω]t−δ/2 ⊂ D. Thus we have

[Ω]t−δ/2 ⊂ D ⊂ [Ω]t+δ/2.

From the statement above, we get |[Ω]t−δ/2| ≤ A ≤ |[Ω]t+δ/2|, and thus by
continuity, there exists tΩ such that A = |[Ω]tΩ |, and |tΩ − t| < δ/2. From
this assertion the assertions of Theorem 6 follow. 2

Proof of Theorem 7: We begin by showing that a slight modification of
the proof of Lemma 1 yields,

‖u− ψ1‖∞ ≤ Cα,Ω(|Ω| − A). (14)

We show first,
|µ1 − (Λ(α,A) − α)| ≤ Cα,Ω(|Ω| −A). (15)

We re-write our equation for u as

− ∆u− αχDcu = (Λ − α)u, Λ = Λ(α,A). (16)

From (16) we have

µ1 − α
∫

Ω
χDcu2 ≤

∫

Ω
|∇u|2 − α

∫

Ω
χDcu2 = Λ − α.
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Thus,

µ1 − (Λ − α) ≤ α
∫

Ω
χDcu2 ≤ C|Dc| = C(|Ω| −A).

Next, we have

Λ − α ≤
∫

Ω
(|∇ψ|2 − αχDcψ2) ≤ µ1 − α

∫

Ω
χDcψ2

which yields 0 ≤ µ1 − (Λ − α). The assertion (15) follows. Using (15)
and the equation (16) we can proceed as in Lemma 1 to obtain (14). If
|Ω| − A < δ/(2Cα,Ω), from (14) we see [Ω]t−δ/2 ⊂ D = {u ≤ t} ⊂ [Ω]t+δ/2.
Since |D| = A, we have A ≤ |[Ω]t+δ/2| = |{ψ ≤ t+ δ/2}|. Thus if in addition
A > A0, we can arrange the situation so as to have M − t ≤ δ/2. So
[Ω]M−δ ⊂ [Ω]t−δ/2 ⊂ D. The conclusion [Ω]M−δ ⊂ D is readily seen to be
equivalent to the assertion made in Theorem 7. 2

We need some preparatory lemmas before we prove Theorem 8. As usual
u = uα,D will denote the solution to our optimization problem and conse-
quently u will satisfy (5).

Lemma 2 (a) Fix any α > 0. Let the free boundary set be F , F = {u =
t}. We let D+ = {x; u(x) > t}. Assume D+ satisfies an interior sphere
condition with respect to x0 ∈ F , that is there exists a ball B, B ⊂ D+ and
∂B ∩ F = {x0}. Then |∇u(x0)| 6= 0.
(b) Let D− = {x; u(x) < t} (in the situation α 6= αΩ(A), D− = D). Assume
that α ≥ ΛΩ(α,A). Let D− satisfy an interior sphere condition with respect
to x0 ∈ F , that is there exists a ball B, B ⊂ D− and ∂B ∩ F = {x0}. Then
|∇u(x0)| 6= 0.

Proof of Lemma 2: The proof of both parts of our lemma rely on Hopf’s
lemma [GT, Lemma 3.4]. We prove (a). Set φ = t − u. We observe that in
the ball B ⊂ D+, u satisfies from (5)

−∆u = Λ(α,A)u.

Thus ∆φ = Λ(α,A)u ≥ 0 in B, and φ < 0 on B with φ(x0) = 0. Hopf’s
lemma then yields |∇φ(x0)| = |∇u(x0)| 6= 0.

(b). The proof of this part is similar to part (a). Since B ⊂ D−, from
(5) we see on B we have

−∆u+ αu = Λu.

11



Since α ≥ Λ, we easily see ∆u ≥ 0 on B. Thus on B ⊂ D− we have
∆φ ≤ 0, φ > 0 on B and φ(x0) = 0. Thus Hopf’s lemma again yields
|∇φ(x0)| = |∇u(x0)| 6= 0. 2

Lemma 3 Let h(η, p), η ∈ R, p = (p1, · · · , pn) ∈ Rn be a locally bounded
function. Let w ∈ C1(Ω) satisfy

∆w = h(w,∇w). (17)

Assume furthermore h is smooth in the variable p. Assume at the point
x0 ∈ Ω, ∇w(x0) 6= 0. Then there exists a ball B, x0 ∈ B, such that the set,

{x ∈ B;w(x) = w(x0)} = S

is a smooth hypersurface of Rn. If in addition h is real-analytic in the variable
p, the set S is also real-analytic.

Proof of Lemma 3: Since h(w,∇w) is locally bounded, it follows by elliptic
estimates that w ∈ C1,γ ∩ W 2,s, s < ∞. Thus by the implicit function
theorem, since ∇w(x0) 6= 0, we conclude that S is a C1,γ hypersurface for
all γ < 1. Now we shall improve the regularity of the hypersurface S. By
a rotation of coordinates we may assume wxi

(x0) = 0, i = 1, · · · , n − 1 and
wxn

(x0) 6= 0. Let x′ = (x1, · · · , xn−1) and consider the map,

Ψ : B → Rn, Ψ(x′, xn) = (x′, w(x′, xn)).

We denote points in the image of Ψ, by y = (y′, yn) where y′ = (y1, · · · , yn−1)
and yn = w(x′, xn). Let Ψ−1 denote the inverse map to Ψ, which will exist if
B is picked to be small. We have,

Ψ−1(y′, yn) = (y′, F (y′, yn)).

Now,
F (x′, w(x′, xn)) = xn.

Differentiating the equation above we get the equations,

Fyi
+ wxi

Fyn
= 0, i = 1, · · · , n− 1, and Fyn

wxn
= 1. (18)
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By the chain rule,

∂

∂xi
=

∂

∂yi
+ wxi

∂

∂yn
,

∂

∂xn
= wxn

∂

∂yn
.

From (18), wxi
= −Fyi

/Fyn
, i = 1, · · · , n− 1 and wxn

= 1/Fyn
. Thus,

∆w =
n−1
∑

i=1

(

∂

∂yi
+ wxi

∂

∂yn

)(

−Fyi

Fyn

)

+ wxn

∂

∂yn

(

1

Fyn

)

=
n−1
∑

i=1

(

∂

∂yi
−
Fyi

Fyn

∂

∂yn

)(

−Fyi

Fyn

)

+
1

Fyn

∂

∂yn

(

1

Fyn

)

= LF.

Next we freeze the coefficients of L at x0. Since wxi
(x0) = 0, i = 1, · · · , n− 1

and wxn
(x0) = a 6= 0, we see from (18), Fyi

= 0 and Fyn
= a−1 at Ψ(x0). At

y0 = Ψ(x0), we have

LF = −
1

Fyn

n−1
∑

i=1

Fyiyi
−

1

F 3
yn

Fynyn

= −
1

Fyn

[n−1
∑

i=1

Fyiyi
+

1

F 2
yn

Fynyn

]

.

Thus if B is picked suitably small, LF is an elliptic, quasi-linear operator.
Since w satisfies (17), F satisfies

LF = h
(

yn,A(
−Fyi

Fyn

,
1

Fyn

)
)

(19)

where A is a fixed matrix in O(n), the rotation group, associated with our ro-
tation of coordinates, and A(zi, zn), denotes the product of A and the vector
(z1, · · · , zn), (zi) = (z1, · · · , zn−1). Since w ∈ C1,γ ∩W 2,s for all γ < 1, s <∞,
we see the coefficients of L are in C0,γ ∩ W 1,s, s < ∞. Differentiating
equation (19) in any of the variables yi, i 6= n, we may apply a standard
bootstrap argument using well-known elliptic estimates for example [GT,
Theorem 9.11] to conclude from the fact that h is smooth in the variable p,
that F is smooth in any of the variables yi, i = 1, · · · , n − 1. If one has in
addition that h is real-analytic in the variables p, then applying the results

13



of Morrey [M, Theorem C] or Friedman [F, Theorems 1, 4], we can conclude
that F is real-analytic in the variables yi, i = 1, · · · , n− 1. Now the defining
equation for S is given by xn = F (x1, · · · , xn−1, w(x0)). Since F is smooth
(real-analytic) depending on the regularity of h in the p variables, it follows
that S is a smooth (real-analytic) manifold, depending on the fact that h is
smooth (real-analytic) in the p variables. 2

We are now ready to prove Theorem 8.
Proof of Theorem 8: We construct the exceptional set E . Let

Kn = {x ∈ Ω; distance (x,F) =
1

n
}.

Now define

Fn = {x ∈ F ; distance (x,Kn) =
1

n
}.

The sets Kn and Fn are closed sets for all n ∈ N. We define the exceptional
set by

E = F \ (∪∞
n=1Fn).

Since each set F ∩ F c
n is open in F , E is a Gδ set. This proves Theorem 8

(a).
We shall now prove that for each point x0 ∈ F \ E , we can construct

either an interior ball B ⊂ D+, such that ∂B ∩ F = {x0} or an interior ball
B ⊂ D−, such that ∂B ∩ F = {x0}. Since we are assuming α ≥ Λ(α,A),
Lemma 2 ensures that for each x0 ∈ F \ E , ∇u(x0) 6= 0. Now the PDE
satisfied by u, that is (5), can be written as

∆u = h(u),

where h(η) = −Λ(α,A)η + αχG(η)η,G = {η; η ≤ t}. Thus h ∈ L∞
loc(R)

and the hypotheses of Lemma 3 apply to u. Thus there exists a ball B0,
centered at x0, such that, F ∩ B0 is a real analytic manifold. So we now
verify our claims regarding the interior spheres. Fix a point x0 ∈ F \ E .
Then x0 ∈ Fn for some n. Let z0 ∈ Kn, such that |x0 − z0| = 1/n. We claim
the ball B1/n(z0) is totally contained in D+ or D−. Suppose there are points

z1 ∈ D+ and z2 ∈ D− in B1/n(z0). Then by the continuity of u, the line
segment joining z1 to z2 which also lies inside B1/n(z0) will contain a point
of F . Thus distance (z0,F) < 1/n and hence z0 6∈ Kn. Now pick a ball
B′, B′ ⊂ B1/n(z0), and B′ centered along the radius joining x0 to z0 and with
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∂B′ ∩ ∂B1/n(z0) = {x0}. Clearly B′ \ {x0} is contained either in D+ or D−

and ∂B′ ∩ F = {x0}. The hypotheses of Lemma 2 are fulfilled. Theorem 8
(b) now follows.

To prove Theorem 8 (c), we can argue via the strong maximum principle.
Since α > Λ(α,A), applying Theorem 1 (d), we see that D = {u < t}. If
for some ǫ > 0, the ball Bǫ(x0), x0 ∈ F contains no points of D− and only
points {u ≥ t}, then on Bǫ(x0), u satisfies

−∆u = Λ(α,A)u ≥ 0.

So ∆u ≤ 0 on Bǫ(x0) and u ≥ t on Bǫ(x0) with u(x0) = t which is a
contradiction. We may argue as in Lemma 2, part (b) and show on Bǫ(x0)
there are also points of D+ for every ǫ > 0. 2

To discuss further geometric properties of E , we introduce,

Kǫ = {x ∈ Ω; distance (x,F) = ǫ},

Fǫ = {x ∈ F ; distance (x,Kǫ) = ǫ}.

We have

Proposition 2 For every α > 0,
(a) Fǫ1 ⊂ Fǫ2 for ǫ1 > ǫ2.

As a consequence of (a), we have
(b) ∪n≥1Fn = ∪ǫ>0Fǫ, Fn ⊂ Fm for m > n, and E = F \ ∪ǫ>0Fǫ.
(c) If α > Λ(α,A), then for every point x0 ∈ E , any ball Bǫ(x0) contains
points y+ ∈ D+ and y− ∈ D− such that distance (y±,F) < |y± − x0|.
(d) Furthermore, if z0 ∈ F , such that |y+ − z0| = distance (y+,F), then D+

satisfies an interior sphere condition in the sense of Lemma 2 with respect
to z0. Thus by the proof of Theorem 8, there is a neighborhood B of z0,
such that {x ∈ B : u(x) = u(z0)} is a real-analytic hypersurface. A similar
statement holds for y−.

The meaning of (b) is that since E = F ∩ (∩∞
n=1F

c
n) and F c

n ⊃ F c
m for m > n,

the exceptional set is really a Gδ set formed by the intersection of the nested
open sets F c

n. The meaning of (c), (d) is that the behaviour of the free
boundary in the neighborhood of the exceptional set at least in R2 is that of
isolated singularities with a conical structure, with the cone having its vertex
at x0 ∈ E . The cone locally divides R2 into at least two components, one
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component is contained in D+ and the other is contained in D−. This geo-
metric picture is only heuristic since it still needs to be rigorously established
that the component of F that contains z0 also contains x0 ∈ E . Only then
can we conclude there is a true conical singularity at x0.

Proof of Proposition 2: Fix x ∈ Fǫ1. Then by definition, one can find
z ∈ Kǫ1, such that |z − x| = ǫ1. Since z ∈ Kǫ1, the ball Bǫ1(z) will contain
no points of F in the interior. Now consider the radial line connecting z
and x, and locate on this line a point y such that |y − x| = ǫ2. The ball
Bǫ2(y) ⊂ Bǫ1(z), and x is the sole point in F on ∂Bǫ2(y). Now by definition
y ∈ Kǫ2, and since x ∈ F and |x− y| = ǫ2, x ∈ Fǫ2. This proves (a), and (b)
is then an elementary consequence of set theory.

Next, by Theorem 8 (c) we know that the ball Bǫ(x0) with x0 ∈ E ( in
general for any point in F actually), contains points y± in D± respectively.
Let |y+ − x0| = δ. We claim distance (y+,F) < δ. If distance (y+,F) ≥ δ,
then y+ ∈ Kτ , τ = distance (y+,F), τ ≥ δ. Since |y+ −x0| = δ ≤ τ , it follows
that xo ∈ Fτ . Thus x0 6∈ E . This proves part (c), since an argument similar
to the one above takes care of the point y− ∈ D−.

Lastly we prove part (d). Now, |y+ − z0| = τ , z0 ∈ F . Thus by the argu-
ment employed in Theorem 8(b) it is easily seen, that the open ball Bτ (y+)
contains only points of D+. Again employing the argument of Theorem 8
(b), we can find a ball B′ ⊂ Bτ (y+) such that ∂B′ ∩ F = {z0} and hence B′

is the desired interior ball. 2

We now prove Proposition 1.
Proof of Proposition 1: Arguing as in Lemma 1(a), but now using the
fact that ‖ψ‖∞ ≤ C, [GT, Theorem 8.15], we have

Λ(α,A) ≤
∫

Ω
|∇ψ|2 + α

∫

Ω
χDψ

2 ≤ µ1 + α‖ψ‖2
∞A.

Thus,
Λ(α,A) ≤ µ1 + αC0A, C0 = ‖ψ‖2

∞. (20)

Since α > µ1, we can find A0 > 0 such that αC0A0 ≤ α−µ1. It follows from
(20) that for A < A0, α ≥ Λ(α,A). The second part of Proposition 1 also
follows from (20). Select C1 = C−1

0 . If A < C1, C0A = 1− ǫ, ǫ > 0. Thus for
α > α0, µ1 ≤ ǫα, and hence by (20), Λ(α,A) < α. 2

Proof of Theorem 9: We set Λǫ = ΛΩǫ
(α,A), Λ = ΛB(α,A). D will denote

the optimal configuration for B, that is D = {x; r0 < |x| < 1}, π(1−r2
0) = A.
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We also need to consider the first Dirichlet eigenvalue λǫ, of the problem,

−∆g + αχDg = λǫg in Ωǫ

g|∂Ωǫ
= 0.

We claim
0 ≤ Λǫ − Λ ≤ C| log ǫ|−1. (21)

Extending uǫ to {|x| < ǫ} by setting uǫ = 0 on {|x| < ǫ} and using this
extended function as a trial function with Dǫ as a trial configuration on
B = {|x| < 1}, we see Λ ≤ Λǫ and so we have the left side in (21). Next by
Theorem 2 in Swanson [S],

0 ≤ λǫ − Λ ≤ c| log ǫ|−1. (22)

In fact 0 ≤ λǫ − Λ is simply a consequence of domain monotonicity. By the
variational characterization Λǫ ≤ λǫ, and thus from (22) we easily have (21).

We now establish lim supǫ→0 rǫ = 0, by contradiction. Assume there is a
sequence ǫj ց 0, limj→∞ rǫj

= δ > 0. Then Rǫj
→ bδ and since |Dǫj

| = A,
the limit set Dδ is:

Dδ = {x; |x| < δ or bδ < |x| < 1}, |Dδ| = A.

We set,
Dδ,ǫ = {x; ǫ < |x| < δ or bδ < |x| < 1}.

We use the notation λǫ(Dδ,ǫ) for the first Dirichlet eigenvalue on Ωǫ for the
problem,

− ∆w + αχDδ,ǫ
w = λǫ(Dδ,ǫ)w on Ωǫ (23)

w = 0 on ∂Ωǫ,
∫

Ωǫ

w2 = 1.

λ(Dδ) will denote the first Dirichlet eigenvalue for −∆ + αχDδ
on B. We

claim,
|Λǫj

− λ(Dδ)| → 0 as ǫj → 0. (24)

We have

|Λǫj
− λ(Dδ)| ≤ |Λǫj

− λǫj
(Dδ,ǫj

)| + |λǫj
(Dδ,ǫj

) − λ(Dδ)|

= J1 + J2.
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By using Theorem 2 in [S], one can conclude J2 ≤ C| log ǫj |
−1 → 0 as ǫj → 0.

We now show J1 → 0. Let (uǫ, Dǫ) be the optimal pair for Ωǫ. Then, using
the eigenfunction w from (23), and the uniform bounds ‖w‖L∞(Ωǫ) ≤ C, C
independent of ǫ > 0, which follows from [GT, Theorem 8.15], we have

Λǫ ≤
∫

Ωǫ

(|∇w|2 + αχDǫ
w2)

=
∫

Ωǫ

(|∇w|2 + αχDδ,ǫ
w2) + α

∫

Ωǫ

(χDǫ
− χDδ,ǫ

)w2

≤ λǫ(Dδ,ǫ) + Cα|Dǫ △Dδ,ǫ|,

where Dǫ △Dδ,ǫ is the symmetric difference of the sets Dǫ, Dδ,ǫ. Thus for the
sequence ǫj , we easily have |Dǫ △Dδ,ǫ| → 0 as j → ∞. We conclude

Λǫj
≤ λǫj

(Dδ,ǫj
) + o(1), j → ∞.

Likewise using the function uǫ in the argument above, we have

λǫj
(Dδ,ǫj

) ≤ Λǫj
+ Cα|Dǫj

△Dδ,ǫj
|

≤ Λǫj
+ o(1), j → ∞.

Thus,
|λǫj

(Dδ,ǫj
) − Λǫj

| → 0 as j → ∞.

Thus J1 → 0 as ǫj → 0. This establishes (24). We infer from (21) and (24)
that as j → ∞,

|Λ − λ(Dδ)| ≤ |Λ − Λǫj
| + |Λǫj

− λ(Dδ)| → 0.

Hence Λ = λ(Dδ). However, this contradicts Corollary 1 of our introduction,
a proof of which is supplied in [CGIKO]. 2

3 Open Problems and Conjectures

A number of open problems and conjectures can be stated based on the
numerical data in [CGIKO] and the rigorous results there and also on results
proved here. We will outline some.

Problem 1 : (Uniqueness of the optimal configuration) The only domain
for which we have established the uniqueness of the optimal configuration is
the ball, see Corollary 1. Is D unique if Ω is convex?
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Problem 2 :(Continuation Problem) Theorem 5 states that on a convex do-
main Ω, Dc is convex for small α > 0. Is it possible to continue along the
values α > 0, to obtain convexity of Dc for all α > 0?

Problem 3 :(The free boundary on general domains) The free boundary F
on general domains will contain an exceptional set E as constructed in the
proof of Theorem 8. What is the Hausdorff dimension of E? Is at least F
a rectifiable set? One suspects E consists of points, where real-analytic arcs
intersect if Ω ⊂ R2.

Problem 4 :(Monotonicity of D) Suppose A < A′, then does this imply
Dα,A ⊂ Dα,A′? If symmetry breaking occurs this statement needs to be mod-
ified. Nevertheless on domains where the optimal configuration is unique,
does the above monotonicity hold?

Problem 5 :(Symmetry breaking on annuli) When Ω is an annulus, what
is the shape of D precisely? The proof of Theorem 3 in our introduction as
presented in [CGIKO] and the numerical computations presented in [CGIKO]
suggest that Dc lies between two rays θ = 0 and θ = β. In fact the results
in [CGIKO] suggest that, β = π/N,N = N(α, |D|/|Ω|), and N → ∞ as
|D| → |Ω|.

Problem 6 :(Influence of the boundary curvature) In Theorem 9 we saw
in a model case that the diameter of D is affected by the curvature of ∂Ω.
Investigate this phenomena on general domains Ω.

We refer the interested reader to [CGIKO] for further problems and conjec-
tures.
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