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1. Introduction. One of the best-known results in extremal set theory is the Theorem 
of Erd6s-Ko-Rado [3]: 

Suppose n ~ 2 k, and let 9J~ be a family of k-subsets of an n-set M such that any two 

members of g31 intersect non-trivially, then [9)ll < . Furthermore, the bound can 

be attained, and the extremal families are precisely the families g)l a = {X ~ a: a E M} for 
k > 3. Many proofs of this result have been given, in addition to the original proof see 
e.g. [4, 9, 10]. Since all the members of an extremal familiy 932 have an element in common, 
we say that g)l has representing number 1. 

What  if we do not allow the sets of 9Jl to have an overall nontrivial intersection? How 
large can then ~9l be? The answer to this question has been given by Hilton-Milner [8] 
with a further proof appearing e.g. in [6]: Let ?Ol be an intersecting family of k-subsets of 

ann - se tMsuch tha t  (~ X = O ,  then lgJ l l<(nk - l l )  ( n - k k - I )  x ~  = - - 1  +1 for n > 2k. 

Again the extremal families are characterized. Since the members of 932 are allowed 
to contain one of two points, but not a single one we say that 9Jl has representing 
number 2. 

In this paper we estimate the cardinality of an intersecting family with an arbitrary 
representing number r, 1 -< r _< k. We first give the relevant definitions. All sets will be 

assumed to be finite. The collection of all k-subsets of a set M will be denoted by ( k )  . 

We say that a family 9)l is intersecting if any two members of 9)l have a non-trivial 
intersection. 

D e f i n  i t i o n. Let 9)1 be a family of sets, and R a single set. R is said to represent 9~ 
or be a representing set for 9)l if R c~ X ~: 0 for all X E ~g~. 93~ has representing number r 
if r is the cardinality of a smallest set representing 93l. 

Since an intersecting family ~ is represented by every one of its members we note that 
the representing number r of such a family satisfies r =< min ([ X]: X ~ 93~). In particular, 

if ~J/ ~ ( k )  then I -< r < k. 
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Theorem. Let n, r, k be natural numbers with I <_ r < k <_ n. Denote by g(n; r, k) the 

max imalcard ina l i t yo fan in tersec t ing fami ly~Ol~=(k)  o f a n n - s e t M w i t h r e p r e s e n t i n g  

number r. Then there are constants Cr, k, Cr, k only depending on r and k, such that 

Cr, k nk-" < g(n; r, k) <= Cr.k nk-r . 

Sections 2 and 3 are devoted to a proof  of this result with a few addi t ional  comments  
appearing in Section 4. 

2. Proof  of the upper bound.  This section establishes the existence of the constant  C,, k 
as spelled out in the statement of the theorem. We divide the proof  into a series of lemmas. 
Firs t  we need a definition. 

D e f i n  i t i o n. Let 91 be a family of sets and let u e N,  u > 1. A A (u)-system of 92[ is 
a subfamily ~B ~ 9.1 such that  

(i) 1~3[ = u,  
(ii) any two members  of ~3 have the same intersection C. C is called the stem of ~3. 

The following lemma appeared  in [2]. The easy proof  goes by induction on a. 

Lemma 1. Let a, b ~ N,  b > 1. Then there exists a smallest number f (a, b) ~ N such 
that any family o f  sets 91 with ]91t > f ( a , b )  and ( X ~ 9 1  ~ tX[ ~ a) possesses a 
A (b)-system. Furthermore, f ( a ,  b) N a! (b - 1) a. 

Lemma 2. Let  91 be a family of  sets with X ~ 91 ~ IX I < k. Let, further, ~B be a family 
of  sets such that every X ~ ~B is a representing set of  91 and satisfies IX[ < b. I f  
1~[ > f (b, k + 1), then there exists a representing set Y of  91 with [ Y I < b - 1 and Y ~ Z 

for some Z ~ f~. 

P r o o f. Let {Y1, . . . ,  Yk+ 1} be a A (k + l)-system o f ~  with I Y~I < b for all i and stem Y 
(guaranteed by Lemma 1). Then I Y I < b - 1, Y ~ Y~ e ~3. We claim that  Y represents 9I. 
If, on the contrary,  there existed X s 91 with X c~ Y = 0 then X would have to intersect 
all the disjoint set I11 - Y, Y2 - Y, . . . .  Yk+i -- Y,, in contradic t ion to tXl _-< k. [] 

To facilitate the induct ion used in the proof  of the theorem we introduce the following 
function. 

D e f i n  i t i o n. Let n, r, k e N.  F o r  g ~ N,  Y < k define the functions hi: I1~ ~ I1~ 

hk (x)  = x 

1 k-1  
he(x ) -  ( x - -  f ( k , k  + l ) ) - -  ~] f ( i , k  + l) for E < k .  

The following facts are immediately verified from the definition. 

8* 



116 M. AIGNER, P. ERDOS and D. GRIESER ARCH. MATH. 

f / i , , . \ \  
Lemma 3. 

\ V "  - I /  

i i ,  if x>(nk::)i~__lf(i,k+l)+ f(k,k+l)thenh,_,(x)>O. 
We come to the crux of the proof. 

Lemma 4. Let  n, k, r and M,  93l be given as in the statement o f  the theorem. For a sub- 

family  931' ~= ~ and f < k let 

9X'e= { X  ~= M : X  represents 9X, I S l  __<t and there exists Y~gJ l '  with 

x ~  Y}. 

Then 19~1 _-_ ht ([ 9X' D. 

P r o o f. We use downward induction on f. For  f = k we have 9J/~ ~ ~g/' and thus 
I ~ , 1  _-_- hk (I 9~' I) = 19~'1. Suppose we already know that [ 9J/~ + 11 > he + 1 (I 9Jl']) holds for all 
subfamilies 9X' ~ 9~/. We determine step by step distinct sets X l,  X 2 . . . . .  X~ ~ 9Jl' e with 

= max (0, [he (19J/'l)]). Let ~ > 0 and 1 </7  < c~. Suppose we have already found sets 
X1, X2 . . . . .  Xa_ 1 ~ 9X~. Set 

.~"  = { X  ~ 9Jl': X ~= X i for some i, 1 < i < ]7 - 1} 

~ = ~ , _ ~ , , .  

Then 9~ ~= 99l and hence [9~/e+ x[ > he+ 1 (19~/[) by the induction hypothesis. As every Xi 
represents ~ we have IXil  > r by the assumption on 991, and thus 

[{X = M : X  ~= Xi}[ _-< (i = 1 . . . .  , f l -  1). 

From this we infer 

i ~ 1  = 19Jl'l - i ~ " 1  

Since h e + ~ is strictly increasing we conclude from Lemma 3 (i) 

lg~/e+,l > he+, (lg~/I) > f(• + 1, k + 1). 

Now Lemma 2 applied to 9 / =  9J/, ~3 = H e +, implies the existence of a set X a with 
IXal  __< W representing 9J /and of Ye~Yle+ 1 with Xp ~ Y Y is, in turn, contained in a 
set Z ~ 9J/, Y ~ Z, by the definition of 9~e+ t. In summary, Xp N Z e 9J /~  ~/'. Hence 
Xp e ~.1/) and Xp must be distinct from all sets X~, .. . ,  Xa_ ~ since X a = Xi would imply 
Z ~ 93/" = 93/' - 9J/, whereas Z ~ 9X. [] 
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P r o o f o f t h e u p p e r b o u n d .  Suppose, on the contrary, there is no such con- 
stant C,.k. Then there are n, M and a family 93/satisfying the assumptions of the theorem 
with 

(*) lgJll > Y', f ( i ,  k + 1) + f ( k ,  k + 1). 
i = t  

Applying Lemma 4 with 9J/' = 99l and ~ = r - 1, we conclude 1931,_ 11 > h,_ 1 (I 991 I) and 
thus 193l,_ 1 [ > 0 by Lemma 3 (ii). But this contradicts the fact that 99l cannot b e repre- 
sented by a set of cardinality less than r, and the proof is complete. [] 

F rom the inequality (*) and Lemma 1 we obtain the following estimate of Cr, k. 

Corollary. For given n, r, k and M,  9Jl as in the statement of  the theorem we have 

3. Proof  of the lower bound. Let r and k be given. The Erd6s-Ko-Rado Theorem. states 

g(n;1, k) = I f~  > 2 k ' h e n c e c l " k e x i s t s ' F ~  > l weuseagenera l i za t i~176  

construction in [1] which includes the optimal family of the Hilton-Milner Theorem [8] 
for r = 2 and the one given by Frankl [5] for r -- 3 as special cases. 

Assume n > k + ( k - 1 ) + . . . + ( k - r + 2 ) + l .  Choose pairwise disjoint sets 
St (i = 0 . . . . .  r - 2) with ]Sil = k - i, a subset T c S O with ITI = r - 1 and an element 
x dg U Si. Denote by 9J/i the family 

~ =  ( x : x  ~= S , , lXnS~ l  = 1 for 1 < j <  i, I S n  TI = 1} 

( i =  1 , . . . ,  r -  2), 

and by 9Jl~ the family 

~ x  - { x :  IXI = k ,x  ~ X , X  n S, + 0 for all i} w {X: IX[ = k , x  u T ~= X} .  

r - 2  

The family ~ = U 99l~ u 9Jl~ u {So} is intersecting, has T ~ x as representing set, and 
i=1 

it is readily seen that no smaller set can represent 9211. Since the second part of 9)l x contains 

already sets, the existence of c,.k is established. 

4. Families with representing number k. As mentioned before, the precise value of 
g (n; 1, k) and g (n; 2, k) is known whereas the family 9Jl of the previous section was shown 
to be optimal in [5] for r = 3 and n > n o (k). Let us go to the other end and consider 
g(n; k, k). 

The theorem says in this case that 9(n; k, k) is independent of n for n >= no(k), so we 
denote it shortly by g (k). 

The corollary in Sect. 2 gives g(k)<= k! k k, and it was shown in [1] that, in fact, 
g(k)-< k k. To gain further insight into g(k) we observe that any maximal family 
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~Jl ~ ( /~ / )  with representing number  k must  include all representing sets of ~J~ of size k. 

This, in turn, immediately yields the following alternate characterization. 

condi- 
tions are equivalent: 

i) 93~ is maximal with representing number k. 
ii) 9Jl is maximal with respect to the condition that to every X ~ 92i~, x ~ X there exists 

Y e 9J~ with X c~ Y = {x}. 

The construction of Erd6s and Lov~isz in [1] yields 9 ( k ) >  kt ~, 1 ,  and thus 

L 

i=1 i! 
9 (k) > (e - 1) k! for k ~ oe. Fo r  small k, we have 9 (1) = 1, 9 (2) = 3. Using the preceding 
proposi t ion it can be easily shown that  9 (3) = 10 and, with a little more  work, g (4) = 41 
which was also found in [7]. Hence for these values, the construct ion in [1] is optimal,  and 
it is quite plausible that  opt imal i ty  always holds. 

Two interesting questions come to mind:  First,  improve the bounds  on g(k), and, 
secondly, estimate the threshold value n o (k). 

A c k n o w 1 e d g e m e n t. The authors  are grateful for some very useful comments  by 
Z. Ffiredi who independently proved our  main theorem. 
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