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1. Introduction. One of the best-known results in extremal set theory is the Theorem
of Erdds-Ko-Rado [3]:

Suppose n = 2k, and let M be a family of k-subsets of an n-set M such that any two
n—1
k—1
be attained, and the extremal families are precisely the families M, = {X 3 a: a € M} for
k = 3. Many proofs of this result have been given, in addition to the original proof see
e.g.[4,9, 10]. Since all the members of an extremal familiy I have an element in common,
we say that I has representing number 1.

What if we do not allow the sets of M to have an overall nontrivial intersection? How
large can then M be? The answer to this question has been given by Hilton-Milner [§]
with a further proof appearing e.g. in [6]: Let MM be an intersecting family of k-subsets of

an n-set M such that (|} X =0, then |9JI|§(Z_1>— n—k—1>+1 for n>2k.

Xem -1 k—1

Again the extremal families are characterized. Since the members of M are allowed

to contain one of two points, but not a single one we say that 9t has representing
number 2.

In this paper we estimate the cardinality of an intersecting family with an arbitrary

representing number r, 1 < r < k. We first give the relevant definitions. All sets will be

members of I intersect non-trivially, then |IM| < . Furthermore, the bound can

assumed to be finite. The collection of all k-subsets of a set M will be denoted by <Ak4>

We say that a family IR is intersecting if any two members of 9 have a non-trivial
intersection.

Definition. Let 9 be a family of sets, and R a single set. R is said to represent M
or be a representing set for M if R n X = O for all X € M. M has representing number r
if r is the cardinality of a smallest set representing IR.

Since an intersecting family 9 is represented by every one of its members we note that
the representing number r of such a family satisfies r < min (| X |: X € ). In particular,

ifiIRg(AI;I then I <r k.
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Theorem. Let n,r, k be natural numbers with 1 <r < k < n. Denote by g(n;r, k) the

AI;I of an n-set M with representing

number r. Then. there are constants c, ;, C, , only depending on r and k, such that

maximal cardinality of an intersecting family M <

Cr,knkur é g(na r, k) é Cr,knk_r'

Sections 2 and 3 are devoted to a proof of this result with a few additional comments
appearing in Section 4.

2. Proof of the upper bound. This section establishes the existence of the constant C,
as spelled out in the statement of the theorem. We divide the proof into a series of lemmas.
First we need a definition.

Definition. Let 2 be a family of sets and let u e N, u > 1. A A (w)-system of A is
a subfamily B < A such that

® [Bl=u,
(i) any two members of B have the same intersection C. C is called the stem of B.

The following lemma appeared in [2]. The easy proof goes by induction on a.

Lemma 1. Let a,be N, b > 1. Then there exists a smallest number f(a, b)e N such
that any family of sets U with |l > f(a,b) and (X e U = |X| < a) possesses a
A (b)-system. Furthermore, f (a,b) < a! (b — 1)°.

Lemma 2. Let U be a family of sets with X e W = | X | < k. Let, further, B be a family
of sets such that every X € B is a representing set of W and satisfies | X|Zbh. If
[B| > f (b, k + 1), then there exists a representing set Y of Wwith|Y|<b—1andY = Z
for some Z € B.

Proof Let{Y;,..., ¥, } bead(k + 1)-system of B with | ¥;| < bforalliand stem Y
(guaranteed by Lemma 1). Then |[Y| £ b — 1, Y £ Y; € B. We claim that Y represents 2.
If, on the contrary, there existed X € U with X n Y = @ then X would have to intersect
all the disjoint set ¥, — Y, Y, — ¥, ..., ¥, — Y, in contradiction to | X|< k. O

To facilitate the induction used in the proof of the theorem we introduce the following
function.
Definition. Let n,r,ke N. For £ €N, ¢ < k define the functions k,: Q@ — @

h(x) =x

The following facts are immediately verified from the definition.

hy(x) = c—flk+1)— 5 fGk+1) for £<k.
i=+1

8*
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I&mma3.Dh“4<x—hAw<n:r)):fU“FLk+1)ﬁwaﬂn
1

ii)ifx><k )Zf(zk+1)+f(kk+1)thenh 1(x)>0.

We come to the crux of the proof.

Lemma 4. Let n, k, r and M, I be given as in the statement of the theorem. For a sub-
SJamily W < Dand £ < k let

={X € M: X represents M, |X| ¢ and there exists Y eIN' with
XevYhL

Then || 2 h, (X))

Proof. We use downward induction on 7. For £ = k we have M, 2 W' and thus
[ = Ay (DV]) = |V|. Suppose we already know that [, , ;| = h,.  (9%']) holds for all
subfamilies I < . We determine step by step distinct sets X, X,,..., X, € M, with
o = max (0, [2, (JI]]). Let & > 0 and 1 < f < a. Suppose we have already found sets
X, X,,..., X5 1 €W, Set

M ={XeWM:. X2 X;forsomei,l £iZf—1}
M=o — M.
Then 9t = M and hence |M,, | = h,., (M) by the induction hypothesis. As every X

represents 9 we have [ X;| = r by the assumption on IR, and thus

HXgMXgXM§G:Q(ﬁLWj—H
From this we infer
(| = || — ||
>I93?’|—(ﬁ—1)< )
Z MW —(@-1) ( >
> |90 — h;(liUi’I)( :)
Since h,, , is strictly increasing we conclude from Lemma 3 (i)

|5ﬁi,+1] gh,+1(|5fﬁ|) >f&+1L,k+1).

Now Lemma 2 applied to A = M, B = M, , implies the existence of a set X, with
|X 4| < ¢ representing MM and of Ye SIR,H with X; ¢ Y. Y is, in turn, contalned in a
set Ze M, Y < Z, by the definition of M, ,. In summary, X s S Z¢ it < Pv. Hence
X, e P, and X, must be distinct from all sets X, ..., X,_, since X, = X; would imply
ZeM =M — M, whereas Zeh. O
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Proof of the upper bound. Suppose, on the contrary, there is no such con-
stant C, .. Then there are n, M and a family 9t satisfying the assumptions of the theorem
with

o\ k-1
* |sm|>(,’§_:> T Sk 1)+ Sk +1).
Applying Lemma 4 with ' = M and £ = r — 1, we conclude |M,_,| = h,_, (W]) and
thus |9, _,| > 0 by Lemma 3 (ii). But this contradicts the fact that 9 cannot be repre-
sented by a set of cardinality less than », and the proof is complete. O
From the inequality (*) and Lemma 1 we obtain the following estimate of C, ;.

Corollary. For given n,r, k and M, I as in the statement of the theorem we have
k
M) < <Z i! ki> .
i=r

3. Proof of the lower bound. Let r and k be given. The Erds-Ko-Rado Theorem states
gn; 1, k)= (Z : i) forn = 2k, hence ¢, , exists. For r > 1 we use a generalization of the

construction in [1] which includes the optimal family of the Hilton-Milner Theorem [8]
for ¥ = 2 and the one given by Frankl [5] for r = 3 as special cases.

Assume nzk+(k—-1)+---+(k—-r+2)+1 Choose pairwise disjoint sets
S;i=0,...,r—2) with |S;| =k — i,a subset T < S, with |T|=r — 1 and an element
x ¢ ) S;. Denote by I, the family

M={X:X28,|XnS|=1for1<j<i,|[XnT|=1}
(=1,...,r—2),

and by I, the family
M ={X:|X|=k,xeX,X S +0foralli} u {X:|X|=k,xuTgX}.

r—2

The family M = ) M; U M, U {So} is intersecting, has T U x as representing set, and
i=1

it is readily seen that no smaller set can represent 3. Since the second part of 3, contains

already (Z : :) sets, the existence of ¢, , is established.

4, Families with representing number k. As mentioned before, the precise value of
g(n; 1, k) and g (n; 2, k) is known whereas the family It of the previous section was shown
to be optimal in [5] for r = 3 and n = ny (k). Let us go to the other end and consider
g(n; k, k).

The theorem says in this case that g (n; k, k) is independent of n for n = nq(k), so we
denote it shortly by g (k).

The corollary in Sect.2 gives g (k) < k! k¥, and it was shown in [1] that, in fact,
g(k) < k*. To gain further insight into g(k) we observe that any maximal family
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mc (f) with representing number k must include all representing sets of M of size k.

This, in turn, immediately yields the following alternate characterization.

Proposition. Ler I < (A];[) be an intersecting family. Then the following condi-
tions are equivalent:

i) M is maximal with representing number k.
it) M is maximal with respect to the condition that to every X € M, x € X there exists
YeMwithX nY = {x}.

k
The construction of Erdds and Lovasz in [1] yields g(k) = k! > _1', and thus
i=1i!

gl{k) = (e — 1) k! for k - oco. For small k, we have g(1) = 1, g (2) = 3. Using the preceding
proposition it can be easily shown that g (3) = 10 and, with a little more work, g(4) = 41
which was also found in [7]. Hence for these values, the construction in [1] is optimal, and
it is quite plausible that optimality always holds.

Two interesting questions come to mind: First, improve the bounds on g(k), and,
secondly, estimate the threshold value ng (k).
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