Übungen zur Funktionentheorie Serie 5

Aufgabe 18 (5 Punkte). Sei $P(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$ eine Potenzreihe um z_0 mit Konvergenzradius $0 < R < \infty$.

- a) Sei $z_1 \in B_R(z_0)$. Zeigen Sie, dass dann eine Potenzreihe $Q(z) = \sum_{k=0}^{\infty} b_k (z-z_1)^k$ mit Konvergenzradius $R' \geq R |z_1 z_0|$ existiert, welche für $|z z_1| < R |z_1 z_0|$ mit P(z) übereinstimmt.
- b) Zeigen Sie, dass sich P(z) nicht zu einer holomorphen Funktion auf einer offenen Umgebung U von $\overline{B_r(z_0)}$ fortsetzen lässt.

Aufgabe 19 (5 Punkte). Sei f eine ganze Funktion, welche nicht konstant ist. Zeigen Sie, dass für jedes $w \in \mathbb{C}$ eine Folge $(z_n)_{n \in \mathbb{N}} \subset \mathbb{C}$ derart existiert, dass $\lim_{n \in \mathbb{N}} f(z_n) = w$ gilt.

Aufgabe 20 (5 Punkte). Sei U konvex und offen, $f: U \to \mathbb{C}$ holomorph mit $f(z) \neq 0$ für alle $z \in U$. Zeigen Sie, dass dann eine holomorphe Funktion $h: U \to \mathbb{C}$ existiert mit

$$e^{h(z)} = f(z)$$

für alle $z \in U$.

Hinweis. Betrachten Sie f'/f.

Aufgabe 21 (5 Punkte). Sei f eine ganze Funktion mit $\lim_{|z|\to\infty} |f(z)| = \infty$. Beweisen oder widerlegen Sie, dass f ein Polynom ist.