Lösungen zu den Beispielaufgaben zum Zertifikat $null\ problemo-Mathematisches\ Problemlösen$ 2025/2026

Lösung zu Aufgabe 1.

1. Es gibt $2 \cdot 2 \cdot 2 = 8$ Tripel, da man a, b, c jeweils auf 2 Arten wählen kann, unabhängig davon, wie die anderen Zahlen gewählt wurden.

(Man könnte diese auch einfach auflisten. In verkürzter Schreibweise ohne Klammern: 111,112,121,122,211,212,221,222)

2. Analog zu 1. gibt es $10 \cdot 10 \cdot 10 = 1000$ Tripel.

Sollen a,b,c alle verschieden sein, so hat man 10 Möglichkeiten, a zu wählen, dann für jede davon 9 Möglichkeiten, b zu wählen, und schließlich für jede davon 8 Möglichkeiten, c zu wählen. Also gibt es $10 \cdot 9 \cdot 8 = 720$ solche Tripel.

Die Tripel, bei denen a, b, c alle verschieden sind, kann man zu Sechser-Gruppen zusammenfassen, wobei die Tripel in einer Gruppe sich nur durch die Reihenfolge unterscheiden. Eine Gruppe ist z.B. 134,143, 314, 341, 413, 431. (Die Zahl sechs ergibt sich, da es 6=3! Möglichkeiten gibt, drei Zahlen anzuordnen.) In jeder solchen Sechser-Gruppe gibt es genau ein Tripel mit a < b < c (im Beispiel ist das 134). Da man die 720 Tripel mit verschiedenen a, b, c in Sechser-Gruppen aufgeteilt hat und jede davon genau ein Tripel mit a < b < c enthält, gibt es genau $\frac{720}{6} = 120$ Tripel mit a < b < c.

(Wenn man den Binomialkoeffizienten kennt, kann man das auch so bestimmen: Die Tripel mit a < b < c entsprechen genau den 3-elementigen Teilmengen von $\{1,2,\ldots,10\}$, da man jede solche Menge eindeutig in der Form $\{a,b,c\}$ mit a < b < c schreiben kann. Die Anzahl dieser Teilmengen ist durch den Binomialkoeffizienten $\binom{10}{3}$ gegeben, also gibt es $\binom{10}{3} = \frac{10\cdot 9\cdot 8}{3!} = 120$ solche Tripel.)¹

3. Jedem solchen Tripel ordnen wir das Zahlenpaar (a, a + b) zu. Also z.B. zu dem Tripel 136 das Zahlenpaar (1,4).

Ist (x, y) ein Zahlenpaar, das so aus einem Tripel abc mit a+b+c=10 entsteht, so gilt $1 \le x < y \le 9$, denn: $x = a \ge 1$, y = a+b > x und y = a+b < a+b+c=10.

Umgekehrt entsteht jedes Zahlepaar (x,y) mit $1 \le x < y \le 9$ aus genau einem solchen Tripel, da man einfach $a=x,\,b=y-x,\,c=10-y$ setzen kann.²

¹Stellt man beide Lösungen nebeneinander, sieht man, dass sie zusammen im Endeffekt eine Herleitung der Formel für den Binomialkoeffizienten, also hier die Anzahl der 3-elementigen Teilmengen einer 10-elementigen Menge ergeben.

 $^{^2}$ Zur Verdeutlichung ist es hilfreich, die Zahlen $1, \ldots, 10$ sowie x, y auf einem Zahlenstrahl darzustellen.

Also ist die Anzahl der gesuchten Tripel gleich der Anzahl solcher Zahlenpaare (x, y). Analog zum letzten Teil der vorigen Aufgabe gibt es $\frac{9.8}{2} = 36$ solche Zahlenpaare.

Also gibt es genau 36 Tripel mit a + b + c = 10.

Lösung zu Aufgabe 2.

1. Für n=1,2,3,4,5 sind die Zweierpotenzen 2^n gleich 2,4,8,16,32, sie haben die Endziffern 2,4,8,6,2. Ab da wiederholt sich das Muster, da man die 2 nun wieder mit 2 multipliziert usw. Das heißt, die Endziffer 2 tritt für $n=1,5,9,13,\ldots$ auf, also wenn n den Rest 1 modulo 4 lässt. Jeweils 3 Schritte später, also wenn n durch 4 teilbar ist, ist die Endziffer 6. Da 1000 durch 4 teilbar ist, hat also 2^{1000} die Endziffer 6.

Man könnte auch so argumentieren, wobei man die Rechenregeln für Kongruenzen verwendet: Zunächst gilt (alles modulo 10) $2^4 = 16 \equiv 6$. Weiterhin ist $6^2 = 36 \equiv 6$, und daraus folgt $6^3 = 6^2 \cdot 6 \equiv 6 \cdot 6 \equiv 6$, dann $6^4 \equiv 6^3 \cdot 6 \equiv 6 \cdot 6 \equiv 6$ usw., also $6^m \equiv 6$ für alle natürlichen Zahlen m. Damit folgt

$$2^{1000} = 2^{4 \cdot 250} = (2^4)^{250} \equiv 6^{250} \equiv 6$$

modulo 10, also endet 2^{1000} mit der Ziffer 6.

2. Es gilt $n^3 + 11n = (n^2 + 11)n$ und $n^2 + 11 \equiv n^2 - 1$ modulo 6. Mit $n^2 - 1 = (n-1)(n+1)$ folgt $n^3 + 11n \equiv (n-1)n(n+1).$

Dies ist durch 6 teilbar, da von den drei aufeinanderfolgenden Zahlen n-1, n, n+1 mindestens eine gerade sein muss und mindestens eine durch 3 teilbar sein muss. Da $n^3 + 11n$ durch 6 teilbar ist, kann $n^3 + 11n + 3$ nicht durch 6 teilbar sein.

Lösung zu Aufgabe 3.

Falls zwei der Zahlen dieselbe Endziffer haben, ist ihre Differenz durch 10 teilbar. Falls nicht, so treten 7 verschiedene Endziffern auf. Die Endziffern können 0 oder 5 sein oder in einer der Zweiergruppen $\{1,9\}$, $\{2,8\}$, $\{3,7\}$, $\{4,6\}$ liegen. Da dies nur 6 Möglichkeiten sind, muss eine doppelt auftreten. Die Summe dieser beiden Zahlen ist dann durch 10 teilbar, weil 0+0=0, 5+5=10, 1+9=10 usw.

Für 6 Zahlen stimmt das nicht unbedingt, z.B. für 10, 11, 12, 13, 14, 15.

³Etwas formaler könnte man das mit vollständiger Induktion aufschreiben, diese Begründung ist hier aber ausreichend.