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1. Introduction

Reasonable VaR-estimates from original data or suitable scenarios for risk management
within so-called Internal Models are — besides the banking sector under Basel III — of
particular interest in the insurance industry under Solvency II (see, e.g., Cadoni (2014); Cruz
(2009); Doff (2011,2014); McNeil et al. (2015); Arbenz et al. (2012) or Sandstréom (2011)). In
this paper, we propose a simple stochastic Monte Carlo algorithm on patchwork copulas for
the generation of VaR scenarios that are suitable for comparison purposes in Internal Models
for the calculation of solvency capital requirements. Note that the European Union (2015)
concerning the implementation of Solvency II in the EU requires the consideration of such
scenarios in several Articles, in particular in Article 259 on Risk Management Systems saying
that insurance and reinsurance undertakings shall, where appropriate, include performance of
stress tests and scenario analyses with regard to all relevant risks faced by the undertaking, in
their risk-management system. The results of such analyses also have to be reported in the
ORSA (Own Risk and Solvency Assessment, see e.g. Ozdemir (2015)) as described in Article
306 of the Commission Delegated Regulation. The problem is, however, that the Commission
Delegated Regulation does not make any clear statements on how such stress tests or scenario
analyses have to be performed.

Article 1 of the Commission Delegated Regulation defines a “scenario analysis” as an
analysis of the impact of a combination of adverse events. The Monte Carlo simulation
algorithm developed in this paper allows for a mathematically rigorous description how such

scenarios can be generated, being flexible enough to cover also extreme situations.



2. Unfavourable patchwork copulas

Patchwork copulas in the context of risk management have been treated in detail by Arbenz et
al. (2012), Cottin and Pfeifer (2014), Pfeifer (2013), Pfeifer et al. (2016, 2017, 2019) and
Hummel (2018), among others. In several of the cited papers the question of an unfavourable,
i.e. superadditive VaR estimate for a portfolio of aggregated risks was in particular
emphasized, see also Pfeifer and Ragulina (2018). However, the construction of worst VaR
scenarios in this context is quite complicated; a numerical approach to a constructive solution
is e.g. given by the rearrangement algorithm (see e.g. Arbenz et al. (2012), Embrechts et al.
(2013) or Mainik (2015)). From a practical point of view, simpler and yet explicit
constructions for unfavourable VaR estimates by appropriate copula constructions seem to be
a useful alternative. In this paper, we describe how such a construction could be performed.
We start with an explicit approach in two dimensions that is later extended to arbitrary

dimensions.

Theorem 1. Let, for d >2, d €N, U=(U,,---,U,) and V=(V;,---,V,) be d-dimensional

random vectors over [O,I]d with continuous uniform margins (i.e., U and V represent d-

dimensional copulas). Let further I denote a binomially distributed random variable,
independent of U and V, with P(/=1)= p € (0,1). Then the random vector W with

components W, :=1-p-U, +(1 —I)-[p +(1- p)-Vi] for 1 <i <d also has continuous uniform

1

margins, i.e. W represents a d-dimensional copula (a kind of patchwork copula).

: o l, 0<x<p .
Proof: The density of p-U, is given by f(x)={p and the density of

0, otherwise

p+A—=p)-V. by g(x)=11-p which implies that the density of W, is given

0, otherwise

) . I, 0<x<l1
by the mixture density p- f,(x)+(1—p)-g,(x) = ) °
0, otherwise.

Suppose now that a portfolio of d insurance risks is considered where a mutual probabilistic
dependence structure is assumed, described by U. If the d (for simplicity assumed continuous)

marginal risk distribution functions are denoted by F,---,F, and by Q,,---,0, their pseudo-
inverses (quantile functions), then both random vectors (QI(U]),---,Qd(U d)) and
(QI(WI),---,Qd(%)) represent a risk vector X:(Xl,---,Xd) with the given marginal

distributions. However, w.r.t. to risk aggregation, X := (Q1 w),--,0, (Wd)) creates in general



d
an unfavourable VaR scenario for § = ZX .» even if p is close to 1 and therefore U and W

i=l
differ only marginally. The following graph shows the corresponding support of W in two
dimensions.

1-3 1

Fig. 1

In the sequel put p:=1—73 for 0 < G <1. Then W:]-(l—ﬁ)-U—I—(I—I)-(l—ﬁ—i—ﬁ-V).

We start with some preliminary Lemmata.

Lemma 1. Let W,:=(1-3)-U, W,=1-3+3-V, Z, =0,(W,) and Z, =0 (W,),
i =1,2.Then there hold

F;(x)’ 0<x<0(-0) 0, 0<x<Q(1-p5)
lei(x,ﬂ): 1-0 and FZZi(xaB): Fx)+p6-1 x>0(01-7)
1,  x>00-0) g - '

Proof. We have

F, (x,8)=P(0,(1-B)-U,)<x)=P(1-B)-U, < F(x))

ply < B0 EW _
o, < B9 KO o <r<ga-s)

p—

and



F, (x,0)=P(Q,(1-8+8-V,)<x)=P(1= B+ -V, < F,(x))= P|V, <

F,,(x)+ﬁ—1]
B
_FE®+p-1

3 , x>0(1-0),i=12. e

Lemma 2. Assume that f'and g are Lebesgue densities of independent random variables X and
Y, concentrated on the same finite interval [O,M ] with M >0. Then S:=X +Y has the

density A4, given by

[Fa—pegmdy,  0<x<m
Iy (x) = !

[ rGc=pedy, M<x<om.

L x—M

If f and g are concentrated on the same infinite interval [M ,oo) with M >0, then

S = X +7Y has the density 4, given by

()= [ fx=2g()dy, x>2M.

In particular, if F and G are the corresponding cdf’s pertaining to f and g, resp., then in either

=0, where * means convolution.

case, iF*G(x)
dx x=2M

Proof. In the finite interval case, we have, by the wusual convolution formula,

o= [ fe=wemdv= [ fxr=»g()dv. Now for 0<x<M,

0<y<m max(0,x—M )<y<min(x,M)
0<x—y<M

we have max(0,x— M) =0, min(x,M )= x, from which the upper formula in brackets above
follows. For M <x<2M, we have max(0,x —M)=x—M, min(x,M)= M, from which
the lower formula in brackets above follows.

The proof for the infinite interval case is analogous, observing that for x >2M, we have

b= [ fe-»emdr= [ fGx=»eg0)d.

M<y<x M<y<x-M
M<x—y



Further, under the conditions made, we have, in either case,

LFaGE)  =hCM) =h@M)= [ f(x-pghdy =0,
X M

x=2M

as stated. e

Lemma 3. Assume all F, = F being equal with quantile function Q, and that U and V have

independent components each. Denote

F(x) _
Fapy=l1_p =209 4 F(x,ﬁ)::F(”Q(lgﬁ)”ﬁ_l,xzo.
I, x>0(1-75)

d
Let further denote X, :=Q(W,) and S := Z X,. Then we can conclude that

i=1

(1-BE"(x,8), x<dO(1-p)

Fo(x,0)= —dx
(1-0)+BF (x—do(1-p),5), x>dO(1-p),

where * again means convolution. If F has a density f, then correspondingly

JAC))
sepy=l-p =D g Fpy = L= g
0, x>0(1-0) E
and
f5(x.8) 1=B)f"(x.0), x<dQ(1-p)
L(x,0)=

(A=B)+Bf" (x—dQ(1—B),8), x>dQ(1—f).

Proof. Let { and (, be independent random variables with the cdf’s F(+,3) and 17(-,6),
resp. Then I'§i+(1—1)~(Q(1—5)—|—(i) 1s a stochastic representation of X, i=1.---,d,
where again / is a binomial random variable with P(I=1)=1-3 and P(I=0)=/,

independent of (U, V), according to Lemma 1. Hence



I-Zgi+<1—1)-Z<Q(1—ﬁ>+<i)=I-Zf,-+(1—1)-[dQ(1—5)+Z<,-]

d d
is a stochastic representation of S. Note that the cdf of Z{i is F d*(-, () and that of ZCi is

i=l1 i=1

Fd*(-,ﬁ), from which the assertion follows. e

The following examples show the effect of a risk aggregation with an unfavourable VaR

scenario for two dimensions in detail.

0, x<O0
Example 1 (exponential distributions). Assume that F, = F, = {1 ;. >0 Then
—e ", x>0.
1-e _B-e" —x—In(B) .
FZ”(-xaﬁ)_ 1 5 ,OSXS—IH(/B) andFZZi(xJ/B)_ 5 =l-e axZ_ln(ﬁ)Jl_laz'

For the corresponding densities, we obtain by differentiation

—X

e

£ ()= 5 0<x<-In(B) and le(x,ﬁ):{ *xfln(/i())’ x<—1n(ﬁ)’ =12
h 0 x> —In(3) ) em, x2-ln(f)
and
o
s ={—g P=TETO) 7(x,ﬂ):{ 0 x;?
0, x>—In(B) € *=U

By Lemma 3, we obtain the following density f of the aggregated risk S:

lxiﬁ 0<x<—In(8)
fi(x,8) =1 (_2111(16_) ;x)ex , —In(B)<x<—2In(B)
(x+21r;(ﬂ))ex > 21n(d)




with the corresponding cdf Fj :

%, 0<x<—In(3)
Fuop) =] 1229+ 2/1111(? FAE0e . in@) <x<—21n(8)
B—2e *In(B)—(1+x)e " x>—2In(p).

: >

0.4+

0.3

0.2

0.14

0 2 4 [ ) 10 12

X

plots of f,(x,3) for 3=0.1 (red) and g(x) (blue)
Fig. 2

Here g is the density of T":= Q,(U,) + O,(U,) (independent summands, Gamma distribution).

0.995

0.996

0.994

0.992

0.9

plots of F(x,3) (red), G(x) (blue), and H(x,3) (khaki), for 3 =0.005
Fig. 3



Here G is the cdf for 7:=Q,(U,)+ Q,(U,) (independent summands, Gamma distribution)

and H the cdf for S under the worst VaR scenario, i.e. the distribution of V corresponds to the

lower Fréchet bound or countermonotonicity copula (see e.g. Embrechts et al. (2013) or
Pfeifer (2013)). In this case we have

F,(x), x < —2In(B)
H(x,B)= 1-3, —2In(B)<x<-2In(3/2)

1—B4+/3° —de ™, x>—2In(3/2).

Note that with the Solvency II standard o =0.005, we get here, for [B=aq,
VaR  (§)=10.5914 > VaR _(T)=7.4301. For the worst VaR scenario, however, we get

wVaR | (S*) =11.9829>10.5966 = VaR (X,)+ VaR_(X,). Note that actually the worst

VaR is obtained as a limit of VaR . <S) for € |0 due to the right continuity of cdf’s.

Seemingly VaR _(S)=10.5914 <10.5966 = VaR (X,)+ VaR (X,) which means that even
with the construction for S with 3 = «a, we still have a (quite small) diversification effect, but
not in the worst VaR scenario. This changes, however, if we look at VaR_(S)=10.9630
when we replace 3 by a+¢ in the definition of W for e.g. £ =0.001.

The following graph shows the cdf’s for several choices of «.

11
0.995
0.996
0.994 4

0.992

099%

plots of F(x,0.005+¢) for ¢ =0.001 (blue), €=0.002 (red), €=0.003 (khaki)
and H(x,0.005) (black)

Fig. 4

The following graph shows the values of (,(0.995,3)= F;'(0.995,3) in the range
0.0062 < 3 <0.0076.



A numerical calculation shows that for a=0.005 the worst VaR (S5)=10.98292909
attained for 4 =0.00679331, i.e. £¢=0.00179331.

0.0p82 00054 00086 00088 0.007 0.0p72 0.0074

/6 10.984
r10.982
r10.972

0,(0.995,5)
1097
Fig. 5
0, x<0
Example 2 (uniform distributions). Assume that /, =F, ={x, 0<x<1 Then
1, x>1.

lei(xaﬂ):ﬁa OSXSI_ﬂ and Fzzl.(x’ﬂ):%ﬁ_la le_ﬁa l:172

By Lemma 2, we obtain the following density f of the aggregated risk S:

X

1—/8’ xSI_ﬁ
Lﬁ—x’ 1—3<x<2-283
1-p
Ss(x,08) =1 hin
X224 g ap<x<2-p
B
2—x

2—p<x<2

5

with the corresponding cdf Fy :

1S



2
X

_— x<l-p
2(1-05)
=P -x 2007 g icnag
Fux, ) =1 0-p T
41-p)1-x)+x° —28+26" 2B<x<2-4
23 ’ -
23 —4(1—x)—x N P
23 ’ -
0 02 04 06 038 1 12 14 15 18 2 S
plots of £, (x,3) for 3=0.1 (red) and g(x) (blue)
Fig. 6

Here g is the density of T':= Q,(U,) + O,(U,) (independent summands, triangle distribution).

0.998 /

0.996

0.994

0.992

099% g7 1975 198 1.985 199 1.995 2

X

plots of F,(x,3) (red), G(x) (blue), and H(x,() (khaki) for 3= 0.005
Fig. 7

Here G is the cdf for 7= Q,(U,)+ O,(U,) (independent summands, triangle distribution) and

H the cdf for S under the worst VaR scenario, i.e. the distribution of V corresponds to the
upper Fréchet bound (see e.g. Embrechts et al. (2013) or Pfeifer (2013)). In this case we have
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F,(x) x<2-20
H(x,0)=1{1-0, 2-20<x<2-0
1, x>2-p.

Note that with the Solvency II standard «=0.005, we have here, for [B=aq,
VaR  (§)=199=VaR (T). For the worst VaR scenario, however, we get here

wVaR | (S*):1.995>1.99:VaRa(Xl)%—VaRa(Xz). Note that actually the worst VaR is
obtained as a limit of VaR . (S *> for € | 0 due to the right continuity of cdf’s. Seemingly

VaR _ (§)=1.99=VaR (X,)+VaR_(X,) which means that with the construction for § we

have no true diversification effect, likewise in the worst VaR scenario. This changes,
however, if we look at VaR (S§)=1.991 when we replace 3 by a+«¢ in the definition of W

fore.g. €=0.001.

The following graph shows the cdf’s for several choices of «.

1
// ’/
/7
0.9984 /
0996 /
/

0.994+

0.992

0.99% o7 1975 198 1.985 199 1.995 2

X

plots of F(x,0.005+¢) for € =0.001 (blue), € =0.002 (red), € =0.003 (khaki)
and H(x,0.005) (black)

Fig. 8

The following graph shows the values of (,(0.995,3)= F;'(0.995,3) in the range
0.0054 < 3 <0.007.

11



0.0054 0.0056 0.0058 0.006 0.0062 0.0064 0.0066 0.0068 0.007

1.9915
r1.99145
1.9914

r1.99135

\
0,(0.995,8) "\
\

1.9913

Fig. 9

A numerical calculation shows that for a=0.005 the worst VaR (S5)=1.991464466 is
attained for 5 =0.006035, i.e. ¢ =0.001035.

Note that in this example a closed-form representation for Q. (u,3) is given by
Ocu,8)=2-20+28(B+u—-1),1-<u< l—g. This implies

Os(1—a,0)=2-20+28(8-a),a <5 <2a

with its maximum being attained for 3, = 1+2ﬁ a with value
V2 . .
O(l—a,8,)=2— 1—|—7 a. Note that the worst VaR here is wVaR | (S ) =2—a.

0, x<0
Example 3 (Pareto distributions). Assume that F =F, =7 x 0 Then
, X>
I+x
X 1 1 1 ,
F, (x,f))=————, 0<x<—-1 and F, (x,0)=1— , x>——1,i=12.
’ (1=5)1+x) g ’ B +x) g
For the corresponding densities, we obtain by differentiation
—(l ﬁ)il—F = §x§l—1 0, x<%—l
— X
£, (5, 8) = and £, (nB)={ ;
0, x>—-—1 —, x>—-1
B(1+x)

12



and

1 1

——, 0<x<——-1 0, x<0
_1+x)? _ ’

S =1 T Dowmd Fen=l s

0, x>5—1 (+px)°

In order to calculate the density f; of the aggregated risk S, we need a suitable partial fraction

representation of f(x—y)/f(») and 7(x — y)?( »). Note that in general, we have

1 1
A+x—y)A+y) C24x

1 1
+
l+x—y 1+
and
1 B 1
(+x—y)7°01+y)* Q2+x)’

_ 1
(2+x)

1 1 ]2
+
(I+x-y) (A+y)
1 1 2
2+ 2
(I4+x—y) 1+ 2+x

1 1
I+x—y 14y

from which we obtain, by Lemma 3,

x2+2x—2ln(1+x)’ <x<l—1
2+x)'(1-p) B
Fo(n,3) = (1-28)x +(4—6ﬁ)x—‘iﬁ+4+2ln(ﬁx+2ﬁ—l), l—1§xgz 1—1]
(2+x)(1-5) B B
x2—2x+gln(6x+25—l) i
B x>2 ——1].
(2+x) B

The density f,(x) follows by differentiation.

13
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plots of £, (x,3) for 3=0.1 (red) and g(x) (blue)
Fig. 10

Here g is the density of 7':= Q,(U,)+ O,(U,) (independent summands).

0.998

0.997

0.996+

0.995-

0.994 600 800 1000

200 400
X

plots of F,(x,3) (red), G(x) (blue), and H(x,3) (khaki) for 8 =0.005
Fig. 11

Here G is the cdf for T:=Q,(U,)+0,(U,) (independent summands) and / the cdf for S

under the worst VaR scenario, i.e. the distribution of V corresponds again to the upper Fréchet
bound. In this case we have

2
FS » ) S__z
(x.3) v
Hx,8) = -8, %—2<x<%—2
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Note that with the Solvency II standard «=0.005, we have here, for (F=aq,
VaR  (5)=397.3168 < VaR _(T)=403.9161. For the worst VaR scenario, however, we get

wVaR | (S*> =798>398=VaR (X,)+VaR (X,). Note that actually the worst VaR is
obtained as a limit of VaR __ (S *> for £ | 0 due to the right continuity of cdf’s. Seemingly

VaR  (§)=397.32<398=VaR _(X,)+VaR _(X,) which means that even with the

construction for S we still have a (quite small) diversification effect, but not in the worst VaR
scenario. This changes, however, if we look at VaR  (§)=488.2116 when we replace 3 by

B+ ¢ in the definition of W for e.g. ¢ =0.001.

The following graph shows the cdf’s for several choices of «.

0.996

0.995

0.994

0.993

0.992 400 600 800 1000

X

plots of F(x,0.005+4¢) for € =0.001 (blue), € =0.002 (red), €=0.003 (khaki)
and H(x,0.005) (black)

Fig. 12

The following graph shows the values of (,(0.995,3)= F,;'(0.995,3) in the range
0.007 <3 <0.012.

15



0.007 0008 0.009 01 0.1 0012

510

508

506

504

0,(0.995, 8

502

Fig. 13

A numerical calculation shows that for a=0.005 the worst VaR_(§)=509.3798950 is
attained for G = 0.0088963, i.c. ¢ =0.0038963.

These examples show that it is generally possible to obtain near worst VaR scenarios by a
suitable choice of 3 = a4 ¢ in the definition of W.

We continue with a particular construction of W which allows in general for an unfavourable
VaR scenario.

0 --- 0
0 . : . : . :
Theorem 2. For d e N, d>1 let I, =| . 0 denote the d-dimensional unit matrix
0 --- 0
1 1 1
I : o : :
and E, =|. . the dxd matrix with all entries equal to unity. Then
1 11
I r r
roe. :
Y, =0-mI,+7E, =|. . is a correlation matrix iff —%grgl. In the
: o -
]/' oo ]/' 1

general case, the eigenvalues ) of X, are given by X\ =14+(d—-1r and

16



N =1-r,i=2,---,d. An orthonormal basis 7;,---,T, of corresponding eigenvectors is given

1

L icicy
JjG =D
1 f,
L|: dT : for 2< j <d where ¢ 1 j=i
by T=—|:|and T, =| : <j< = i =
Jd || : J
' 0, i>].

Hence Y, possesses the spectral decomposition Y, = AA" with A=TJA where

A 0 - 0

0N 0
T=[T,,T,] and A=| ol

0 -+ 0 )\

To prove Theorem 2, we need the following Lemma.

Lemma 4. For all d > 2, we have

4 —1

Z (k—l) d ’

k=

and for 1 <i<d, we have

d—i d—l
— (z+k)(z+k—1) d

_|_

Proof. Part a) of Lemma 4 can be easily proved by induction. For d =2, this is obvious.
Now assume that the statement is true for some d>2. Then we have
d+1 d 1 d _ 1 1

= — _|_ — ,
;k(k—l) Zk(k—l) d(d+1) d did+1) d+1

true for d 41, which proves a).

hence the statement is also

Part b) of Lemma 4 follows immediately from part a) since Q: ! and
1 k=2 k(k_l)
d—i d
v e DEP L
o (R +k=1)  SHk(k—1)
Proof of Theorem 2. We first show that TT” =1,=T"T. Let TT" —[bl]] - For
i,j=
' d—i

1<i<d we obtain, by part b) of Lemma 4, b, = —|— =1. For

o @ +k)(l +k=1)
17



1<i,j<d with i=j we get, with iV j:=max(i, ), following part b) of Lemma 4,

1 1 d 1 1 1 i 1
=Tt Z :——erZ — —
Cood iV W Sak(k=1) d vy T (K+iV)k+iVj—1)
11 +d—1_l\/]—1:1_1:0.

d ivj d iV j

This proves TT” =1,. On the other hand, let T”T:[cij]_ ..., It is obvious that
i jmli

=L.d=1andforall 2<i<d, ¢, ———.(i—D+ =11
d i(i—1)

Next, for all 2<j<d,we obtain ¢, = L ! -(j—-D+ /=1 =0, and for all
’ T Yo Nal G- Vi

1 1 i—1
2<i<d, we get ¢, = - -(i—D+,——1|=0. Finally, for 2<i,j<d with
g 1 \/Z \/i(i—l)( ) ; ] y J
i=j, we get ¢, =——F—— 1' ' -[— —— 1' ' -(iVj=D+ l\{]_‘l]:O.
TJ@V-Gvi=D NGV )GV =D iV
This proves T"T=1,.
A —t 0o - 0
, 0 -t 0 :
Now let \ =14+(d—Dr, A =1—r,i=2,---,d and A, = . 0 of
0 R D
A standard computation yields, for € R,
1+(d—-Dr—t l=r—t l=r—t o l—r—t =r—t
Jd J22-1) NETEE J(d—1)d—-2) Jd(d—1)
I+d—-Dr—t [2—1 l—r—t l—r—t 1—r—t

BG—)  Jd—1d—2) Jdd—1)
1+(d—-r—t 0 E(l—r—t) L= l=r—t
TA, = Jd V3 Jd=1)(d—-2) Jd(d—1)|.

Ja

—”(d\/_;)r_’ 0 0 | \/%(l;r—t) ——\/1;(;7:)
—H(djgl)’"_’ 0 0 0 @(l—r—t)
Let TAT" = [dij]l_’j:h“’d . From part a) of Lemma 4 it follows that
d,, :H(Ci?%Jr(l—r—t)kZd;k(kl_l) - 1+(d;1)r_t —|—(1—r—t)~%:l—t,

18



and for 2 <i<d, part b) of Lemma 4 gives

1+ (d —1)r—t i—1 & 1
d =477y +
i d ( )[ i e (i—i—k)(i-l—k—l)}

14+(d —Tyr—1t d—1
= (l-r—=—=1-1.
d A=r=n=7

Next, for 2 <i, j <d with i = j we obtain from part b) of Lemma 4,

_ _ e d—iVj
di‘zl—i—(d Dr—t 1-r t—f—(l—r—t) Z 1
/ d iVj = AV j+k)@iVvji+k-1)
:l—l—(d—l)r—t_l—'r—‘t+(l_r_t)[d—l_l\{j—‘l .
d iVj iVj
-1t rooee r
. ] r 1—t r :
This in turn means TAT" =| . , =%,—t, Consequently, the
: roo. r
ro - r 1—t

characteristic polynomial for X, is given by

s, (1) =det (S, — ) = det(TA,T") = det(T)-det (A, )-det (T" ) = det(T)- det (A, )- det(T')

d

—det(A,)=][(\ 1)
i=l
Hence A\, 1<i<d, are the eigenvalues of X,. Therefore, >, is a correlation matrix, 1.e.

positive semidefinite iff \, >0 forall 1<i<d, i.e. —ﬁ <r<l.

Thus Theorem 2 is proved. e

In what follows we will call a Gaussian copula derived from the correlation matix

1 r e ’/'
r-. 0o .. . .
X, =]. ) with r =— p a minimal correlation Gaussian copula.
: o —
r e 7/’
3. A case study

The following example shows the effects of such an approach for the 19-dimensional data set
discussed in Pfeifer et al. (2019). It contains insurance losses from a non-life portfolio of
natural perils in d =19 areas in central Europe over a time period of 20 years. The losses are
given in Mio. monetary units.
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Tab. 1

Year

Area 11

Area 12

Area 13

Area 14

Area 15

Area 16

Area 17

Area 18

Area 19
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A statistical analysis of the data shows a good fit to lognormal LN (u,o)-distributions for the

losses per Area k, k=1,---,19. The parameters p, and o, for Area k were hence estimated

from the log data by calculating means and standard deviations.

Parameter | Areal | Area2 | Area3 | Area4 | Area5 | Area6 | Area7 | Area8 | Area9 | Area 10
Hy | 2.8063 | 4.0717 | 3.1407 | 0.6375 | 0.3984 | 1.2227 | 2.3210 | 2.2123 | 1.0783 | 2.1055
O | 1.2161 | 1.0521 | 1.2110 | 1.5685 | 1.2998 | 1.5987 | 1.1980 | 0.9882 | 1.1445 | 1.2531

Tab. 3
Parameter | Area 11 | Area 12 | Area 13 | Area 14 | Area 15 | Area 16 | Area 17 | Area 18 | Area 19
M | —0.3231 | 03815 | 3.0198 | 1.7488 | 3.0409 | 1.5501 | 3.0700 | 1.2444 | 0.9378
O 1.0881 | 1.3353 | 0.8027 | 1.0033 | 1.1221 | 1.4765| 0.9622 | 0.8577 | 1.2141

Tab. 4

As is to be expected, insurance losses in locally adjacent areas show a high degree of

stochastic dependence, which can also be seen from the following correlation tables. For a

better readability, only two decimal places are displayed.

Al A2 A3 A4 AS A6 A7 A8 A9 Al10 All Al2 Al3 Al4 AlS Al6 Al7 Al8 Al9
Al 1 0.46 0.03 0.16 | 047 | 0.20 0.35 0.49 0.41 024 | 0.78 0.64 | 091 0.63 | 0.85 | 0.66 0.30 | 0.67 | 0.56
A2 | 046 1 0.64 0.78 | 0.67 | 0.36 0.51 0.76 0.57 0.51 0.58 | -0.04 | 0.59 | 0.84 | 0.68 | 0.58 0.87 | 0.77 | 0.90
A3 0.03 0.64 1 0.93 0.41 0.26 0.11 0.16 0.33 0.16 0.08 -0.09 0.13 0.64 0.25 0.10 0.74 0.14 0.35
A4 0.16 0.78 0.93 1 0.54 0.36 0.16 0.25 0.43 0.19 0.22 -0.10 0.30 0.79 0.36 0.19 0.84 0.32 0.49
A5 | 047 0.67 0.41 0.54 1 0.41 0.35 0.51 0.84 0.63 | 0.59 0.02 | 0.64 | 0.67 | 0.59 | 0.50 0.58 | 0.71 0.67
A6 | 0.20 0.36 0.26 0.36 | 041 1 0.07 0.11 0.28 0.19 | 0.28 0.14 | 0.31 042 | 024 | 0.27 039 | 0.27 | 0.40
A7 | 035 0.51 0.11 0.16 | 0.35 | 0.07 1 0.44 0.27 0.19 | 048 | -0.07 | 046 | 035 | 045 | 091 0.64 | 0.61 0.49
A8 0.49 0.76 0.16 0.25 0.51 0.11 0.44 1 0.50 0.75 0.61 -0.03 0.54 0.47 0.71 0.53 0.40 0.75 0.90
A9 | 041 0.57 0.33 043 | 0.84 | 0.28 0.27 0.50 1 0.66 | 0.68 | -0.01 0.52 | 0.60 | 0.50 | 0.41 0.46 | 0.65 | 0.63
Al10 | 0.24 0.51 0.16 0.19 | 0.63 | 0.19 0.19 0.75 0.66 1 033 | -0.12 | 0.27 | 028 | 043 | 0.24 023 | 045 | 0.65
All 0.78 0.58 0.08 022 | 059 | 0.28 0.48 0.61 0.68 0.33 1 0.19 | 0.79 | 0.65 | 0.80 | 0.73 043 | 0.84 | 0.74
Al2 0.64 -0.04 -0.09 -0.10 0.02 0.14 -0.07 -0.03 -0.01 -0.12 0.19 1 0.44 0.21 0.28 0.17 -0.12 0.13 0.03
Al3 | 091 0.59 0.13 030 | 0.64 | 031 0.46 0.54 0.52 0.27 | 0.79 0.44 1 0.71 086 | 0.74 0.47 | 0.76 | 0.65
Al4 | 0.63 0.84 0.64 0.79 | 0.67 | 042 0.35 047 0.60 0.28 | 0.65 0.21 0.71 1 0.74 | 0.54 0.79 | 0.68 | 0.72
Al5 | 0.85 0.68 0.25 036 | 059 | 0.24 0.45 0.71 0.50 043 | 0.80 028 | 0.86 | 0.74 1 0.69 0.47 | 0.71 0.75
Al6 | 0.66 0.58 0.10 0.19 | 0.50 [ 0.27 0.91 0.53 0.41 024 | 0.73 0.17 | 0.74 | 0.54 | 0.69 1 0.63 | 0.77 | 0.64
Al7 0.30 0.87 0.74 0.84 0.58 0.39 0.64 0.40 0.46 0.23 0.43 -0.12 0.47 0.79 0.47 0.63 1 0.59 0.64
Al8 | 0.67 0.77 0.14 032 | 0.71 0.27 0.61 0.75 0.65 045 | 0.84 0.13 | 0.76 | 0.68 | 0.71 0.77 0.59 1 0.86
Al19 | 0.56 0.90 0.35 049 | 0.67 | 040 0.49 0.90 0.63 0.65 | 0.74 0.03 | 0.65 | 0.72 | 0.75 | 0.64 0.64 | 0.86 1
correlations between original losses in adjacent areas
Tab. 5
Al A2 | A3 Ad | A5 | A6 A7 A8 | A9 | Al0 | All | AI2 | AI3 | Al4 | Al5 | Al6 | Al7 | AIS | AI9
Al 1| 027 | 030 | 0.16 | 0.17 | 045 | 028 | 032 | 032 | 029 | 0.67 | 051 | 0.76 | 034 | 0.67 | 0.74 | 0.18 | 021 | 0.29
A2 | 027 1| 048 | 066 | 039 | 037 | 071 | 069 | 0.52 | 0.64 | 030 | -0.02 | 045 | 0.66 | 058 | 045 | 0.73 | 0.74 | 0.78
A3 | 030 | 048 1| 070 | 040 | 031 | 042 | 051 | 058 | 053 | 0.18 | 0.07 | 021 | 032 | 054 | 026 | 047 | 021 | 0.57
A4 | 016 | 066 | 0.70 1] 077 [ 047 | 046 | 047 | 059 | 049 | 0.18 | -0.13 | 0.33 | 050 | 047 | 0.18 | 0.76 | 043 | 0.54
A5 | 017 | 039 | 040 | 0.77 1059 | 030 | 020 | 049 | 039 | 028 | 0.08 | 035 | 0.56 | 0.44 | 0.16 | 0.55 | 036 | 0.41
A6 | 045 | 037 | 031 | 047 | 0.59 1| 014 | 001 | 036 | 034 | 033 | 0.12 | 048 | 046 | 048 | 037 | 059 | 0.17 | 0.50
A7 | 028 | 071 | 042 | 046 | 030 | 0.14 1| 052 | 027 | 040 | 045 | -0.07 | 031 | 031 | 046 | 0.62 | 0.63 | 0.58 | 0.57
A8 | 032 0.69 | 0.51 0.47 | 0.20 | 0.01 0.52 1 0.64 0.81 027 | -0.02 | 038 | 035 | 0.56 | 0.35 028 | 0.62 | 0.63
A9 | 032 0.52 | 0.58 0.59 | 049 | 036 0.27 0.64 1 0.78 | 0.40 0.19 | 027 | 0.50 | 044 | 0.30 033 | 0.57 | 0.61
A10 [ 0.29 0.64 | 0.53 0.49 | 039 | 034 0.40 0.81 0.78 1 0.21 -0.02 | 021 | 037 | 0.52 | 0.30 031 [ 0.53 | 0.81
All 0.67 0.30 0.18 0.18 0.28 0.33 0.45 0.27 0.40 0.21 1 0.47 0.49 0.45 0.60 0.67 0.20 0.45 0.39
Al2 | 051 -0.02 | 0.07 | -0.13 | 0.08 | 0.12 | -0.07 | -0.02 | 0.19 | -0.02 | 0.47 1 0.44 | 0.21 024 | 046 | -0.23 | 0.25 | 0.05
Al3 | 0.76 045 | 021 033 | 035 | 048 0.31 038 | 0.27 0.21 0.49 0.44 1 ] 055 [ 060 | 0.71 037 [ 039 | 0.24
Al4 | 034 0.66 | 0.32 0.50 | 0.56 | 0.46 0.31 0.35 | 0.50 0.37 | 045 0.21 0.55 1 0.59 | 043 0.57 | 0.58 | 0.53
Al5 | 0.67 0.58 | 0.54 0.47 | 044 | 048 0.46 0.56 | 0.44 0.52 | 0.60 024 | 0.60 [ 0.59 1 [ 059 036 | 0.35 | 0.63
Al6 0.74 0.45 0.26 0.18 0.16 0.37 0.62 0.35 0.30 0.30 0.67 0.46 0.71 0.43 0.59 1 0.38 0.43 0.39
Al7 | 0.18 0.73 | 047 0.76 | 0.55 | 0.59 0.63 0.28 | 0.33 0.31 020 | -0.23 | 037 | 0.57 | 036 | 0.38 1 0.52 | 0.56
Al8 | 0.21 0.74 | 021 043 | 036 | 0.17 0.58 0.62 | 0.57 0.53 | 045 025 [ 039 | 0.58 | 035 | 043 0.52 1 0.60
Al19 | 0.29 0.78 | 0.57 0.54 | 041 | 050 0.57 0.63 | 0.61 0.81 0.39 005 | 024 | 0.53 | 0.63 | 0.39 0.56 | 0.60 1

Tab. 6
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The following graph shows estimated cdf’s on a basis of 100,000 Monte Carlo simulations for
the aggregated loss with a Bernstein copula representing U and a minimal correlation
Gaussian copula representing V, for various values of p. For comparison purposes, we have
also added an estimated cdf for the aggregated loss for a Bernstein copula representing U and
an upper Fréchet (or comonotonicity) copula representing V.
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098 T T T T T
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plots of estimated cdf’s in the tail
Fig. 14

The following graphs correspond to a Bernstein copula U with a minimal correlation Gaussian
copula V: black: p =1; blue: p =0.99; red: p=0.994

The following graphs correspond to a Bernstein copula U with p=0.994 but different

copulas V: green: upper Fréchet copula; grey: independence copula

The following table shows the estimated risk measures VaR_ for a=0.005 (Solvency II-

standard) for the various values of p and different types of V.

p 0.99 0.994 0.994 0.994 1

A% min corr Gauss | min corr Gauss | upper Fréchet | independence | ---

VaR, 4,647 5272 4,025 5,018 | 2,229
Tab. 7

As can clearly be seen, the patchwork construction with the minimal correlation Gaussian
copula representing V with no tail dependence gives the largest VaR estimate here and is
typically larger than the upper Fréchet copula which has a positive tail dependence. Note that
the sum of individual VaR’s is given by 2,745 which means that using the Bernstein copula
alone would lead to a diversified portfolio while all others do not.
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Finally, it should be pointed out that the effects described here are independent of the
particular copula chosen for U, i.e. the magnitude of the estimated VaR’s under the patchwork
construction would remain roughly equal also under an elliptical, an Archimedean, a vine or

an adapted Bernstein copula approach for U (see e.g. Pfeifer and Ragulina (2020)).
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