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Abstract

A standard solution technique for linear operator equations of first kind is the

Landweber scheme which is an iterative method that uses the negative gradient

of the current residual as search direction, which is then also called the Landwe-

ber direction. Though this method proves to be stable with respect to noisy

data, it is known to be numerically slow for problems in Hilbert spaces and this

behavior shows to be even worse in some Banach space settings. This is why the

idea came up to use several search directions instead of the Landweber direc-

tion only which has led to the development of Sequential Subspace Optimization

(SESOP) methods. This idea is related to the famous Conjugate Gradient (CG)

techniques that are known to be amongst the most e↵ective methods to solve

linear equations in Hilbert spaces. Since CG methods decisively make use of the

inner product structure, they have been inherently restricted to Hilbert spaces

so far. SESOP methods in Banach spaces do not share the conjugacy property

with CG methods. In this article we use the concept of generalized orthogonal-

ity in Banach spaces and apply metric projections to orthogonalize the current

Landweber direction with respect to the search space of the last iteration. This

leads to an accelerated SESOP method which is confirmed by various numerical
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experiments. Moreover, in Hilbert spaces our method coincides with the Conju-

gate Gradient Normal Error (CGNE) or Craig’s method applied to the normal

equation. We prove weak convergence to the exact solution. Furthermore we

perform a couple of numerical tests on a linear problem involving a random ma-

trix and on the problem of 2D computerized tomography where we use di↵erent

`p-spaces. In all experiments the orthogonalization of the search space shows

superior convergence properties compared to standard SESOP. This especially

holds for p close to 1. Letting p! 2 the more we recover the conjugacy property

for the search directions and the more the convergence behaves independently

of the size of the search space.

Key words: metric projection, Bregman distance, Banach space, sequential

subspace optimization, CGNE, Bregman projection, computerized tomography

2010 MSC: 46B20, 65F10, 65K10, 65R32

1. Introduction

We consider two Banach spaces X and Y and a bounded, linear operator

A : X ! Y. (1)

Our aim is to iteratively solve the inverse problem

Ax = y (2)

for given y 2 Y. The space X is assumed to be smooth and uniformly convex

and hence X is reflexive and has a strictly convex and uniformly smooth dual

X
⇤. The space Y can be arbitrary. Problem (2) may be ill-posed and thus not

suitable for direct inversion of the operator. Hence, a regularization scheme is5

required to obtain a stable solution.

In [1] the Landweber method, which has been thoroughly investigated in

Hilbert spaces; see e.g. [2], has been extended to this Banach space setting.

It is a steepest descent method, see [3], since it uses as search direction the

gradient of the quadratic residual kAx� yk2 /2 at the current iterate xn. This10
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direction, A⇤(Axn�y), is also called the Landweber direction. The Landweber

iteration converges under certain assumptions to the minimum-norm solution

[2, 1]. However, the method usually su↵ers from tremendously slow convergence.

To speed up convergence the authors in [4] developed the idea of using finite

dimensional subspaces spanned by search directions in each iteration, where the15

Landweber direction is included to guarantee convergence. This idea obviously

was inspired by Conjugate Gradient (CG) methods in Hilbert spaces; see e.g.

[5, 6]. In every iteration a Bregman projection onto these subspaces has to

be computed. This is the Sequential Subspace Optimization (SESOP) method

which goes back to Narkiss and Zibulevsky [7] and turns into a regularization20

method if the discrepancy principle as parameter choice rule is used. In general

only weak convergence to the minimum-norm solution can be proven, see [7].

Taking specific search directions into account also strong convergence has been

proven, see [8, Prop. 1]. The method has furthermore been extended to nonlinear

inverse problems in Hilbert spaces [9]. However, the set of search directions is25

still not optimal. In the thesis of [10] the search directions are further modified

in the notion of maximizing their pairwise orthogonality. In this article we

give its detailed derivation, which also connects the SESOP techniques with the

family of CG methods in Hilbert spaces. More specifically we prove that the

SESOP with orthogonalized search directions in Banach spaces boils down to30

the Conjugate Gradient Normal Error (CGNE) method (also known as Craig’s

method) [11], if X and Y are Hilbert spaces. The orthogonalization is done by

using appropriate metric projections. We furthermore prove weak convergence

to the Bregman projection of the initial value onto the solution manifold {x 2

X : Ax = y}.35

Outline. In Section 2 we recollect general properties of duality mappings, uni-

formly smooth Banach spaces, metric and Bregman projections. Starting with

the SESOP method (Section 3.1) we develop in Section 3 orthogonalized search

spaces to get an accelerated solver where we use and define the concept of gen-

eralized orthogonality in Banach spaces due to Alber [12] (Section 3.2 and 3.3).40
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The orthogonalized search directions are connected to the Landweber direc-

tions of the last N iterates. We prove weak convergence of the method (Section

3.4). Section 4 finally consists of a thorough numerical validation of our method

where we first use a linear system with a random matrix and then check the

performance on the problem of 2D computerized tomography using `p-settings45

for di↵erent values of p. We conclude that the orthogonalization of the search

directions leads to a significant acceleration in computing time compared to the

experiments with SESOP in [4].

2. Preliminaries

Throughout the paper let X and Y be real Banach spaces with duals X ⇤ and50

Y
⇤, respectively. The space X is assumed to be smooth and uniformly convex

with a sequentially weak-to-weak continuous duality mapping (see Subsection

2.1). The space Y is arbitrary. The norms will be denoted by k.k
X

and k.k
X⇤ ,

respectively. For x 2 X and x⇤
2 X

⇤, we write hx,x⇤
i = hx⇤,xi = x⇤(x)

for the dual pairing in X
⇤
⇥ X and define hy⇤,yiY⇤⇥Y accordingly. We omit55

subindices whenever it is clear which norm or dual pairing is meant. By L(X ,Y)

we designate the space consisting of all bounded, linear operators A : X ! Y

and write A⇤ for its adjoint operator A⇤
2 L(Y⇤,X ⇤). We denote by ran (A)

the range and by nul (A) the null space of A.

For real numbers a, b, we write

a _ b = max{a, b}, a ^ b = min{a, b}.

Also, let p, p⇤, r, r⇤ 2 (1,1) be conjugate exponents such that

1

p
+

1

p⇤
= 1 and

1

r
+

1

r⇤
= 1.

In the following subsections we recollect some important concepts of Ba-60

nach space theory that are useful to establish the method and for convergence

analysis.
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2.1. Duality Mappings

We recall the definition of the subdi↵erential of a convex function and duality

mappings in Banach spaces and some of their properties, all of which can be65

found in the comprehensive book [13].

Definition 1 (Subdi↵erential). Let f : X ! R be convex. The subdi↵erential

@f(x) of f at x 2 X is given as

@f(x) =
n
x⇤
2 X

⇤ : f(y)� f(x) � hx⇤,y � xi for all y 2 X

o
.

Definition 2 (Duality Mapping). Let X be a Banach space. The mapping

Jp : X ! 2X
⇤
defined by

Jp(x) = {x⇤
2 X

⇤
| hx⇤,xi = kxkp , kx⇤

k = kxkp�1
} (3)

is the duality mapping of X with gauge function t 7! tp�1. Accordingly J⇤

p⇤

denotes the duality mapping on X
⇤ with power p⇤.

By the Theorem of Asplund, see [13, Thm. 4.4], we have

Jp(x) = @
⇣

1
p kxk

p
⌘
. (4)

Definition 3 (Smooth Banach spaces). We call the Banach space X smooth,

if for every x 2 X with x 6= 0 there is a unique element x⇤
2 X

⇤ such that70

kx⇤
k = 1 and hx⇤,xi = kxk.

The reason for calling a Banach space to be smooth is that its norm is

Gâteaux di↵erentiable. In this case the duality mapping Jp is single-valued.

Proposition 1 ([13, Thm. 3.5, 4.5]). For a Banach space X we have the equiv-

alences:75

a) The Banach space X is smooth.

b) The norm k · kX is Gâteaux di↵erentiable on X \ {0}.

c) The duality mapping Jp is single-valued.
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Theorem 1 ([14, Th. 2.53]). If the Banach space X is smooth, strictly convex

and reflexive, then Jp is single-valued, norm-to-weak continuous, bijective, and

the duality mapping J⇤

p⇤ is single-valued, too, and satisfies

J⇤

p⇤
�
Jp(x)

�
= x for all x 2 X . (5)

For this situation Figure 1 illustrates the connection between di↵erent Ba-

nach spaces, their duals and the respective duality mappings. The relation (5)80

is essential for the construction of Landweber and SESOP methods in Banach

spaces.

X Y

X
⇤

Y
⇤

JX JY

A⇤

A

JX ⇤

Figure 1: Relations between the Banach spaces and dual spaces involved in the

inverse problem Ax = y.

2.2. Uniform smoothness

Definition 4 (Uniformly smooth, [15, Def. II.1.e.1]). Let X be a Banach space

with dimX � 2.85

(a) The modulus of smoothness is defined by

⇢X (⌧) = 1
2 sup
kxk=1,kyk=1

�
kx+ ⌧yk+ kx� ⌧yk � 2

�
, ⌧ > 0. (6)

(b) X is said to be uniformly smooth if

lim
⌧!1

⇢X (⌧)

⌧
= 0. (7)
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Note that Lp-spaces and `p-spaces with p 2 (1,1) are uniformly convex, see

[16], and also uniformly smooth, see [17, Lemma 6.7], see also [18, p. 63]. On

the other hand, `1 and `1 are not reflexive1, see [19, Sect. VIII. 5], and hence

are neither uniformly smooth, nor uniformly convex.

In order to prove convergence we will heavily rely on the geometrical char-90

acteristics of Banach spaces. Essentially, we need to estimate kx� yk by the

norms kxk , kyk. To this end the well-known Xu-Roach inequalities are impor-

tant, one of which we recall here for convenience.

Theorem 2 ([20, Theorem 2, Remark 4]). If X is uniformly smooth, then for

all x,y 2 X , we have

kx� ykp  kxkp � phJp(x),yi+ e�p(x,y) (8)

with

e�p(x,y) = pGp⇤

Z 1

0

(kx� tyk _ kxk)p

t
⇢X

✓
t kyk

kx� tyk _ kxk

◆
dt. (9)

and a constant Gp⇤ > 0.

We note that functions e�p⇤ defined on X
⇤
⇥ X

⇤ and a constant Gp > 0 are95

defined in the same way as e�p and Gp⇤ with p and p⇤ switched. We further

state a lemma on an upper bound of the function e�p⇤ , that we need later in the

convergence proof.

Lemma 1 (Upper bound on e�p⇤ ,[10, Proof of Prop. 2.39]). Let X
⇤ be a

uniformly smooth Banach space with duality mapping J⇤

p⇤ . If 0 6= x 2 X ,

0 6= A 2 L(X ,Y) and 0 6= y⇤
2 Y

⇤ with an arbitrary Banach space Y are given

and µ > 0 is defined by

µ :=
⌧

kAk

kxkp�1

ky⇤k
for some ⌧ 2 (0, 1], (10)

then the following estimate is valid:

1
p⇤ e�p⇤(Jp⇤(x), µA⇤y⇤)  2p

⇤
Gp kxk

p ⇢X⇤(⌧), (11)

1Note that finite-dimensional spaces are always reflexive.
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where ⇢X⇤ is the modulus of smoothness of X ⇤.

Proof. From an analogue definition (9) for e�p⇤(Jp⇤(x),A⇤y⇤) we can estimate

using (10)

kJp⇤(x)� tµA⇤y⇤
k  kxkp�1 + µ kAk ky⇤

k  2 kxkp�1

and

kxkp�1
 kJp⇤(x)� tµA⇤y⇤

k _ kJp⇤(x)k  2 kxkp�1 .

As the modulus of smoothness ⇢X⇤ is non-decreasing, see [18, Prop. 1.e.5], and

by (4) and (10), we obtain

⇢X⇤

✓
tµ kA⇤y⇤

k

kJp⇤(x)� µA⇤y⇤k _ kJp⇤(x)k

◆
 ⇢X⇤

 
tµ kA⇤y⇤

k

kxkp�1

!
 ⇢X⇤(t⌧).

We finally arrive at the desired estimate,

1
p⇤ e�p⇤(Jp⇤(x), µA⇤y⇤)  2p

⇤
Gp kxk

p
Z 1

0

⇢X⇤(t⌧)

t
dt

= 2p
⇤
Gp kxk

p
Z ⌧

0

⇢X⇤(t)

t
dt

 2p
⇤
Gp kxk

p ⇢X⇤(⌧)

as the function ⌧ ! ⇢X⇤ (⌧)
⌧ is non-decreasing, see [21, Cor. 2.8]100

2.3. Metric and Bregman projections

In this subsection we summarize essential properties of metric and Bregman

projections. In this section we always assume that C ⇢ X is a non-empty, closed

and convex subset.

Definition 5 (Metric Projection). The metric projection P of x 2 X onto C is

the unique element PC(x) 2 C such that

kx� PC(x)k = min
y2C

kx� yk . (12)

Let us recall the Bregman distance in the context of generalized distance105

functions, see also [22, Sect. 2.1].
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Definition 6 (Bregman distance). For a convex function f : X ! R and

⇠ 2 @f(x) ⇢ X
⇤ the Bregman distance �f : X ⇥ X ! [0,+1) associated with

⇠ is defined as

�f (x,y) := f(y)� f(x)� h⇠,y � xi, x,y 2 X . (13)

In our article we especially consider Bregman distances of functions fp(x) =

1
p kxk

p with @fp(x) = Jp. The corresponding Bregman distance is then denoted

by �p := �fp . A useful identity [4] for �p is given by

�p(x,y) =
1

p⇤
kxkp � hJp(x),yi+

1

p
kykp . (14)

We collect some important properties of the Bregman distance.

Proposition 2 (Properties of Bregman Distances,[1, Theorem 2.12]). For all

x,y 2 X and sequences {xn}n in X we have:

(a) �p(x,y) � 0 and �p(x,y) = 0, x = y.110

(b) limkxnk!1 �p(xn,x) = 1, i. e. the sequence {xn}n remains bounded if

the sequence {�p(xn,x)}n is bounded.

(c) �p is continuous in both arguments. It is strictly convex and Gâteaux dif-

ferentiable with respect to the second variable with @y�p(x,y) = Jp(y)�

Jp(x).115

It is easy to see that in Hilbert spaces metric distance and Bregman distance

coincide. For p = 2 we have �2(x,y) = kx� yk2.

We finally introduce the concept of the Bregman projection. Bregman pro-

jections minimize the Bregman distance with respect to a given closed, convex,

non-empty set.120

Definition 7 (Bregman Projection). The Bregman projection of x 2 X onto C

with respect to the function fp(x) =
1
p kxk

p
X

is the unique element ⇧p
C
(x) 2 C

such that

�p (x,⇧
p
C
(x)) = min

y2X

�p(x,y). (15)
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We state some important relationships between Bregman and metric projec-

tions.

Proposition 3 ([4, Prop. 3.6]).

(a) The Bregman projection and the metric projection are related via

PC(x)� x = ⇧p
C�x(0) for all x 2 X . (16)

Especially we have PC(0) = ⇧p
C
(0).

(b) The metric projection satisfies the translation property

Py+C(x) = y + PC(x� y) for all x,y 2 X . (17)

Property (b) indeed distinguishes the metric from the Bregman projection125

since if we had ⇧p
y+C

(x) = y + ⇧p
C
(x � y) for all x,y 2 X , then this would

already imply their equivalence, ⇧p
y+C

(x) = Py+C(x) for all x,y 2 X .

3. Methods

We now discuss the sequential subspace methods for solving problem (2).

As a starting point we recall the sequential subspace optimization (SESOP)130

method as it is outlined in [4, 8] (Section 3.1). Subsequently we develop the

concept of generalized orthogonality in Banach spaces (Section 3.2) and use

this to orthogonalize the space of search directions that is used in the SESOP

method (Section 3.3). This leads to an accelerated version, whose convergence

analysis is outlined in Section 3.4.135

Let us first introduce a specific notation. For an element v⇤
2 ran (A⇤) ⇢ X

⇤

we can write v⇤ = A⇤o⇤. We call then o⇤ in the following the precursor of v⇤

because of the intimate connection between the spaces Y⇤ and X
⇤ via the adjoint

operator A⇤.

The following optimality condition, stated in [1, Lemma 2.10], is of special140

importance.
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Lemma 2 (Optimality condition). Let X be smooth and uniformly convex and

y 2 ran (A).

(a) There exists the minimum-norm-solution x†
2 X of (2), i.e.

kx†
k = min

�
kxk : Ax = y, x 2 X

 
,

and Jp(x†) 2 ran (A⇤).

(b) If x†
2 X is the minimum-norm-solution of (2) and ex 2 X fulfills Jp(ex) 2145

ran (A⇤) and x†
� ex 2 nul (A), then ex = x†.

3.1. Sequential Subspace Optimization (SESOP)

For convenience let us first recall the SESOP method as given in [4] for

solving the ill-posed inverse problem Ax = y without noise. The solution

manifold of (2) is denoted by

MAx=y :=
�
x 2 X : Ax = y

 
.

Method 1 (SESOP).

(S1) Take x0 as initial value with Jp(x0) 2 ran (A⇤), set n := 0, U�1 := {0}

and repeat the following steps:150

(S2) If Rn := kRnk := kAxn � yk = 0 then STOP else goto (S3).

(S3) Choose the search space Un = Span {u⇤

n,1, . . . ,u
⇤

n,Nn
} ⇢ ran (A⇤) with Nn

search directions u⇤

n,k 2 Un, k = 1, . . . , Nn and with Nn o↵sets ↵n,k :=

hu⇤

n,k, zi for any z 2MAx=y := {x 2 X : Ax = y}.

(S4) Compute the new iterate

xn+1 := J⇤

p⇤

⇣
Jp(xn)�

NnX

k=1

µn,ku
⇤

n,k

⌘
(18)

where µn = (µn,1, . . . , µn,Nn) is the solution of the Nn-dimensional opti-

mization problem

min
t2RNn

hn(t)

11



with

hn(t) :=
1

p⇤

�����Jp(xn)�
NnX

k=1

tku
⇤

n,k

�����

p⇤

+
NnX

k=1

tk↵n,k (19)

@jhn(t) = �

*
u⇤

j,k, J
⇤

p⇤

 
Jp(xn)�

NnX

k=1

tku
⇤

n,k

!+
+ ↵j,k 8j = 1, . . . , Nn

(20)

(S5) Set n n+ 1 and goto (S2).155

Note that µn is uniquely determined, since hn(t) (19) is strictly convex.

Convergence of the method essentially depends on the choice of the search

space Un and associated o↵sets ↵n per iteration step n, see step (S3). We state

a few common choices, taken from [4, 8], where d⇤

n := A⇤R⇤

n = A⇤jr
�
Axn�y

�

denotes the Landweber direction with precursor R⇤

n = jr(Rn). With jr we160

define a single-valued selection of the set-valued duality mapping Jr : Y ! 2Y
⇤
.

(a) Expanding : U
exp
n = Span {d⇤

0, . . . ,d
⇤

n}, ↵
exp
n,k = hR⇤

n,k,yi with dimension

|Un| = n+ 1

(b) Truncated : U
trunc
n = Span {d⇤

n�Nn+1, . . . ,d
⇤

n}, ↵trunc
n,k = hR⇤

n,k,yi with

dimension |Un| = Nn := N ^ (n+ 1) for some fixed N 2 N165

(c) Nemirovsky I : UNem1
n = Span {d⇤

n, Jp(xn) � Jp(x0)}, ↵Nem1
n,k = hv⇤

n,k,yi

with dimension |Un| = 2, A⇤vn,1 = d⇤

n, A
⇤vn,2 = Jp(xn)� Jp(x0)

(d) Nemirovsky II : UNem2
n = Span {d⇤

n, Jp(xn)�Jp(xn�1)}, ↵Nem2
n,k = hv⇤

n,k,yi

with dimension |Un| = 2, A⇤vn,1 = d⇤

n, A
⇤vn,2 = Jp(xn)� Jp(xn�1)

Note that the Nemirovsky directions of cases (c) and (d), that provide strong

convergence, [8, Prop. 1], are not considered in this article. Furthermore, for

finite-dimensional spaces X and Y weak and strong convergence coincide [19,

Thm 4.3]. In the cases (a) or (b) the hyperplane o↵sets can simply be calculated

by

↵n,k := hR⇤

n,k,yi. (21)
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3.2. Orthogonality in Banach spaces170

Incorporating multiple search directions into the regularization process sig-

nificantly improves convergence speed as was demonstrated by experiments [4,

Sect. 5]. However, the search directions used there are not related to each

other. In the following we would like to maximize distinctiveness of the search

directions u⇤

n,k in the truncated search space Un, i. e. we orthogonalize them175

with respect to previous directions contained in Un and to some extent to older

search directions that are not contained in Un.

The concept of orthogonality has already been generalized to Banach spaces

in [23, 24, 25]. Among these we see the one of [25], that relies on [24], as

appropriate because of its relation to the metric projection which is shown later180

on.

Definition 8 (j-orthogonality [12, Def. 2.3]). We say that an element x 2 X ,

where X is a Banach space, is (j-)orthogonal to y 2 X if

kxk  kx+ tyk for all t 2 R. (22)

We note that in smooth Banach spaces j-orthogonality is equivalent to the

generalized orthogonality definition given by [12, p. 335], which is the case in our

setting of orthogonalizing gradient directions in a uniform smooth dual space

X
⇤.185

Definition 9 (Generalized Orthogonality,[12, Def. 2.2]). An element x 2 X in

a Banach space X is said to be (g-)orthogonal to y 2 X if hJp(x),yi = 0.

There exists a relation between the metric projection and g-orthogonality

that is of great importance for our further considerations.

Proposition 4 (Metric projection and g-orthogonality, [12, Prop. 2.10]). Let X

be a Banach space. If x 2 X and M ⇢ X is a closed subspace, then ex = PM(x),

if and only if ex 2M and

hJp(x� ex),vi = 0 for all v 2M, (23)

i.e. the error x� ex is g-orthogonal to M.190
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Proposition 4 implies that in Banach spaces an element x can be made (g-)

orthogonal to another element y or a subspace M by subtracting its metric

projection. We like to stress that by using the concept of g-orthogonality we

are able to orthogonalize a new search direction with respect to given directions

in the search space, but this does not imply pairwise orthogonality of all search195

directions to each other. The reason is that Definition 9 is not symmetric, since

in general 0 = hJp(x),yi 6= hJp(y),xi. We always denote by V
trunc
n the search

space consisting of directions that are g-orthogonalized in contrast to U
trunc
n ,

c. f. section 3.1, which consists of Nn non-orthogonalized directions.

3.3. Orthogonalization of the search directions200

Based on the definition of g-orthogonality, see Definition 9, we outline the

construction of a search space, which is similar to U
trunc
n , but consists of or-

thogonalized directions. To this end, we investigate search directions which are

deduced from the Landweber direction d⇤

n = A⇤jr
�
Axn � y

�
to obtain the or-

thogonalized search space V
trunc
n := {v⇤

n,k}
Nn
k=1. This is done by a procedure

which is similar to the Gram-Schmidt orthogonalization process:

v⇤

n,k�1 := v⇤

n�1,k�(Nn�Nn�1)
for k = 2, . . . , Nn, if Nn � 2 (24)

v⇤

n,Nn
:= d⇤

n �

Nn�1X

k=1

sn,kv
⇤

n�1,k (25)

= d⇤

n � PV
trunc
n�1

(d⇤

n) . (26)

Note that this requires Nn � Nn�1 2 {0, 1}, i. e. the desired number of search

directions remains constant or increases by one in each step n. If just a single

search direction is used, Nn = 1, then (24) is not executed at all. Here, sn,k

is the orthogonalization coe�cient obtained from the metric projection of the

Landweber direction d⇤

n onto the search space V
trunc
n�1 = {v⇤

n�1,k}
Nn�1

k=1 . It is

defined as

sn =
�
sn,1, . . . , sn,Nn�1

�
:= arg min

s2RNn�1

gn(s), (27)
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where

gn(s) :=
1

p⇤

���d⇤

n �

Nn�1X

i=1

siv
⇤

n�1,i

���
p⇤

X⇤
. (28)

In Hilbert spaces this coincides with the familiar Gram-Schmidt procedure,

see also [26, p. 218].

We show that all search directions v⇤

n,j , j = 1, . . . , Nn, are g-orthogonal in

the sense of Definition 9. This is the counterpart of the conjugacy property in

Banach spaces when the CG method is applied to the normal equation, c. f. [6,205

p. 102].

Corollary 1 (Orthogonal search directions). We have

hv⇤

n,j , J
⇤

p⇤(v⇤

n,k)i = 0 81  j < k  Nn. (29)

Proof. By means of Proposition 4 this follows directly from the optimality con-

dition on gn(s) for (27),

0 = @jgn(sn) = �

*
v⇤

n�1,j , J
⇤

p⇤

0

@d⇤

n �

Nn�1X

k=1

sn,kv
⇤

n�1,k

1

A
+

(30)

= �hv⇤

n�1,j , J
⇤

p⇤
�
v⇤

n,Nn

�
i

for all j = 1, . . . , Nn�1. As this holds for all n and by the successive con-

struction (24) of the search spaces Vtrunc
n , we have by induction that all search

directions v⇤

n,k in V
trunc
n with 1  k  Nn are g-orthogonal with respect to v⇤

n,j

for 1  j < k.210

Note that this orthogonality becomes symmetric, if X is a Hilbert space and

p = 2, since J2 = id is the identity.

We point out that the summation in (25) is done over all directions in the

search space Vtrunc
n�1 , including v⇤

n�1,1, which is not contained in V
trunc
n , see (24).

Otherwise, the orthogonalization would not change the search space but only

modify its spanning vectors. Hence, we obviously have that in general

U
trunc
n 6⇢ V

trunc
n for n � 1.
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Using the expanding search space U
exp
n on the other hand, see case (a) in Sec-

tion 3.1, the above orthogonalization process of the new search direction would

not change the iteration, i. e. for every n we have U
exp
n = V

exp
n .215

Example 1. In order to highlight the (notational) equivalence with the fam-

ily of CG methods in Hilbert spaces, let us consider a single search direction,

i. e. Vtrunc
n = Span {v⇤

n}, per iteration step n. We then obtain

v⇤

n = d⇤

n � snv
⇤

n�1. (31)

So, we have the Landweber direction d⇤

n which is modified by the last search

direction v⇤

n�1 scaled by the orthogonalization coe�cient sn, i. e. gn = dn �

sngn�1 where gn is the current search direction and dn is the current gradient

direction in the usual notation of CG methods in Hilbert spaces, c. f. [6, Chap. 5]

and also [27].220

With each search direction an o↵set ↵n,Nn is required that is connected to

the solution manifold MAx=y, c. f. step (S3) in Method 1. Calculating the new

hyperplane o↵sets �n,k to each orthogonalized search direction v⇤

n,k 2 V
trunc
n is

then done as

�n,Nn := ho⇤

n,Nn
,yi = hR⇤

n �

Nn�1X

k=1

sn,ko
⇤

n�1,k,yi = ↵n,Nn �

Nn�1X

k=1

sn,k�n�1,k,

(32)

where we used

v⇤

n,Nn
= d⇤

n �

Nn�1X

k=1

sn,kv
⇤

n�1,k = d⇤

n �

Nn�1X

k=1

sn,kA
⇤o⇤

n�1,k

= A⇤

0

@R⇤

n �

Nn�1X

k=1

sn,ko
⇤

n�1,k

1

A =: A⇤o⇤

n,Nn
, (33)

with the precursor R⇤

n = jr(Rn) of the Landweber direction, d⇤

n = A⇤R⇤

n and

precursors o⇤

n�1,k of v⇤

n�1,k.

The necessary orthogonalization coe�cients sn,k are calculated by minimiz-

ing (28) with derivative (30) using standard techniques. Note that the proof of

Lemma 4 yields a good initial guess for the according line search problem. Once225
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the coe�cients sn,k in (25) are computed, we can easily evaluate (32), knowing

all other o↵sets �n�1,k, k = 1, . . . , Nn�1, from previous iterations.

For completeness, we provide the full algorithm using orthogonalized search

directions and a truncated search space V
trunc
n in Method 2.

Method 2 (orthogonalized SESOP with Nn search directions).230

(S1) Take x0 as initial value with Jp(x0) 2 ran (A⇤), set n := 0, N0 := 1,

V
trunc
�1 := {0} and repeat the following steps:

(S2) If Rn := kRnk := kAxn � yk = 0 then STOP else goto (S3).

(S3) Orthogonalize the Landweber direction d⇤

n = A⇤jr
�
Axn�y

�
using V

trunc
n�1 ,

see (25), to obtain v⇤

n,Nn
.235

(S4) Update the search space V
trunc
n = Span {v⇤

n,1, . . . ,v
⇤

n,Nn
} by using the last

Nn � 1 directions from V
trunc
n�1 , see (24), and adding the orthogonalized

Landweber direction v⇤

n,Nn
.

(S5) In a similar manner, update the hyperplane o↵sets to the orthogonalized

search directions �n,k using (32) for the orthogonalized Landweber direc-240

tion v⇤

n,Nn
.

(S6) Compute the new iterate

xn+1 := J⇤

p⇤

⇣
Jp(xn)�

NnX

k=1

µn,kv
⇤

n,k

⌘
(34)

where µn = (µn,1, . . . , µn,Nn) is the solution of the Nn-dimensional opti-

mization problem

min
t2RNn

hn(t)

with

hn(t) :=
1

p⇤

�����Jp(xn)�
NnX

k=1

tkv
⇤

n,k

�����

p⇤

+
NnX

k=1

tk�n,k (35)

@jhn(t) = �

*
v⇤

j,k, J
⇤

p⇤

 
Jp(xn)�

NnX

k=1

tkv
⇤

n,k

!+
+ �j,k 8j = 1, . . . , Nn

(36)
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(S7) Set n n+ 1 and goto (S2).

We note that because only a single new direction can be added to the search

space V
trunc
n per step, Nn may increase at most by one per step. Therefore, if a

fixed number of four search directions are to be used during the optimization,245

then we employ the sequence Nn = {1, 1, 2, 3, 4, 4, . . . , 4}n=0.

3.4. Proof of convergence

In this section we prove that Method 1 equipped with the orthogonalized

truncated search space V
trunc
n still converges weakly to a solution of Ax = y.

We note that Rn = 0 implies that Axn = y and we are done. So, this yields250

a good stopping criterion. If Rn 6= 0, then we also have for the Landweber

direction d⇤

n 6= 0.

Corollary 2. If Rn 6= 0, then we have d⇤

n 6= 0.

Proof. Assume the contrary, d⇤

n = 0, and let z 2MAx=y. Then we get

0 = hd⇤

n,xn � zi = hR⇤

n,Axn �Azi = kRnk
r = Rr

n,

which is a contradiction. Note that by the very same argument we also have

R⇤

n 6= 0.255

Next we prove something similar to the ”expanding subspace” property of

CG methods, c. f. [6, Theorem 5.2].

Corollary 3. Let Vtrunc
n := Span {v⇤

n,1, . . . ,v
⇤

n,Nn
} be a g-orthogonalized search

space with precursors {o⇤

n,i}
Nn
i=1. Then, the following assertions hold true.

(a) We have that

ho⇤

n�1,1,Rn�Nni = 0

. . .

ho⇤

n�1,1,Rni = 0, . . . , ho⇤

n�1,Nn�1
,Rni = 0. (37)

Note that this extends to {o⇤

n,1, . . . ,o
⇤

n,Nn�1} by construction of Vtrunc
n .260

18



(b) If Rn 6= 0, then we also have v⇤

n,Nn
6= 0.

(c) Each of the sets {o⇤

n,1, . . . ,o
⇤

n,Nn
} and {v⇤

n,1, . . . ,v
⇤

n,Nn
} is linearly inde-

pendent.

Proof. We first prove (a). Assume Rn 6= 0, i. e. Rn 6= 0. The optimality condi-

tion of the step size functional hn�1(µ), see (19), at n � 1 for j = 1, . . . , Nn�1

is given by

0 = @jhn�1(µn�1)

= �hv⇤

n�1,j , J
⇤

p⇤

⇣
Jp(xn�1)�

Nn�1X

k=1

µn�1,kv
⇤

n�1,k

⌘
i+ �n�1,j

= �ho⇤

n�1,j ,Axni+ ho
⇤

n�1,j ,yi

= �ho⇤

n�1,j ,Rni,

where we used (18) and (32). The statement then follows by (24) and stepping

back until n�Nn if we take into account that

V
trunc
n = {v⇤

n�Nn�1,Nn�Nn�1, . . . ,v
⇤

n,Nn
}.

We continue with (b). By Corollary 2 we have d⇤

n 6= 0 and, thus, by (25) we

have to show that v⇤

n,Nn
is not contained in Vn�1. To this end, let z 2MAx=y

and hence xn � z 6= 0. Furthermore, let �1, . . . ,�Nn�1 ,� 2 R be given with

Nn�1X

k=1

�kv
⇤

n�1,k + �d⇤

n = 0.

Then, by using (a),

0 =

Nn�1X

k=1

�khv
⇤

n�1,k,xn � zi+ �hd⇤

n,xn � zi

=

Nn�1X

k=1

�kho
⇤

n�1,k,Rni+ �hjr(Rn),Rni

= �Rr
n,

we get � = 0, which proves the statement by contradiction.
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As for (c) it su�ces to show that {v⇤

n,1, . . . ,v
⇤

n,Nn
} are linearly independent.

Assume again Rn 6= 0 and let z 2MAx=y and �1, . . . ,�Nn 2 R be given with

NnX

k=1

�kv
⇤

n,k = 0.

Applying (25) and (a) to v⇤

n,Nn
, we deduce

0 =
NnX

k=1

�khv
⇤

n,k,xn � zi =
Nn�1X

k=1

�kho
⇤

n,k,Rni+ �Nnho
⇤

n,Nn
,Rni

= �Nnho
⇤

n,Nn
,Rni = �NnhR

⇤

n,Rni �

NnX

k=1

sn,kho
⇤

n�1,k,Rni

= �NnR
r
n,

what implies �Nn = 0. We continue with

0 =
Nn�1X

k=0

�khv
⇤

n,k,xn�1 � zi = . . . = �Nn�1R
r
n�1,

and by induction we get �k = 0 for all k = 1, . . . , Nn. Hence, also the search265

directions v⇤

n,k are linearly independent.

We continue by showing that our solution manifold is contained in the in-

tersection of certain hyperplanes and that the iterates and search directions

obtained via the update formulas (18) and (25) can be interpreted as Bregman

projections on intersections of hyperplanes. Though most of this is not needed

in the convergence proof, it is very illustrative for the general iteration process.

For x⇤
2 X

⇤ and � 2 R we denote by

H(x⇤,�) :=
�
x 2 X : hx⇤,xi = �

 

the hyperplane defined by x⇤ and o↵set �.

Lemma 3 (Intersection of hyperplanes).

(a) For the solution manifold MAx=y we have

MAx=y ⇢ Hn :=
Nn\

k=1

H(v⇤

n,k,�n,k). (38)
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(b) For all n it holds Jp(xn)� Jp(x0) 2
S

n Vn ⇢ ran (A⇤).

(c) The iterate xn+1 is the Bregman projection of the current iterate xn onto

Hn,

xn+1 = ⇧p
Hn

(xn) (39)

and furthermore

Jp(xn+1) = ⇧p
Jp(xn)+Vtrunc

n
(Jp(z)) for all z 2MAx=y. (40)

(d) The search direction v⇤

n,Nn
is the Bregman projection of the Landweber

direction d⇤

n,

J⇤

p⇤(v⇤

n,Nn
) = ⇧p

(Vtrunc
n�1 )?

�
J⇤

p⇤(d⇤

n)
�
, (41)

where V
? denotes the annihilator of the space V.270

Proof. To prove part (a) we have to show hv⇤

n,k, zi = �n,k for any z 2MAx=y,

what follows directly from the definition of the o↵sets, (32).

Part (b) follows from

Jp(xn)� Jp(x0) = Jp(xn)� Jp(xn�1) + Jp(xn�1)� . . .+ Jp(x1)� Jp(x0),

=
NnX

j=1

µnv
⇤

n,j + . . .+
N1X

j=1

µ1v
⇤

1,j ,

c. f. (18).

Part (d) is proven by using the definition (25) of v⇤

n,Nn
, relations between metric

and Bregman projections, see Prop. 3 (a) and [4, Prop. 3.6 d)] as well as known

equivalencies for Bregman projections, see [4, Prop. 3.7 b)]. Putting these in-

gredients together we obtain

J⇤

p⇤(v⇤

n,Nn
) = J⇤

p⇤

⇣
d⇤

n � PV
trunc
n�1

(d⇤

n)
⌘
= J⇤

p⇤

⇣
�⇧V

trunc
n�1 �d⇤

n
(0)

⌘

= J⇤

p⇤

⇣
⇧d⇤

n�V
trunc
n�1

(0)
⌘
= J⇤

p⇤

⇣
⇧d⇤

n+V
trunc
n�1

(0)
⌘

= ⇧(Vtrunc
n�1 )?

�
J⇤

p⇤(d⇤

n)
�
.

Part (c) follows in the same way as in the proof of [4, Prop. 4.1].
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As last ingredient for our convergence proof we need to show that v⇤

n,Nn
is

still a descent direction, where we use the same geometrical arguments as in the

generalized Landweber convergence proof, see [1]. We emphasize that this is

not a straight-forward consequence, since we have U
trunc
n 6⇢ V

trunc
n , i. e. d⇤

n is in275

general not contained in V
trunc
n , c. f. (26).

Lemma 4 (Descent direction property). Any v⇤

n,Nn
resulting from (25) is al-

ways a descent direction, i. e. there is a µn 2 RNn and Sn > 0 with

hn(µn)  hn(0)� Sn (42)

For any z 2MAx=y this is equivalent to

�p(xn+1, z)  �p(xn, z)� Sn. (43)

Proof. We assume Rn 6= 0 and xn 6= 0. We set

eµn := (0, . . . , 0, ⌫n) with ⌫n :=
⌧n kxnk

p�1
X���v⇤

n,Nn

���
X⇤

(44)

where ⌧n 2 (0, 1] is to be chosen satisfying

⇢X⇤(⌧n)

⌧n
= ⇢X⇤(1) ^

✓
�

2p⇤Gp

Rr
n

kxnkX kv
⇤
nkX⇤

◆
.

for � 2 (0, 1), c. f. Theorem 2. Let µn = argmint2Rn hn(t), then we estimate by

means of the Xu-Roach inequality (8)

hn(µn)  hn(eµn)


1
p⇤ kxnk

p
X
� ⌫nhv

⇤

n,Nn
,xni+

1

p⇤
e�
�
Jp(xn), ⌫nv

⇤

n,Nn

�
+ ho⇤

n,Nn
,yi

= 1
p⇤ kxnk

p
X
� ⌫nhR

⇤

n �

Nn�1X

k=1

sn,ko
⇤

n�1,k,Rni+
1

p⇤
e�
�
Jp(xn), ⌫nv

⇤

n,Nn

�

= 1
p⇤ kxnk

p
X
� ⌫nR

r
n +

1

p⇤
e�
�
Jp(xn), ⌫nv

⇤

n,Nn

�

= 1
p⇤ kxnk

p
X
� ⌧n kxnk

p�1 Rr
n���v⇤

n,Nn

���
X⇤

+
1

p⇤
e�
�
Jp(xn), ⌫nv

⇤

n,Nn

�
,

22



where we have used the orthogonality properties stated in Corollary 3 (a). As

the metric projection is non-expanding, c. f. (26), we have that

��v⇤

n,Nn

��
X⇤  kA

⇤jr(Axn � y)k
X⇤  kAkRr�1

n .

Lemma 1 allows us to bound the last summand using the requirement on ⌧n,

1
p⇤ e�p⇤

�
Jp(xn), ⌫nv

⇤

n,Nn

�
 2p

⇤
Gp kxnk

p
X
⇢X⇤(⌧n)

 ⌧n2
p⇤
Gp kxnk

p
X

⇢X⇤(⌧n)

⌧n

 ⌧n2
p⇤
Gp kxnk

p
X

�

2p⇤Gp

Rr
n

kxnkX

���v⇤

n,Nn

���
X⇤

= �⌧n kxnk
p�1
X

Rr
n���v⇤

n,Nn

���
X⇤

.

Combining all that we obtain

hn(µn) 
1
p⇤ kxnk

p
X
� (1� �)⌧n kxnk

p�1
X

Rr
n���v⇤

n,Nn

���


1
p⇤ kxnk

p
X
�

(1� �)

kAk
⌧n kxnk

p�1
X

Rn. (45)

We are done since all factors in Sn := (1��)
kAk

⌧n kxnk
p�1
X

Rn are positive and if

we take hn(0) =
1
p⇤ kxnk

p
X

into account.

It remains to show (43). To this end we use (14) and (18). For any z 2

MAx=y we then have

�p(xn+1(µ), z) =
1
p⇤ kxn+1(µ)k

p
X
� hJp(xn)�

NnX

k=1

µkv
⇤

n,k, zi+
1
p kzk

p
X

= 1
p⇤ kxn+1(µ)k

p
X
� hJp(xn), zi+

NnX

k=1

µk�n,k + 1
p kzk

p
X

= hn(µ)� hJp(xn), zi+
1
p kzk

p
X
.

As the last two terms are constant with respect to µ, they cancel out when

considering the di↵erence hn(0)� hn(µ). This finally yields (43).280

Our investigations are subsumed in the main result of this section.
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Theorem 3 (Weak convergence for Vtrunc
n ). Let X be a uniformly convex and

smooth Banach space with sequentially weak-to-weak continuous duality map-

ping Jp and Y be an arbitrary Banach space. For 1  Nn  n and search

space Vtrunc
n given by (24) and (25), Method 1 either stops after a finite number285

n 2 N of iterations (in case Rn = 0) with xn = bx = ⇧p
MAx=y

(x0) being the

Bregman projection of x0 onto the solution manifold MAx=y or the sequence

of the iterates {xn}n converges weakly to bx.

Proof. In case Rn = 0 for some n 2 N we have xn 2MAx=y and we are done by

[4, Proposition 3.7 b)] together with the optimality condition in Lemma 2 (b).290

Let us therefore assumeRn 6= 0 for all n. Lemma 4 ensures that {�p(xn, z)}n

for all z 2 MAx=y is strictly decreasing. Thus, {�p(xn, z)}n is bounded

from above by {�p(x0, z)}n. Then, Proposition 2 (b) states that {xn}n is

bounded. As we require X to be uniformly convex and hence reflexive by

the Milman-Pettis theorem, [13, Sect. II.2, Thm. 2.9], every subsequence of295

{xn}n has a subsequence {xnk}k that converges weakly to some bx 2 X , see [19,

Chap. 8,Thm 4.2]. The proof of {Rnk}k being a null sequence follows in exactly

the same way as in [1, p. 320]. As a consequence we even have bx 2MAx=y as

Rnk = kAxnk � yk
Y
! 0 with k !1, i. e. Abx = y. As ran (A⇤) is convex and

norm-closed, it is also weakly closed, see [28, Chap. 5, Thm. 3.13]. This together300

with Lemma 3 (b) implies Jp(bx) � Jp(x0) 2 ran (A⇤) since Jp is sequentially

weak-to-weak continuous by assumption. Applying the optimality condition

Lemma 2 (b) with the requirement Jp(x0) 2 ran (A⇤) and taking into account

that z+ nul (A) = MAx=y for all z 2MAx=y, we conclude bx = ⇧p
MAx=y

(x0).

As we have shown that for every subsequence of {xn}n there is a subsequence305

that in turn converges weakly to the same limit ⇧p
MAx=y

(x0), then this holds

for the sequence {xn}n, too, see [29, Sect. 10.5], and we are done.

Remark 1. Note that the duality mappings of `p-spaces, where 1 < p <1, are

sequentially weak-to-weak-continuous, see [4, Remark 4.3], and hence satisfy

the assumptions of Theorem 3.310

If we choose x0 = 0, then bx = x† is the minimum-norm-solution of (2).
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3.5. Orthogonalized SESOP as generalized CGNE

Of special importance and interest is the connection between the orthogo-

nalized SESOP and the CG method applied to the normal equation in Hilbert

spaces.315

The method of conjugate gradients was first proposed by [5] and nowadays

a whole zoo of CG methods exist, see [30] for a taxonomoy. It is especially

competitive for problems with a large discretization dimension where a direct

inversion or second-order methods such as BFGS are prohibitively expensive.

Standard CG requires a symmetric, positive definite operator A in a Hilbert320

space X . However, it is also applicable in the case of a non-symmetric operator,

i. e. A : X ! Y with X 6= Y, if it is applied to the normal equation A⇤Ax =

A⇤y, following [31, Sect. 8.1, 8.3], which is equivalent to minimizing the residual

kAx� yk
Y
. This leads to the so called Conjugate Gradient Normal Residual

(CGNR) method, which is used in the context of over-determined systems with325

injective A.

Alternatively, for underdetermined systems we can investigate

AA⇤b = y with x† = A⇤b

and thus compute the solution with minimal norm

��x†
�� = min

�
kxk : Ax = y

 
(46)

which is called Conjugate Gradient Normal Equation (CGNE) or Craig’s method,

see [11].

Let us first state some identities if X , Y are Hilbert spaces and p = 2,

• X = X
⇤, Y = Y

⇤,330

• �2(x,y) = kx� yk2,

• ⇧2
C
(x) = PC(x), C ⇢ X being closed and convex,

• JX

2 = 1X , jY2 = JY

2 = 1Y .
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Hence, Method 1 calculates the metric projection onto the solution manifold, see

Theorem 3. Hence, it minimizes the norm kzk over all z 2MAx=y. According

to [32, Algorithm 2.2] or [30, Sect. 2.3] with B = 1, the update in the CGNE

method is

r0 = y �Ax0, p0 = A⇤r0

↵n =
hrn, rni

hpn,pni

xn+1 = xn + ↵npn, rn+1 = rn � ↵nApn

pn+1 = A⇤rn+1 + �npn, �n = �
hA⇤rn+1,pni

hpn,pni

We immediately see the equivalence with the update scheme of Method 1 using

a single search direction when substituting as follows,

rn ! �Rn = Axn � y,

pn ! v⇤

n = A⇤Rn � snv
⇤

n�1,

↵n ! µn =
ho⇤

n,Rni

hv⇤
n,v

⇤
ni

=
hRn � sn�1o⇤

n�1,Rni

hv⇤
n,v

⇤
ni

=
hRn,Rni

hv⇤
n,v

⇤
ni

�n�1 ! sn =
hv⇤

n�1,d
⇤

ni

hv⇤

n�1,v
⇤

n�1i
=
hv⇤

n�1,A
⇤Rni

hv⇤

n�1,v
⇤

n�1i
,

where we used (20) and (30). In that sense SESOP with orthogonalized search

directions can be seen as a generalization of the CGNE method to Banach335

spaces. Using more than one previous search direction corresponds to reorthog-

onalization when conjugacy is lost due to rounding errors; see also [33, 34, 35],

where furthermore the relationship between the conjugate gradient method and

the Lanczos method is discussed.

4. Numerical experiments340

We perform numerical experiments that compare Method 1 and Method 2,

namely SESOP using either the unorthogonalized search space U
trunc
n or the

orthogonalized search space V
trunc
n . In the following we refer to both methods

simply by the corresponding search space that each one employs. The first part
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uses the problem from [4, Sect. 5], namely solving Ax = y for various `p spaces345

and uniformly distributed random matrices A and right-hand sides y. In the

second part we solve inverse problems in 2D computerized tomography.

All experiments have been performed on a single core of an Intel Xeon E3-

1270 cpu with 3.50GHz. Note that SESOP and the orthogonalization proce-

dure described in Section 3 have been implemented in the C++ library BASSO350

(BAnach Sequential Subspace Optimizer), based on the Eigen3 library [36] for

the linear algebra routines2.

4.1. Toy problem

We first look at the inverse problem of a random matrix and a random right-

hand side to be formally inverted as is done frequently in the literature, but with355

well-known shortcomings, see [37]. In this experiment, we want to check the case

of p = 2 for a single and for multiple search directions. We will see that with

SESOP there is still a significant decrease in required iterations from single to

multiple search direction for the `2 space. With CG no such di↵erence arises

due to the conjugacy property. Furthermore, to assess a possible speed-up of the360

orthogonalized search directions, we investigate various `p spaces and norms.

4.1.1. Procedure

To this end, we create a uniformly distributed random matrixA 2 [�1, 1]l⇥m

with l = 1000 and m = 5000, representing a discretized version of some random

operator. Next, we want to create a solution x†
2 Rm to a random right-

hand side y 2 Rl in the sense that this solution should be a minimum-norm

solution in an `p-space with p 2 {1.1, 1.2, 1.5, 2, 3, 6, 10}. Therefore, we create a

random right-hand side precursor y⇤
2 [�1, 1]l and calculate the minimum-norm

solution x† as follows:

x† :=
J⇤

p⇤(A⇤y⇤)��J⇤
p⇤(A⇤y⇤)

��
p

(47)

2BASSO is available from GitHub at https://github.com/FrederikHeber/BASSO under

GPLv2 license.
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Then we finally obtain the right-hand side as Rl
3 y = Ax†. We use 10 di↵erent

seeds s 2 {420, . . . , 429} for the random number generator and calculate average

iteration counts n and standard deviations �n over these 10 runs with otherwise365

identical parameters. The iteration is stopped at either n > 20, 000 or if the

relative residual
kAxn�ykY

kykY
is less than 10�4. Note that we always set Y =

`2(Rl).

4.1.2. SESOP

First, we reproduce the results from [4, Sect. 5] to elucidate any possible dif-370

ferences that arise from di↵erent implementations, see Table 1. There, the ma-

trix dimension is 1000⇥5000, the `p-norms of X are given for p 2 {1.2, 1.5, 6, 10},

the power of the gauge function of the duality mapping Jp is given as p for p � 2

and p = 2, else. We use N 2 {2, 4, 6} numbers of search directions.

If we take into account that in Table 1(a) only a single run is given and375

comparing this to our averages and standard deviations, the iteration counts

are in very good agreement up until p = 2. For larger p the discrepancy is quite

large. However, this is also true for the standard deviations. Hence, overall

we do not see any discrepancy resulting from the di↵erent implementations,

i. e. we have a solid base for comparing the results with the original MatLab380

implementation of [4].

4.1.3. Orthogonalized SESOP

Next, we have a look at the change in iteration counts and runtimes be-

tween the search space U
trunc
n used in SESOP and the search spaces V

trunc
n

using metric projections as proposed in this article. We use various numbers of385

search directions N 2 {1, 2, 4, 6} and `p-spaces with p 2 {1.1, 1.2, 1.5, 2, 3, 6, 10}

and the power type of the duality mapping chosen as in Subsection 4.1.2. For

comparison we also implemented a Landweber method where the step size is

chosen such that the residual is minimized along the current Landweber search

direction. For this optimization problem we employ Brent’s method, i. e. we do390

not use any gradient information. The average iteration counts and standard
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Table 1: Comparison of SESOP implementations from [4] and this work (without

orthogonalization): Average iteration counts n and standard deviations �n for various

p and N values and matrix dimension m = 5000.

(a) from [4]

p N n

1.2 2 435

1.2 4 211

1.2 6 137

1.5 2 22

1.5 4 15

1.5 6 14

6 2 102

6 4 79

6 6 49

10 2 297

10 4 183

10 6 131

(b) This work

p N n �n

1.2 2 402.9 80.75

1.2 4 199.1 35.72

1.2 6 133.2 19.59

1.5 2 21.7 0.46

1.5 4 14.9 0.3

1.5 6 14 0

6 2 691.7 744.38

6 4 200.1 90.35

6 6 99.2 31.99

10 2 1,413.8 1,399.17

10 4 396.6 195.55

10 6 188.3 64.18
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deviations are given in Table 2.

We notice that with p 2 {1.2, 1.5, 2} the average iteration count n changes

only slightly with respect to di↵erent number of search directions N . This holds

for p = 1.5 within output precision of 10�7 and for p = 2 within full floating395

point numerical precision. Hence, we see that if X = `2 (Rm) is a Hilbert-space,

then the orthogonality is maintained between all search directions from v⇤

0,N0

up to v⇤

n,Nn
. This is the behavior expected from CG methods and we elucidate

this further in the next section. It is maintained to some extent also if p is close

to 2.400

Additionally, for p 2 {1.5, 2} we observe that for a large number of search

directions N the average number of iteration steps n is similar for both of the

search spaces U trunc
n and V

trunc
n . This indicates that using more than one search

direction, the central idea of [4], the subspaces U trunc
n and V

trunc
n at each step n

tend to be identical if the number of search directions goes to infinity, namely405

U
exp = V

exp, c.f. Section 3.5.

At last, iteration counts and deviations become very large for p ! 1 and

p!1, i. e. when the `p spaces are no longer smooth.

1.2 1.5 2 3 6 10

10

100

1,000

`p

n

Un

Vn

(a) Iterations

1.2 1.5 2 3 6 10
0.1

1

10

100

`p

Un

Vn

(b) Runtimes

Figure 2: Iterations and runtimes using SESOP and two di↵erent search spaces for

the minimum-norm solution of Ax = y with uniformly random A 2 R1000⇥5000
and a

single search direction.

In Figure 2 we depict for a single search direction both iteration counts and
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Table 2: Averaged iteration counts n and standard deviations �n for various p and

N values and m = 5000 for solving with SESOP for the minimum-norm solution of

Ax = y: unorthogonalized refers to U trunc
and metric to Vtrunc

.

p N nunorth �unorth
n nmetric �metric

n

1.1 1 18,880.6 1,533.87 2,196.4 828.39

1.1 2 13,739.7 3,078.62 1,243 252.83

1.1 4 7,167.5 1,004.05 815.6 67

1.1 6 4,187.3 509.16 654.4 65.69

1.2 1 627.8 132.57 77.7 12.4

1.2 2 402.9 80.75 77.2 8.33

1.2 4 199.1 35.72 71 7.56

1.2 6 133.2 19.59 67.8 6.43

1.5 1 31.4 0.8 14 0

1.5 2 21.7 0.46 14 0

1.5 4 14.9 0.3 14 0

1.5 6 14 0 14 0

2 1 21 0.45 11 0

2 2 14.9 0.3 11 0

2 4 11.3 0.46 11 0

2 6 11 0 11 0

3 1 63 14.2 26.8 5

3 2 43.5 8.8 21.9 3.81

3 4 22.1 2.74 18.7 1.68

3 6 19.3 1.68 18.4 1.36

6 1 1,499.3 1,879.2 445.3 376.56

6 2 691.7 744.38 262.4 183.25

6 4 200.1 90.35 99.2 38.2

6 6 99.2 31.99 56.9 14.94

10 1 3,973.9 5,692.81 1,021.7 1,049.87

10 2 1,413.8 1,399.17 563.4 507.32

10 4 396.6 195.55 208.1 82.09

10 6 188.3 64.18 112 33.12
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the total runtime for solving for the minimum-norm solution up to a relative410

residual threshold of 10�4 or up to 20, 000 iteration steps. Here, we want to

compare the method’s performance with either search space directly. We notice

that iteration counts for the orthogonalized search space V
trunc
n are at least a

factor of 2-3 below the ones for the search space U trunc
n . This holds for all values

of p. This reduced number of iterations, that are necessary for the same residual415

threshold, is the reason, why the runtimes show the same trend between the dif-

ferent search spaces up to a similar factor, despite the additional computational

e↵ort for the orthogonalization.

1.2 1.5 2 3 6 10
0.1

1

10

100

`p

UN=1

UN=2

UN=4

UN=6

VN=1

VN=2

VN=4

VN=6

Figure 3: Runtimes using Landweber and SESOP with unorthogonalized and or-

thogonalized search spaces for the minimum-norm solution of Ax = y with uniformly

random A 2 R1000⇥5000
and N 2 {1, 2, 4, 6}.

Finally, we look at runtimes for an increasing number of search directions

in Figure 3. There, we compare Landweber using the dynamic step size with420

SESOP and either search space U
trunc
n or search space V

trunc
n . We notice that

the orthogonalized search space V
trunc
N=1 using a single search direction is fastest

for p  3. For larger p � 6 we see that the search spaces U
trunc
N=6 and V

trunc
N=6 ,

both using the highest number of investigated search directions, are compa-
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rable with respect to runtime. However, we also see that using more search425

directions N significantly slows down SESOP using V
trunc
N for p  3. This is

much less pronounced with search space U trunc
N where no additional cost for the

orthogonalization is accumulated.

The results can be explained as follows: On the one hand, for small p the

additional cost of the orthogonlization procedure for many search directions430

outweighs any advantage obtained by converging in fewer iterations. There

are two reasons behind this. First, SESOP requires less iteration steps when

using multiple search directions, c. f. Table 2. Second, the overhead of orthog-

onalization becomes more costly when N increases. On the other hand, for

very large p and, because of the nature of the associated dual space, also for p435

close to 1, the orthogonalization is numerically very di�cult due to the large

powers involved in the `p-norms. Finally, Landweber’s method with a residual

minimizing step size is always an order of magnitude slower than the fastest

subspace method. We note that the Landweber method with fixed stepwidth

µn according to [1, Method 3.1] is already for the `2 norm very far from being440

competitive. It requires on average 42300 ± 750 iteration steps, the runtime

around 207 ± 12 seconds. This is slower than the fastest subspace method for

any of the investigated `p-norms.

As a general rule we summarize that orthogonalized SESOP with search

space V
trunc
n is fastest with a single search direction for small p  3 and with445

multiple search directions for p � 6.

4.1.4. Connection to the CG method in Hilbert space

We already discussed the connection of Method 1 to the CGNE method in

Section 3.5. According to [30, Table 5.2], the inner product matrix of CGNE

is the identity matrix. Hence, the conjugacy is reduced to a simple orthogonal-450

ity of search directions. Numerically, we therefore expect that multiple search

directions N do not change the convergence behavior in any way for `2-spaces.

In Figure 4 we visualize the error with respect to the Bregman distance for

3 di↵erent `p norms. There, we only look at the orthogonalized search space
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(c) p = 6

Figure 4: Bregman distance �p(xn, z) = kxn � zk2 for X = `2(Rm
), p = 2, depicted

over the iteration number n for SESOP with search space Vtrunc
n for increasing number

of search directions N , for various `p norms with m = 5000, and for a specific random

number generator seed.
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V
trunc
n using metric projections. We clearly recognize that in the `2-case more455

than a single search direction does not change anything about the minimization.

It proceeds (up to numerical precision) in exactly the same manner as if there

were only a single search direction spanning the search space. This is precisely

what would be expected of a CG method due to the inherent conjugacy property.

This is not valid for the other two cases p = 1.2 and p = 6 where more search460

directions lead to a significant speed-up, especially for p� 2. Furthermore, we

see in Table 2 that there is no di↵erence between a single search direction and

multiple search directions as the current gradient direction is made orthogonal to

all previous search directions simultaneously. As a consequence we may conclude

by this numerical example that the subspace methods (with orthogonalization)465

to a certain degree in fact are an extension of the CG methods to general Banach

spaces.

4.2. Computerized Tomography

The problem of computerized tomography aims to reconstruct the interior

of an object from projections. We refer to the seminal books [38, 39] for the470

mathematics of computerized tomography. Measurements are obtained by pass-

ing X-rays through a body, whose intensity is diminished, proportional to the

passed length and density of the body f(x) : [0, 1]2 ! R+
0 . This decrease is

measured over a angles and s shifts of radiation source and detectors. The aris-

ing measurement matrix is usually called sinogram. We follow [40, Sect. 7.7] for475

a brief introduction to the discretization of the problem.

The measurement rays are parametrized as

ti(⌧) = ti,0 + ⌧di, (48)

where d is the directional vector of the ith ray with i = 1, . . . , s · a. Then, the

attenuation of the i-th ray can be written as the Radon transform,

bi =

Z
1

�1

f
�
ti(⌧)

�
d⌧, i = 1, . . . , s · a, (49)
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i. e. we integrate d⌧ along the line ti(⌧). The problem can be discretized using

a pixel basis,

�kl(x) =

8
><

>:

1, x 2 [h · (k � 1), h · k]⇥ [h · (l � 1), h · l]

0, else
, for all k, l = 1, . . . ,M,

(50)

where we assume the absorption coe�cient f(x) =
P

kl fkl�kl(x) to be piecewise

constant with h = 1
M and fkl is the grey-scale value at pixel �kl to be computed.

For the discretization of (49) we simply need to count the length �L(i)
kl of

each ray ti in each pixel �kl of the basis (50) and obtain

bi =
MX

k,l=1

fkl�L(i)
kl for i = 1, . . . , s · a. (51)

If we vectorize the matrix object fkl to become the vector xj with j =

(l � 1)M + k, then we obtain

bi =
X

j

aijxj , i = 1, . . . , s · a. (52)

Note that the matrix A is sparse which we exploit in the implementation.

(a) Phantom (b) Sinogram

Figure 5: Shepp-Logan phantom and its sinogram.
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As benchmark we take the standard Shepp-Logan phantom, see Figure 5(a),480

where we obtain the measurements by using the known analytical Radon trans-

form of ellipses, see Figure 5(b). We discretize using M = 41 pixels, s = 61

number of shifts, and a = 60 number of angles. We deliberately choose a coarser

image resolution together with a higher number of measurements to allow for

a high-quality reconstruction and clearly discernable artifacts if there are any.485

Note that we additionally project the solution onto the range of the matrix A

such that an exact solution exists. We return to this point in Section 4.2.2.

We again want to compare SESOP using the truncated search space U
trunc
n

as well as orthogonalized SESOP with search space V
trunc
n . The dimensions are

as follows: |U trunc
n | = 2 and |V

trunc
n | = 1. We stop the methods either after 500490

iterations or if the absolute residual is less than 10�2. We use `p-spaces with

p 2 {1.1, 1.2, 1.5, 2} for X and `2 for Y. For the line-search problem we use at

most 20 iterations. The power type of the duality mappings is always set to

p = 2.

4.2.1. Exact data495

First of all, we study the situation of exact data and X = `2, i. e. a Hilbert

space setting. Figure 6 displays reconstructions along with the error, residual,

and Bregman distance histories for SESOP with the truncated search space

U
trunc
n and two search directions.

We realize that SESOP converges but stops at n = 500 iterations where500

the absolute residual is still slightly larger than 10�2. The overall runtime

is 2.4 seconds. Note that the convergence is monotone only in the Bregman

distance and not in the residual, c.f. Theorem 3.

Next, we apply orthogonalized SESOP using the search space V
trunc
n with a

single search direction3. We obtain the results depicted in Figure 7.505

We notice that the iteration stops at roughly n = 60 when reaching an

3As mentioned before, in `2 more search directions do not improve performance when using

an orthogonalized search space.

37
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Figure 6: Recovered solution and residual, error, and Bregman distance histories

using SESOP with
��U trunc

n

�� = 2 directions.

(a) solution
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(b) iteration history

Figure 7: Recovered solution and residual, error, and Bregman distance histories

using orthogonalized SESOP with
��Vtrunc

n

�� = 1 direction.
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absolute residual of 10�2. Naturally, this leads to a faster runtime compared

to the unorthogonalized search space of only 0.36 seconds. In the former case

the reconstructed image shows some very slight artifacts, in the latter case no

artifacts are visible.510

4.2.2. Noisy data

It is called inverse crime, if the same discretization is being used for both,

the operator and the right-hand side, see [40, Sect. 7.2]. Results may look sus-

piciously good in this case, i. e. no mismatch between (real) data and model is

revealed. We definitely committed this crime by projecting our measurements515

onto the range of the matrix A. This is why in the next step we additionally

disturb the right-hand side y, obtained from projecting the Shepp-Logan phan-

tom x†, where y = Ax†, with noise of known level � to get a contaminated data

vector y�.

To this end, we compute a random vector n 2 [�1, 1]m and set ey = y+� kyk
knkn.520

We use a noise level of � = 0.01. We stop the iteration, if the relative residual

threshold is less than 0.03, i.e. we use a tolerance parameter of factor 3. We

increase the number of o↵sets to s = 81 and number of angles to a = 80. We

furthermore increase the number of pixels M = 81 of the reconstructed image.

We still remain in the Hilbert space setting X = `2 for the moment. In the next525

section we consider other `p spaces.

In Figure 8 both, the reconstructed image and iteration history with residual,

Bregman distance, and error with respect to the true solution is shown. We

obtain good results with respect to the noise level employed. The runtime is

0.34 seconds. We conclude that we do not commit any inverse crime and that530

the proposed method is indeed working and implemented in a decent way.

4.2.3. Small `p Norms

Finally, we also look at other norms than `2, namely small `p norms with

p 2 {1.1, 1.2, 1.5}. We again use s = 61, a = 60 and M = 41 to allow for a

high-quality reconstruction.535
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Figure 8: Recovered solution (a), residual, error, and Bregman distance histories (b)

using orthogonalized SESOP with
��Vtrunc

n

�� = 1 direction in the presence of noise of

level 0.01 and a tolerance parameter 3.
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Figure 9: Bregman distance �p(xn, z) depicted over the iteration number n using

SESOP with unorthogonalized search space U trunc
n and orthogonalized search space

Vtrunc
n for spaces norms `1.1, `1.2, and `1.5.
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In Figure 9 we compare the decrease in Bregman distance for unorthogonal-

ized and orthogonalized search spaces for various small `p norms. We see that

for all tested small `p norms the orthogonalized search space V
trunc
n requires

about three times fewer iterations to reach the stopping criterion. This makes

it also faster in the overall runtimes, e. g. for p = 1.1 we obtain 3.15 seconds540

without orthogonalization and 2.6 seconds when employing V
trunc
n . Note that

the method terminates at di↵erent Bregman distances, since di↵erent `p-norms

have been used to measure the residual stopping criterion.

(a) `1.1 (b) `1.2 (c) `1.5 (d) `2

Figure 10: Reconstructed Shepp-Logan phantom in the presence of noise with level

� = 0.01 and using small `p norms with p 2 {1.1, 1.2, 1.5, 2}.

We show in Figure 10 larger reconstructed images for M = 127 pixels with

a noise of � = 0.01 while using the same number of angles a and shifts s than545

before. This is to elucidate the e↵ect of the di↵erent `p norms in the presence

of noise. We observe that for smaller `p both contrast and noise of the image is

enhanced. Especially, artifacts surrounding the reconstructed phantom in the

`2 case are absent for `1.1. On the other hand, noisy speckles are more present

in the reconstructed image using the `1.1 norm.550

5. Conclusions

Based on the previous work of [10] and on the concept of orthogonality by

[12], we have proposed an orthogonalized set of search directions in Banach

spaces using metric projections. Using search spaces consisting only of a finite

number of Landweber directions modified by this orthogonalization, we have555
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shown that the SESOP method converges weakly and that in Hilbert spaces the

procedure coincides with the CGNE method, also known as Craig’s method [11].

In this respect, the subspace methods can be seen as a natural extension of CG

methods to general Banach spaces.

Numerical experiments have shown fast convergence for both an inverse toy560

problem consisting of a uniformly distributed random matrix and right-hand

side on various `p-spaces as well as for the inverse problem of 2D computerized

tomography for reconstructing the Shepp-Logan phantom. In every case the

orthogonalized truncated search space clearly outperforms the truncated search

space used in [4] with respect to both required numbers of iterations and run-565

time. Note that either method is faster by at least an order of magnitude than

Landweber’s method with a gradient-free line search.

As an outlook, we would like to remind that there is a whole zoo of CG-

variants, see [41, p. 98]. It would be very insightful to find more connections

between a specific variant and a choice of (orthogonalized) search spaces for the570

orthogonalized SESOP. The regularizing property of CG methods in Hilbert

spaces is well-known due to [42, 43], its generalization to Banach spaces is an

open question. Finally, since there are also CG variants for non-linear problems

and SESOP has been extended to nonlinear, ill-posed problems in Hilbert spaces

[9], this would be a very interesting research field for the subspace methods as575

well.
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