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Abstract: We construct new multivariate copulas on the basis of a generalized infinite parti-
tion-of-unity approach. This approach allows - in contrast to finite partition-of-unity copulas
- for tail-dependence as well as for asymmetry. A possibility of fitting such copulas to real
data from quantitative risk management is also pointed out.
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1. Introduction

The theory of copulas and their applications has gained much interest in the recent years, especially in the
field of quantitative risk management, insurance and finance (see e.g. MCNEIL, FREY AND EMBRECHTS
(2005) or RANK (2006)). While classical approaches like elliptically contoured copulas and Archimedean
copulas are widely explored, other approaches concentrate on non-standard, non-symmetric or data-
driven copula constructions (see e.g. LAUTERBACH AND PFEIFER (2015), LAUTERBACH (2014), COTTIN
AND PFEIFER (2014) or JAWORSKI, DURANTE AND HARDLE (2013) and the papers therein for a survey,
especially the contributions related to vine copulas). Statistical and computational aspects of copulas have
also been investigated in more detail recently (see e.g. BLUMENTRITT (2012) and MAI AND SCHERER
(2012)). In this paper, we want to focus on a particular class of copulas and their generalizations, the so
called partition-of-unity copulas (see e.g. LI, MIKUSINSKI AND TAYLOR (1998) or KULPA (1999)).
Whereas in the usual approach, only finite partitions-of-unity are considered, which do not allow for a
modelling of tail-dependence, we extend this concept to infinite partitions-of-unity, which allows for tail-
dependence as well as for asymmetry, and which can also be used to fit given data to a more realistic
copula model. Our investigations resemble in some sense more recent approaches such as YANG ET AL.
(2015), GONZALEZ-BARRIOS AND HERNANDEZ-CEDILLO (2013), ZHENG ET AL. (2011), HUMMEL AND
MARKERT (2011), or GHOSH AND HENDERSON (2009). Whereas in these papers, local modifications of
known standard copulas are considered in order to obtain tail dependence or asymmetries, we focus on a
closed form representation of completely new copula densities which allows for easy Monte Carlo simu-
lations as well as a data driven modelling of tail dependence and asymmetries. This approach is not re-
stricted to two dimensions in general, but can likewise be used in arbitrary dimensions. However, in order
to illustrate our results, we will give examples in the bivariate case only.

To facilitate the readability of the paper, all elaborate proofs are given in an appendix.



2. Main Results

Let Z"={0,1,2,3,---} denote the set of non-negative integers and suppose that {¢,(u)} _ . and
{w ; (v)} . are non-negative maps defined on the interval (O, 1) each such that
J
Yopw)=> ¢, (v)=1 (2.1
i—0 =0
and
1 1
fgoi(u)du:ozi>0, f¢j(v)dv:ﬁj>o for i, j€Z". 2.2)
0 0

The maps ¢,(u) and v,(v) can be thought of as representing discrete distributions over the non-negative
integers Z* with parameters u and v, resp. The sequences {ai},eZ+ and {ﬁ j} - then represent the prob-
! J

abilities of the corresponding mixed distributions each.

Let further { P,-j}. ___ represent the probabilities of an arbitrary discrete bivariate distribution over

jent
7" xXZ" with marginal distributions given by p, = Z p;=q; and p = Z p; =0, for i,j€Z".
=0 i=0

Then

c(u,v) = ZZ gol.(u)l/Jj(v), u,v € (0,1) (2.3)

leO /

defines the density of a bivariate copula, called generalized partition-of-unity copula. The fact that ¢ in
fact is the density of a bivariate copula can be seen as follows:

fc(u v)dv—ZZ (u)fw Mad=>> L 5,6

10]0 ] i=0 j=0 /81

f:f) >—Z¢’(”)Z Z“)’(_”) 0=Yew=1l @4

j=0 ,' i=0 ,'

1
likewise for fc(u,v)du.

0

Note that from a ,,dual® point of view, we can rewrite (2.3) as

c(u,v) :ii Siw) g, (v), u, VE(O 1) (2.5)

i=0 j=0



where fi(+)= 90;5‘)’ g,(+)= ¥;(+)

i J

, i,j €Z" denote the Lebesgue densities induced by {¢,(u)},

7t

and {wj (v)}l_ew. This means that the copula density ¢ can also be seen as an appropriate mixture of

product densities, which possibly allows for a simple way for a stochastic simulation.

An extension of this approach to d dimensions with d >2 is obvious: assume that {goki(u)}iET for
k=1,---,d represent discrete probabilities with
> @u(u)=1 for u e (0,1) (2.6)
i=0
and
1
f(pki(u)du =q,>0foricZ". (2.7)
0

Let further { pi}iEW represent the distribution of an arbitrary discrete d-dimensional random vector Z

over Z"* where, for simplicity, we write i=(i,,-,i,), i.e.
P(Z=i)=p, icZ". (2.8)
Suppose further that for the marginal distributions, there holds
P(Z,=i)=q, i€Z k=1,-d. (2.9)

Then

d
cwy=3" BT e ) wu=(u,,,u,) €(0,1)" (2.10)
iezt? Hak’ik k=1
k=1

defines the density of a d-variate copula, which is also called generalized partition-of-unity copula.

Alternatively, we can rewrite (2.10) again as

e = 32 P [/ (0. w= () € (0.1)° 2.11)

ezt k

where the f,.(+) = Pul*) , i€Z", k=1,--,d denote the Lebesgue densities induced by the {¢, (1)}

i€zt
Qyy



3. The symmetric case (diagonal dominance)

For simplicity, we restrict ourselves to the two-dimensional case in the sequel. The generalization to
higher dimensions is obvious.

1
Let ¢, =1, for i€ Z" and fgoi(u)du =, > 0. Define
0

|y, ifi=j 11
Py = 0, otherwise. G-

Then
cwyy:fﬁﬂgfﬁﬂziy%mmﬁwx%vemm (3.2)

defines the density of a bivariate copula, called generalized partition-of-unity copula with diagonal domi-
nance.

Example 1 (binomial distributions - Bernstein copula). Consider, for a fixed integer m > 2, the family of
binomial distributions given by their point masses

m—1) . .
W d=w)y", i=0,--,m—1
(W) = i (3.3)
0, I >m.
Here we have, for i =0,---,m —1,
1 m—l 1
0 = [pi()du =[ . ] [wa—uy au
0 ! 0
_ (m=D! TE+DI'm—i)  (m-D! ilm—-1-0)! 1 (3.4)
im—1—i)!  T(m+1) il(m—1—1i)! m! m '
and hence
c, (u, v)—mZ[ (uv) (l—u)(l—v))mflfi, u,v € (0,1) (3.5)

which corresponds to the density of a particular Bernstein copula (see e.g. COTTIN AND PFEIFER (2014),
Theorem 2.1). Especially, for m =2, we obtain

c,(u,v) =4uv—-2u—2v+2, u,vE(O,l). (3.6)

The corresponding copula C, is given by



C,(x,y)= ]‘fcz(u,v)dvdu =xy+xy(1—-x)(1-y), x,y€ (0,1) (3.7)

and belongs to the so called Farlie-Gumbel-Morgenstern family (cf. e.g. NELSEN (2006), p. 77). For gen-
eral m > 1, relation (3.5) represents the density of a copula with polynomial sections of degree m in both
variables (cf. NELSEN (2006), chapter 3.2.5). The following graphs show some of these densities for dif-
ferent values of m.

Clearly, all those densities are bounded by the constant m, hence the coefficients )\, and A, of upper and
lower tail dependence are zero:

t ot

Llfjl\cm(u,v)dudv m(l— 1) ffcm(u,v)dudv 2

A, = lim -+ <lim =0 and )\, = lim-2-2 <lim®-=0. (3.8)
11 1—¢ 11 1—¢ t10 t 10 ¢

Example 2 (negative binomial distributions). Consider, for fixed > 0, the family of negative binomial
distributions given by their point masses

g%.(u):[BJF;_I](l—u)ﬂu", VA (3.9)
Here we have, for i € Z",
o (BN T(B+i) DE+HDIB+D) 3
%’i_[%”‘(”)d"_[ i ][”(l WMETNG) TGt Gty O

and hence



) (u,) = “l_”)g_v” fﬁ(ﬂw)mm)[ﬁ t.’”} ()

= (B+D(A—u)1—v))’ f:

i=0

[ﬁﬂ_l][ﬁﬁﬁ](w)z u,ve(0,1). 3.11)
1 1

For integer choices of (3, this expression can be explicitly evaluated as a finite sum, as can be seen from
the following result.

Lemma 1. For § € N, there holds

e ) = (34 {400 =0) i{ﬁi—l][ﬁ +1](Wy, uve(0,1). 3.12)

(1 _ uv)Z{ﬂ»l — .

To give an illustration of Lemma 1, we show an exemplary table for §=1,---,6, likewise for the corre-

x
sponding copula C,(x,y) = f f ¢, (u,v)dvdu, x,y€(0,1).
0 0

B cﬁ(usv)a u,V e (07 1)
| ) (I—u)(1—v)
(1 — uv)3
) 3 1+ 3u)(1—u)*(1—v)
(1—uv)’
3 4(1-|—8uv—i—6uzvz)(1—u)3(1—v)3
(1—uv)’
4 5(1—%15uv+30uzvz+10u3v3)(1—u)4(1—v)4
(1—uv)’
s 6 (1 + 24uv +90u’v’ + 80u’v’ +15u’v* ) (1—u)yd—-v)y
(1—uv)"
6 | - (14 35uv+ 21007 + 3500V +175u'v* + 21*v* ) (1 - w)* (1= v)°
(1—uv)”




B | Cux,y), x,y€(0,1)

xy(2—x—y)
1—xy

(3—3x—3y+x2—|—y2+3x2y2—x2y3—x3y2)
(1-xp)’

2 xy

%(4—6X—6y-i—4x2+4xy+4y2 +4x Yy +24x°y* +4xy’ — X —6x°y —6x1° — 3’ —...
3 — Xy
=Xyt Xty Aty —xty = yt dAxty? 44Xy 4 axPyt — Xty —16x°y7 —16x7)° — xy?)

The following graphs show the negative binomial copula densities ¢, for 8 =1,---,6.

. )
\ [ | \

\J\

B=4

Negative binomial copulas typically show an upper tail dependence, as can be seen from the following
exemplary table.

B 1121 3 4 5 6 7 8 9 10
M (B) 1|5 | 11| 93 | 193 | 793 | 1619 | 26333 | 53381 | 215955
v 2 | 8 | 16 | 128 | 256 | 1024 | 2048 | 32768 | 65536 | 262144




A closed formula for the tail dependence coefficients for integer values of 3 is given in the following
result.

Lemma 2. For 7 €N, there holds

1

ffc£,(u,v)dudv T 28) TCB) "
R T ) ff(x+y)““ BTy A

for large (3. (3.13)

, s [26] . . . .
Note that the sequence 4° )\, (3) = 4’ —[ ;] is related to certain combinatorial graph problems, see LISK-
OVETZ AND WALSH (2006), Table 4, p.385. The authors remark in their paper: “The latter [sequence] is

also known as the enumerator of cycles of objects, where the individual objects are enumerated by the
Catalan numbers.”

Note that relation (3.13) also implies that éim A (B)=1.

Example 3 (Poisson distributions). Consider the family of Poisson distributions given by their point
masses

sow,,-(u)=(1—u)”"7iL.—(,”)i, ieZ’ (3.14)
1.

where L(u)=—In(1—u)>0, ue€(0,1) and ~>0. Here we get, for i€Z", with the substitutions
z=L(u) and y =(147)z,

il

04 y o4 v ¥
L ay= _ | 3.15
(1+’y)l+l g (1+)" [1+v] [ 1+7] G139

| 1 i i 0o i
Qa, ; :fcpq,’j(u)du =f(1—u)”7];—(‘u)du: /Y_Zef(l+'y)z dz
0 . 0

indicating that the a. ; correspond to a geometric distribution with mean +, and hence

c,(u,v)=1+y)1—u)"(1- (3.16)

i

V)Wi (7(1 + ) In(1—u)In(1— v))l Cuve (0’ 1)'

The following graphs show some of these copula densities for different choices of ~.

8



The corresponding copula C cannot be calculated explicitly. However, in contrast to the visual impres-
sion, the coefficient )\, () of upper tail dependence is zero here for all v > 0, although we have a singu-

larity in the point (1,1) in all cases.
For a rigorous proof, we first remark that

h(x,y):=> ~2-<

2
i—o 1!

o0

Zi]-[z%]zexp(x+y) forall x,y>0 (3.17)
=0 L

o 1!

such that, with the constant K :=~v —/v(1+7),

¢, () = (14 7)1 =) A=) h( =71 +7) In(l =u), ~ (1 +7) In(1 =)
<2(1—w)*(1=v)*, u,ve(0,1). (3.18)

This implies

11

fchY (u,v)dudv (1=

My (7) = lim <2im8= g, 3.19
R T N T G19)




as stated. (Note that 2K +1=142vy—2/v(1+~v) >0.)

Example 4 (log series distribution). Consider the family of log series distributions given by their point

masses
i

i-L(u)’

@, (u) = ieN

where again L(u) = —In(1—u), u € (0,1). Here we get

:f (u)du =— Z[i.}(—l)”lln(j—l—l) for i € N.
0 =1V,

Jj=1

The proof of this relation requires some more sophisticated arguments, as is shown in the sequel.

Lemma 3. For ¢ >0 and n € N, there holds

}'l

o0 —X

1_
f ¢ Cde_z[ ]( 1) (In(j + ¢) — In(c)).

0 =

Note that for the special case ¢ =1 we obtain, by the substitution x = —In(1—u),

n

1 0" Oo(l—efx>n . n A+ :
= [ dx:z[j]<—1> In(j +1).

j=1

i

Hence with ¢,(u) = " foric N, this means
i-In(1—u)
o4 —fw,(u)du— = Z[ ]( 1)’"'In(j+1) for i €N.

The density of the bivariate log series copula is hence given by

c(u,v) :Zx:

1
o Q; In(1—u)In(1—v) = if,

The following graph shows the corresponding copula density.

10

@ (W)p,(v) = ! Z( D for 0<u,v<l.

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)



plot of c(u,v)

The log series copula does not have a positive tail dependence either, as in the case of the Poisson copula.
The proof of this statement again requires some more sophisticated arguments. We proceed in the follow-
ing steps.

Lemma 4. With L(u) = —In(1—u), we have

1

L,
im-— f T du=1. (3.26)

t

Lemma 5. With L(u) = —In(1—u), the o, given in (3.21) and the copula density given in (3.25), it holds
that

1 ¢ t Lut)
K(t) :::f[c(u,v)dudvgl—r

—tJ L(u)

du for 0 <t <1, (3.27)

which in turn implies that the log series copula has no tail dependence.

4. The asymmetric case

Specifying the probabilities p, in a non-symmetric way we obtain asymmetric copula densities even if

the maps ¢,(+) and ,(+) are identical. A very simple approach to this problem is a specification of a

suitable non-symmetric (n 4 1)x(n+1) -matrix M, = [ pl]] o for n € Z" with
i =0,

Zpik: D — fori=0,---,n (41)
k=0 k=0

and

11



ai’ lfl = J f 7>
= or i,j>n.
Py 0, otherwise J

(4.2)

Example 5 (negative binomial distributions, asymmetric case). We consider the negative binomial distri-

(4.3)

1
butions from Example 2 with 3 =1. Then o, = fgoli(u)du = ; for i€ Z*. With n =4 and
Vo (1+DH2+10)
18 550 2
. 10 0000
M,=—|0 5 0 0 O
60
0 00 3 0
2 0000

the conditions above are fulfilled, giving the copula density, according to (2.3),

) =332 oo m =33 e+ S e ), uve(0.1),

i=0 j=0 OG0; i=0 j=0 OGQ; =nt1 O
or, more explicitly,
2
6v
c(u,v) = (1—w)(1—v)-(2 6u 120> 20u> 30u*)-M,-[12" | +...
200
30v*

1) S ipp Az —v)
+(1—u)1-v) ;(k+l)(k+2)uv Sy H(u,v), u,v€(0,1)

with the polynomial

H(u,v) =150u"v" —450u®v* —10u’v’ +510u™v’ —10u’v" —30u’v* — 100’ +30u™v° — ...

=300t + 30u’Vv — Sutvt +80utv — 30w’y + 94u’V 4 30u vt — 30wy’ — 60UV + ...

A 15uA 100t +18u*v: — 30wy’ +10v* — 15wy +10v* —18uv + 10u + 5v + 6.

12

(4.4)

(4.5)

(4.6)



plot of c¢(u,v) plot of c(u,v)—c(v,u)

. . . . 1. .
The corresponding copula C again has a coefficient of upper tail dependence )\, = 5 as in the symmetric

casce.

The following example shows an asymmetric copula composed by two different negative binomial distri-
butions.

Example 6. We consider the negative binomial distributions from Example 2 with 3=1 and g =2.

1 1
1 2
Then o, = (u)du=———— and 3, = WVdv=—"—"——=2a,  fori,jeZ". Let
) f AE = e f SRR e B R
further
B, if j=2i
p; =10, ifj=2i+1 fori,jeZ", 4.7)
0  otherwise
i.e.
By B
B, B, e e e e
[pif],-,_;em:"' e e e By By e e e (4.8)
e e e e s B B

where --- stands for zero. Then p, = Z p; =« and p = Z p; =08, fori,je€ 7" since
i=0

Jj=0

2 2 1
(24 20)(3+2i) * (B+2))4+2i) (1+i)2+i)

By + By = =q, forieZ". (4.9)

It now follows from (2.5) that

13



c(u,v)= iipyfl () g;(v), u,ve (0, 1) (4.10)

i=0 j=0

- i . _ 2.j
(1—u)u and g,(v) = (+ 1)(51 v)'v for i,j€Z", u,v€(0,1). Us-
o J

ing (4.8), one obtains, after some tedious but straightforward calculations, that

is a copula density where f (u)=

c(u’v):2(1—u)(1—v) (14 2v+5uv” + 4uv ) wve(0) @11

(1 — uvz)4

which obviously is asymmetric.

r

o

,_.
I L T L O

plot of c(u,v)

The corresponding copula C can again be calculated explicitly, giving

C(x,y) :ﬁ(2—x—2xy3 +xpt +x7y =2y +37), x,y €(0.D). (4.12)

This copula has a coefficient of upper tail dependence
5
N = 5 (4.13)

which is between the coefficients of upper tail dependence for the symmetric case with 3 =1 and (=2,
cf. the final table in Example 2.

14



Remark 1: Negative binomial copulas (see Examples 2 and 5) can easily be simulated through the alter-
native representation formula (2.5) involving mixed Beta distributions here. Poisson copulas can be simu-
lated using the transformation z+>1—e ° applied to Gamma distributed random variables Z with a ran-
dom shape parameter «, where a—1 is generated by the geometric distribution shown in (3.15), and
scale parameter 1+ .

Remark 2: For practical applications in quantitative risk management, it seems reasonable to fit the re-

quired probabilities [ P,-,-] . to empirical data via their empirical copula, for instance as was proposed in

i,jEZL
PFEIFER, STRASSBURGER AND PHILIPPS (2009). In the particular case of Bernstein copulas (see Example 1)
such a procedure can be very easily implemented, even in higher dimensions (cf. COTTIN AND PFEIFER
(2014)).

As a practical exercise, we refer to Example 4.2 in COTTIN AND PFEIFER (2014) where the empirical cop-
ula from an original data set was fitted to a general Bernstein copula. The following two graphs show the
scatter plot from the empirical copula (big red dots) superimposed by 1000 simulated points of that Bern-
stein copula (left) and of a negative binomial copula of type (3.11), with 3 =35.

04 05 06 07 08 09 1,0

Bernstein copula fit negative binomial copula fit

As can be seen nicely, the Bernstein copula represents the local asymmetry of the empirical copula better,
but shows no tail dependence, as the negative binomial copula does.

The fit to the negative binomial copula was, for the sake of simplicity, performed by a numerical match
between the theoretical correlation for the negative binomial copula and the correlation of the empirical
copula, which is 0.815. Note that the theoretical correlation p(/3) for the negative binomial copula of type

(3.11) can be explicitly calculated as

B = (i+1)7°
POy =125 ;(ﬂ+i)(6+i+1)(ﬁ+i+2)2

—3=33(2(8+1)U(1,5+2)-28-1) (4.14)

15



2
where W(1,z) denotes the first derivative of the digamma function, or ¥(1l,z) = Fln I'(z), z>0.
z

3 1 2 3 4 5 6 7
p(B) | 0.4784 | 0.6529 | 0.7410 | 0.7937 | 0.8288 | 0.8537 | 0.8723

For the sake of completeness, we finally show a comparison between the Bernstein copula fit and a Pois-
son copula fit with parameter v = 6. The empirical correlation for the Poisson copula here is 0.814.

(el
£

R I

0,9 1,0

Bernstein copula fit Poisson copula fit

Note that although the empirical plot for the Poisson copula might suggest some tail dependence here this
is actually not true in the light of (3.19).

More sophisticated fitting procedures - including asymmetric cases — also in higher dimensions will be
investigated elsewhere.

It should be finally pointed out that copula constructions as presented in this paper will have a major im-
pact in the construction of Internal Models under the new Solvency II insurance supervising regime in
Europe (see e.g. HUMMEL AND MARKERT (2011) or SANDSTROM (2011), Chapter 13).

5. Appendix.

Proof of Lemma 1. We will show by induction the equality of the following two expressions:

R A

a ]zi for 0<z<l1. (5.1)
i=0

i—0\ ! l

First notice that we have, for €N and 0 <z <1,

16



8K(ﬂ,z):ii[ﬂ+i—l}[ﬂ+i+l]zi_l 321((52) Z( [6+z }[ﬂ—k.i—i—l]ZH 52)
1

0z P i i
from which we can conclude the relation

_O°K(B.2) |, 9K(B,2)

1 8K(ﬂ z) B 02> Oz
[5(6+2)K(ﬁ—|—1 z)— ] or K(B+1,z)= 5512 ) (5.3)

0K (B, Z)
a 2

A similar, but more elaborate calculation shows that the latter equality remains valid if K(/3,z)is re-
placed by k(0,z):
2
,0k(B,2)  Ok(B,2)

K(B+1,2)= 32;(ﬁ+2) 0z (5.4)

In the first step of the induction, for =1, we have

00

with A(z) = Zzi :% for |z| < 1. For the second step, assume that relation (5.01) holds for some
i=0 -z

0 € N. Then it follows by (5.3) and (5.4) that

Z 0°K(3,z) n 0K (03,2) Z 0°k(B, 2) n 0k(p,z2)

_ 0z* 0z oz* 0z
K(B+1,z)= 3612 = 5612 =k(B+1,2) (5.6)

which finishes the proof. 4

Proof of Lemma 2. First, note that for 3 € N,

B—1 /8_1 6_‘_1 _»‘3—1 ﬂ_l /8_|_1 B 26
i 2 e S 7
which is a special case of Vandermonde’s identity. This in turn implies
B+1 23 2T°(209)
1 = . 5.8
B L O T S

Now, in the light of Lemma 1, we obtam

1 1

S cstwrduds J (1( u)ﬁ(l;fl)ﬂ () dudv

s 1-—hl—h 5—1_1 1—hl-h
Ay (B) = lim P —(6+I)Z[ ][ ]{n P . (59

17



To evaluate the last integral, we substitute s =1—u, w=1—v and get

N [ u)(l v)’ SN
1(3,h,i) = ff T (uv) dudv—ff(s+w SW)W(l—s) (1—w)' ds dw. (5.10)

1=h1-h

In a further step, substituting s = Ax, w= hy, we obtain

1(3,h,i) = hff(x+y peeSe (1—hx) (1— hy) dxdy, (5.11)
giving
1 1)}
A (B) = (ﬂ+1>2[ ][ﬁj ]}ggl“ﬂ;f”)—<ﬁ+1)z[ ][ﬁ+ ]ff(x+ vy
2I'(2PB)
- dxdy. .
2(8) ff(x+y)2f+1 xay (5.12)

It remains to evaluate the integral term in the expression above. Therefore, we consider the one-to-one

]} (Note

map g:T—>(O,1)2:(u,v)l—)(uv,(l—u)v) for T::{(u,v)€R2|0<u<1,O<v<min i’l—u

that with (x,y):= g(u,v), we have u =

j_ , v=x-+y for (x,y) € (O,l)2 .) By the substitution formula
Xy
x? yﬁ

W, and observing that for the determi-
x+y)”

for multiple integrals, we now obtain, putting f(x,y) =
nant of the Jacobian, we have heredet Ag(u,v) =,

1

J f o )M ardy= [[ Sty = [ 1 (st et gt

0 &)

:j;fuj(l—u)ddudv:‘[min[i,l_lu

1/2

]-u3(1—u)ﬂ du = 2fu=~’*(1—u)*"*1 du (5.13)

which proves the first line in (3.13). For the first equality in the second line, note that, by symmetry and
the substitution v = 2u,

4r@2B) | V1 du— 2 LCD).
=) f I —u) du=2 = 05) f (1—u) du—fzu (A=)’ du
STCB) iy _T@B) NENEr
Fz(ﬁ) (1—u)’'a 2u)du—F2(ﬁ)481 f 2- —V)du
[25]
res)  |@z-H"'e-2"'|_ 1es) 23 —1)! 3

B Zﬂrz(ﬁ)élﬁ_l - 2ﬂ(ﬁ_1)|2 4% = 47 (5.14)
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Which proves the first equality in the second line of (3.13). The asymptotic expansion follows by Stir-
ling’s formula. 4

pli=e) (=)
Proof of Lemma 3. Define g (c) = f—e’” dx for ¢ > 0. Note that f (x):=-— for

o X X
x>0 is bounded by 1 for all » € N. We can therefore apply the dominated convergence theorem where
appropriate. Now

o0

g,'q(c):: _j‘@)ﬂecxdx:—f(l e * " e < dx—fZ[ ]( 1)/+1 —(Hox o

0 0 0 J=0

" (n e " (n ) 1 o " (n _ 1
=S|y [evtordn= [ .](— e | = [ .](— DU (515
./0[1] { ; J Jtec 0 ; J Jte
for ¢ > 0. Let further
h,(c):= Z[n](— 1) (ln(j—l—c) —ln(c)) for ¢ > 0. (5.16)
j=0

Then

() = 2_;[ ]( s (ln(]+c)—ln(c)): y [”]( I)HI[]—li—C_%]

n

[ ]( 1y’ Z[ ]( 1)’—2[ ]( 1y’ e (5.17)

j=0

=

Jj=0

since 0=(1—-1)"= Z[n]( 1)’. This implies gn = h and hence g, (c)=h,(c)+ K, or equivalently,
j=0 ]

K, =g, (c)—h,(c) forall ¢ >0, for some constant K, € R. But then also

n
*.X

c—00

K, :}L%gn(c)—lirilchn(c): lim ]O.<1_ e “dx —hm Z[ ]( 1)’+l ln(] +c)—ln(c))

Jj=

:f 1) lim (™) dx — []( 1)1“11m{1n[1+ }]:dex—zn:O:O (5.18)
0 o o\J o 0 Jj=0

for all n € N. Hence g, = h, for all n € N, which proves the Lemma. ¢
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Proof of Lemma 4. Substitute s =1—¢. Then (3.26) is equivalent to

1 K
L(u-(1— L((1—w)-(1—
im- Mdu:limlf ((=w)-(1-5)) dw=1, (5.19)
sosd L) 510 5 +f LA—w)
with the substitution # =1—w. This means that we have to show that
s 1 _
b plots—ws), (5.20)
S0 s In(w)
Define
F(w,s) = ln(w—+s)’ G(w,s) = M (5.21)
In(w) In(w)
Then
F(w,s)gng(w,s) for 0<w<s (5.22)
In(w)
(note that In(w) <0 for 0 <w <1). Now for 0 < s <1,
2
—In [1 S s (1
o<fG(w §)— F(w, s)dw<f wts dw<—In(l—s) [ dw<SA=9) 5 og
—In(w) , —In(w) In(s)
with the limit
In(1—1s)
0<lim— f G(w,s)— F(w,s)dw < lim—=—2) _¢ (5.24)
s10 In(s)
Hence it suffices to prove
—In(w+s)
lim— f F(w,s)dw=lim [oinvts) oLy (5.25)
510 g sl g —In(w)
By the substitution x = —In(w) we obtain the equivalent expression
1 %r —ln(ef"—l—s) !
lim- f e dx=1, (5.26)

—In(s)

Note that
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j‘ —ln(e’x—ks)eﬁdx: j‘ —ln(e’x(1+se”‘))eﬁdx: 7 x—ln(l—kse”‘)

e "dx
—In(s) X —In(s) X —In(s) X
” = In(1+se™) * In(l4se )
= f e “dx— f ——e tdx=s5— f —— e dx. (5.27)
X X
—In(s) —In(s) —In(s)
Hence it suffices to prove
1T ln(H—se””) !
lim- f — e =0, (5.28)

—In(s)

With the substitution s = e ", this is equivalent to

TTo0

lim eTTMe" dx ; 0. (5.29)
) X

Substituting finally y = x—T, this means

< In(l In(14¢” !
limeTf ‘(”T)d = lim M@‘y dy=0. (5.30)
T1oo b y+T T1oo y+T
But this 1s now evident due to
In(1+¢” o
0<lim (1+e) eray<tim [ 2L e gy = [lim| 2L e |ay =0 (531)
TToo y+T TToo y+T T1oo y+T

by Lebesgue’s dominated convergence theorem. (For 7 > 1, an integrable majorant is given by e ”.)

This proves Lemma 4. 4

Proof of Lemma 5. First notice that by the relation L(u)=—In(1—u)= ln[ ] < ! 1= for

—u 1—u 1—u

0 <u <1, we obtain

1 i 1 1

| 1 1
flL(u) _;[—(l—u)du— fu (1— u)du—l(H_l)

0

for all i € N. (5.32)

Now

<

s _ L
K© _1—zf J Za L)L (v) udv_l—t»[ ZaiizL(v)[ ™ ? (5-33)

¢ ¢ i=1 i=1
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