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Abstract

We develop a complete convergence theory for the Maximum Entropy method

based on moment matching for a sequence of approximate statistical moments

estimated by the Multilevel Monte Carlo method. Under appropriate regularity

assumptions on the target probability density function, the proposed method

is superior to the Maximum Entropy method with moments estimated by the

Monte Carlo method. New theoretical results are illustrated in numerical ex-

amples.
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1. Introduction

The Multilevel Monte Carlo Method (MLMC) is a recently established tech-

nique for e�cient computation of an observable's statistics by approximate sam-

pling in the case when generation of samples of di�erent accuracy is possible.

The method is particularly advantageous for complex problems with low reg-

ularity, typically resulting in high memory and CPU time demands. The idea

is based on the observation that coarse sample approximations can be used

as control variates for more accurate sample approximations and thereby re-
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duce the variance of the Monte Carlo estimator. This family of methods has

been introduced by M. Giles [1] for Itô stochastic di�erential equations arising

in mathematical �nance after similar ideas have been published in the earlier

work by S. Heinrichs [2] on numerical quadrature. Since then MLMC has been

extended to elliptic PDEs [3, 4], parabolic problems [5], conservation laws [6],

variational inequalities [7, 8], multiscale PDEs [9], Kalman �ltering [10] and

other �elds. The recent work [11] contains a recipe for an e�cient evaluation of

central statistical moments of arbitrary order. The aim of the present article is

the further extension of the MLMC methodology for estimation of probability

density functions.

Setting up probability density functions (PDF) on the basis of incomplete

information on the observable is a prominent problem in statistics and informa-

tion theory. One way to solve it is to recover the PDF from a truncated sequence

of statistical moments (see the recent work by Giles et al. [12] for an alternative

approach). This task (also known as solving the truncated moment problem) is

by no means trivial and has been extensively studied in measure and probabil-

ity theory [13, 14, 15, 16]. It is well known that depending on the prescribed

moments, the truncated moment problem may have no solution or multiple (in-

�nitely many) solutions. The latter is typically the case when the truncated

sequence of moments is admissible, i.e. it corresponds to some PDF (ruling

out the case of negative even-order monomial moments and similar incompat-

ibilities). However, in the presence of signi�cant statistical and approximation

errors, the sequence of estimated moments may become inadmissible even when

the sequence of exact moments is admissible.

Assuming that the truncated moment sequence is admissible, one needs a

criterion to select a PDF which is the �most appropriate� among in�nitely many

solutions to the truncated moment problem. The strategy of selecting the least

biased estimate brings us to the concept of the Maximum Entropy (ME) method

[17]. The ME solution is the (nonnegative) maximiser of the Shannon entropy

constraint at the prescribed moment values. Obviously, the error of this ap-

proximation depends on the number of statistical moments and the accuracy of
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the estimated moments. Under appropriate assumptions the original constraint

Maximum Entropy formulation is equivalent to the matching of moments with

a density function whose logarithm is approximated by a polynomial. Refer-

ences [18, 19] contain a rigorous error analysis of this class of ME methods, [18]

also combines it with the Monte Carlo approach. The purpose of this work is

to combine the Maximum Entropy approach with the Multilevel Monte Carlo

estimation of moments and develop a rigorous error analysis in terms of i) the

number of statistical moments, ii) statistical error and iii) discretization error.

We derive complexity estimates for the proposed approach, test its performance

on a set of synthetic problems with known PDFs, and demonstrate its applica-

bility in a more realistic context: on a problem modelling contact of an elastic

membrane with a rough random obstacle.

The outline of the paper is as follows. After a brief introduction to the

Multilevel Monte Carlo and the Maximum Entropy methods in Section 2 we

give a complete a priori error analysis for the proposed method in Section 3.

In particular, we consider three di�erent approximation methods for the set of

the statistical moments: the Monte Carlo method based on exact sampling,

the Monte Carlo method based on approximate sampling, and the Multilevel

Monte Carlo approach. The error estimates naturally depend on the number of

statistical moments, the sample size and the level of accuracy for approximate

samples. In Section 4 we identify the optimal relation between these parameters

and derive error-versus-cost relations for the three aforementioned methods. In

Section 5 we give a series of numerical experiments illustrating convergence of

the suggested Maximum Entropy approximations and compare them with a

variant of Kernel Density Estimators available from the literature.

In the following, ln(·) stands for the natural logarithm. We use a convention

that for two scalar quantities f and g the notation f . g means that there exists

a nonnegative constant C independent of the approximation parameters such

that f ≤ Cg. The notation f ∼ g is equivalent to f . g and g . f .
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2. Preliminaries

In this section we recall some preliminary information needed for the subse-

quent analysis, see e.g. [20] and the references therein for the general framework

of the multilevel Monte Carlo method (we utilise the notations from [8, 11]),

and [18, 19, 21] for the description of the Maximum Entropy method.

2.1. Multilevel Monte Carlo method

Suppose (Ω,Σ,P) is a probability space and X is a real-valued random vari-

able which is not available for direct sampling. Instead, there exists an approx-

imation X` to X, so that samples Xi
` of X` can be generated. In this case the

mean E[X] can be approximated by the sample average EM [X`] := 1
M

∑M
i=1X

i
`

of iid samples Xi
` admitting the decomposition of the mean square error (MSE)

‖EM [X`]− E[X]‖2L2 = |E[X −X`]|2 +
1

M
Var[X`] (1)

where Var[X`] is the variance of X`. The idea of the two-level Monte Carlo

approach is to use samples from a coarser approximation X`−1 to reduce the

variance of the estimator. Indeed, for the two-level estimator it holds that

‖EM`
[X` −X`−1]+EM`−1

[X`−1]− E[X]‖2L2 = |E[X −X`]|2

+
1

M`
Var[X` −X`−1] +

1

M`−1
Var[X`−1]

where EM`
[X` −X`−1] and EM`−1

[X`−1] are based on independent samples.

This situation occurs for example when X depends on a solution of an ODE

or a PDE which is not available in closed form, but can be computed approxi-

mately, e.g. by the Finite Element Method or another numerical approximation

method. In this setting the parameter ` plays the role of a discretization param-

eter. It is plausible that the samples of the �ne approximation X` are better

approximations to samples of X, but are typically more expensive to compute

than samples of the coarse approximation X`−1. The Multilevel Monte Carlo

Method extends the two-level approach to multiple levels. In particular, the

multilevel sample mean estimator is de�ned as

EML[X] :=

L∑

`=1

EM`
[X` −X`−1], X0 := 0.
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When EM`
[X` −X`−1] are independent for ` = 1, . . . , L, there holds the error

representation

‖EML[X]− E[X]‖2L2 = |E[X −XL]|2 +

L∑

`=1

1

M`
Var[X` −X`−1]. (2)

If X` → X in a suitable sense, the variance of the correction Var[X` − X`−1]

becomes smaller for larger values of `. Then the appropriate balancing of the

summands relies on the rapidly decaying sequence of the number of samples

{M1, . . . ,ML}. This allows us to generate fewer computationally intensive sam-

ples at the �ne grids (i.e. when 1 � ` ≤ L) at the cost of computing more

samples of the coarse grid approximations (1 ≤ ` � L). This may lead to

signi�cant savings in the computational cost, while preserving the accuracy.

2.2. Maximum Entropy Method

Let X be a real-valued random variable in the probability space (Ω,Σ,P)

with the associated probability density function ρ ≥ 0. The Shannon entropy is

de�ned as a functional

E[− ln(ρ(X))] = −
∫

I

ρ(x) ln ρ(x) dx.

The integral can be taken over the support of the density ρ. The subsequent

theory will be based on the Assumption 1 on supp(ρ) implying that I can be

seen as a bounded interval on the real line so that supp(ρ) ⊆ I. Suppose ρ

is unknown and has to be recovered on the basis of �nitely many generalized

moments

µk =

∫

I

φk(x)ρ(x) dx, 0 ≤ k ≤ R (3)

where {φk}Rk=0 are linearly independent functions. In this paper we concentrate

on the case when {φ0, . . . , φR} are algebraic polynomials forming a basis in the

space of algebraic polynomials PR of degree less than or equal to R. In this case

φ0 is a constant, and since ρ is a probably density function we require that φ0 ≡
µ0. According to Assumption 1 the density function ρ has bounded support,

which guarantees in particular, that moments µ of arbitrary order k exist. If
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the truncated sequence of moments is admissible (i.e. when it corresponds to

some PDF), then the system of equations (3) may have multiple solutions.

A popular method to select the �best� candidate PDF satisfying (3) is to

choose the one with the greatest Shannon entropy. Under the assumption

that there exists a strictly positive PDF ful�lling (3), the unique maximizer

is given by




ρR(x) := exp

( R∑

k=0

λkφk(x)

)
, λk ∈ R,

µk =

∫

I

φk(x)ρR(x) dx, 0 ≤ k ≤ R.
(4)

For a rigorous derivation of this result see e.g. [18, Lemma 3] and [21]. Assuming

that the statistical moments (3) are not known exactly and a �nite sequence

of perturbed moments µ̃k ≈ µk (the perturbation may be caused by estimation

of µk's and may contain sampling and discretization errors, etc.) is available

instead, we de�ne the perturbed Maximum Entropy solution ρ̃R as the solution

to the following problem:




ρ̃R(x) := exp

( R∑

k=0

λ̃kφk(x)

)
, λ̃k ∈ R,

µ̃k =

∫

I

φk(x)ρ̃R(x) dx, 0 ≤ k ≤ R
(5)

where λ̃k ≈ λk is the sequence of the corresponding perturbed coe�cients.

If ρ is su�ciently regular (we refer to the subsequent error analysis for the

precise statements), it is plausible that the truncation error ρ − ρR vanishes

when R → ∞ and the estimation error ρR − ρ̃R becomes small when µ̃k → µk

implying that the total error ρ−ρ̃R converges to zero in a suitable sense. It turns

out that the Kullback-Leibler distance (or the relative entropy, KL-divergence)

DKL(ρ‖η) =

∫

I

ρ(x) ln
ρ(x)

η(x)
dx

is a natural measure of distance between two probability densities [22, 23]. In

particular, the following Pythagorean-like identity which separates contributions

of the truncation and estimation error has been shown in [18, Lemma 3]

DKL(ρ‖ρ̃R) = DKL(ρ‖ρR) +DKL(ρR‖ρ̃R) (6)
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so that ρR is sometimes called the information projection.

It is well known thatDKL(ρ‖η) is non-negative andDKL(ρ‖η) = 0 if and only

if ρ = η. Moreover, DKL is an upper bound for all Lp norms of the di�erence

ρ − η. The following result can be found in [19, Lemma 2.2, Proposition 2.3],

see also [22, 23] for the proof of (7).

Lemma 1. For two probability density functions ρ, η ∈ L1(I) it holds that

1

2
‖ρ− η‖2L1 ≤ DKL(ρ‖η). (7)

If moreover ρ, η ∈ L∞, then it holds for 2 ≤ p <∞ that

‖ρ− η‖pLp ≤ p(p− 1) (max(‖ρ‖L∞ , ‖η‖L∞)
p−1

DKL(ρ‖η). (8)

Observe that the KL-divergence is non-symmetric and DKL(ρ‖η) < ∞ im-

plies that supp(ρ) ⊆ supp(η). Another two-sided bound in terms of the weighted

L2(ρ) norms of the log-densities is required for the subsequent analysis. We refer

to [18, Lemma 1] for the proof of the following statement:

Lemma 2. For two probability density functions ρ and η with ln(ρ/η) ∈ L∞(I)

where I = supp(ρ) it holds that

DKL(ρ‖η) ≥ 1

2
e−‖ln(ρ/η)‖L∞(I)

∫

I
ρ(x)

(
ln
ρ(x)

η(x)

)2

dx

and

DKL(ρ‖η) ≤ 1

2
e‖ ln(ρ/η)−c‖L∞(I)

∫

I
ρ(x)

(
ln
ρ(x)

η(x)
− c
)2

dx

for any c ∈ R.

Thanks to the error splitting (6) it is su�cient to estimate the truncation er-

ror and the estimation error with respect to the KL-divergence. The size of the

truncation error DKL(ρ‖ρR) is determined by the smoothness of the probability

density ρ and is controlled by the number of moments R. In the forthcoming

Theorem 1 we address two typical cases: when a) ln(ρ) has a �nite Sobolev

regularity and b) ln(ρ) is analytic on I. The estimation error DKL(ρR‖ρ̃R) is

determined by the perturbation of the statistical moments, see Theorem 2, and
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is controlled by a number of �estimation parameters�. Depending on the method

of estimation (we consider the Monte Carlo method with exact samples, approx-

imate single- and Multilevel Monte Carlo methods) the generic term �estimation

parameters� may include the number of samples M` and/or deterministic dis-

cretization parameters N`. For various cases mentioned above we identify the

optimal relation between parameter values and obtain upper bounds for the re-

quired computational cost. The estimates for the error-versus-cost relation are

given in the statements of Theorems 3, 4 and 5 below.

3. A priori error analysis

The forthcoming error analysis relies on further assumptions on the smooth-

ness of the log-density ln(ρ) which has to be recovered from computations. In

particular, we shall analyse the best approximation of ρ by probability density

functions η, where ln(η) is an algebraic polynomial, with the aid of Lemma 2.

Since ln(η) is a polynomial, the requirement ln(ρ/η) ∈ L∞(I) is satis�ed if the

following assumption holds true.

Assumption 1. The probability density ρ has a bounded and connected support

I := supp(ρ) ⊂ I. Moreover, there exist constants c1, c2 > 0 such that

c1 < ρ(x) < c2 ∀x ∈ I.

By the translation and scaling argument, we assume that I = [−1, 1] without

loss of generality.

3.1. Truncation error

The following best approximation estimate for the truncation error is a con-

sequence of Lemma 2 and basic properties of the KL-divergence.

Corollary 1. Suppose ρ is such that Assumption 1 is satis�ed and ρR is de�ned

in (4), so that ρ and ρR have identical �rst R generalized moments (3). Then

DKL(ρ‖ρR) ≤ 1

2
inf
ψ∈PR

(
e‖ ln(ρ)−ψ‖L∞(I)‖ ln(ρ)− ψ‖2L2(I,ρ)

)
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Proof. Let ψ ∈ PR and de�ne ηR := eψ/
∫
eψ so that ηR is a probability density.

By (6), non-negativity of the KL-divergence and Lemma 2 with c = ln(
∫
eψ)

DKL(ρ‖ρR) ≤ DKL(ρ‖ηR) ≤ 1

2
e‖ ln(ρ)−ψ‖L∞(I)

∫

I
ρ(x)

(
ln(ρ(x))− ψ(x)

)2
dx.

Taking the in�mum with respect to all ψ ∈ PR yields the assertion.

Now we are ready to prove a priori convergence estimates for the truncation

error dependent on the smoothness of the probability density ρ.

Theorem 1. Suppose ρ is such that Assumption 1 is satis�ed and ρR is de�ned

in (4), in particular, ρ and ρR have identical �rst R generalized moments (3).

Assume in addition that ρ ∈ Hs(I) with s ≥ 1. Then it holds that

DKL(ρ||ρR) ≤ C(s)R−2s‖ρ‖L∞(I)‖ ln(ρ)‖2Hs(I) (9)

with a constant C(s) > 0 which is independent of R and ρ. If moreover, ρ

is analytic on I and ln(ρ) admits a unique analytic continuation ln(ρ(z)) in

z ∈ Ea ⊂ C, where Ea is the ellipse with focuses ±1 and semiaxes' sum a > 1,

it holds that

DKL(ρ||ρR) ≤ CR−1a−2R‖ρ‖L∞ , (10)

where C depends only on a and supz∈Ea | ln(ρ(z))|.

Proof. By the trace inequality we have that

‖ ln(ρ)− ψ‖L∞(I) ≤
√

2‖ ln(ρ)− ψ‖H1(I)

and moreover

‖ ln(ρ)− ψ‖2L2(I,ρ) ≤ ‖ρ‖L∞(I)‖ ln(ρ)− ψ‖2L2(I)

for any polynomial ψ ∈ PR. Next, we �x ψ = ψR as the unique projection of

ln(ρ) determined as the solution of the variational problem
∫

I
(ln(ρ)− ψ)′v′ = 0, ∀v ∈ PR,

(ln(ρ)− ψ)|∂I = 0,
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see [24, Theorem 3.14]. Then ‖ln(ρ)− ψR‖H1(I) → 0 for R→∞ and

‖ln(ρ)− ψR‖2L2(I) ≤ CR−2s‖ ln(ρ)‖2Hs(I)

If ln(ρ) is analytic, the result follows for the same projection ψR from [24,

(3.3.32)] and [25].

3.2. Estimation error

In this section we address existence of the Maximum Entropy solution ρ̃R

for the set of perturbed moments µ̃k ≈ µk and derive a priori upper bounds for

the quantity DKL(ρR‖ρ̃R) � the estimation error part in the splitting (6).

The forthcoming Lemma 3 is an important stability result which establishes

and quanti�es continuous dependence of the perturbation in PDFs on the per-

turbation of the �rst R moments. Evidently, this stability bound depends on the

type of the generalized moments, that is on the particular basis {φ0, . . . , φR}.
In the remaining part of the paper we work with generalized moments (3) for

the orthonormal basis on [−1, 1], i.e. we choose φk(x) := Pk(x) where Pk are

orthonormalized Legendre polynomials. Then (3) takes the form

µk =

∫ 1

−1
Pk(x)ρ(x) dx. (11)

Recall from [26] that for any ψ ∈ PR

‖ψ‖L∞(−1,1) ≤ AR‖ψ‖L2(−1,1) where AR :=
R+ 1√

2
. (12)

Lemma 3. Suppose R ∈ N, {µ1, . . . , µR} is the sequence of exact moments

(3) of the target probability density ρ, and ρR is the corresponding Maximum

Entropy probability density determined by (4). Let {µ̃1, . . . , µ̃R} be small per-

turbations of {µ1, . . . , µR} in the sense that

( R∑

k=1

(µk − µ̃k)2
)1/2

≤ 1

2CRAR
with CR := 2e1+‖ ln ρR‖L∞(−1,1) (13)

and AR de�ned in (12). Then the Maximum Entropy solution ρ̃R of (5) con-

straint at perturbed moments exists, is unique and is close to ρR in the sense

that

D(ρR‖ρ̃R) ≤ CR
R∑

k=1

(µk − µ̃k)2. (14)
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Proof. [18, Lemma 5].

Notice that CR is uniformly bounded when log(ρ) ∈ Hs(I) for any s > 1.

This can be shown involving the arguments from [18, Theorem 3].

The next observation is that when the sequence of perturbed moments µ̃k

is obtained by sampling, µ̃k's are not deterministic but are, in fact, random

variables. As a consequence, it may happen that (13) is not ful�lled with certain

probability, so that the existence of ρ̃R is not guaranteed in this case. The

following theorem is a probabilistic variant of Lemma 3, which gives an upper

bound on the probability that ρ̃R may not exist. The proof follows [18] and is

given here for the sake of completeness.

Theorem 2. Suppose that the assumptions of Lemma 3 are satis�ed and addi-

tionally, let µ̃k be probabilistic estimators for µk satisfying (13) in mean, i.e.

E
[ R∑

k=1

(µk − µ̃k)2
]
≤ Φ(R, ρ) ≤ 1

(2ARCR)2

for some function Φ. Then ρ̃R exists with probability at least 1− p∗ where

p∗ = (2ARCR)2E
[ R∑

k=1

(µk − µ̃k)2
]
. (15)

Furthermore, for any p ∈ [p∗, 1] the estimate

DKL(ρR‖ρ̃R) ≤ CRp−1Φ(R, ρ) (16)

holds true with probability at least 1− p.

Proof. The proof is a combination of Lemma 3 and the Markov inequality. For

a random variable Z taking nonnegative values it holds that

P(Z > c) =

∫

Z>c

1dP ≤
∫

Z>c

c−1Z dP ≤ c−1E[Z].

This estimate and (15) imply that

P
( R∑

k=1

(µk − µ̃k)2 > (2ARCR)−2
)
≤ (2ARCR)2E

[ R∑

k=1

(µk − µ̃k)2
]

= p∗.
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Thus, (13) is satis�ed with probability at least 1 − p∗ and ρ̃R exists with the

same probability by Lemma 3. In the same way we obtain for p ∈ [p∗, 1]

P
( R∑

k=1

(µk − µ̃k)2 > p−1Φ(R, ρ)

)
≤ pΦ(R, ρ)−1E

[ R∑

k=1

(µk − µ̃k)2
]
≤ p.

Therefore, with probability at least 1− p it holds that
R∑

k=1

(µk − µ̃k)2 ≤ p−1Φ(R, ρ)

and together with (14) this implies that DKL(ρR‖ρ̃R) ≤ CRp−1Φ(R, ρ) with the

same probability, 1− p.

4. Accuracy and cost of single- and multilevel Monte Carlo estimators

In this section we analyse convergence of the Maximum Entropy method for

three types of estimators for the statistical moments:

• A Monte Carlo estimator for the case when exact samples of X can be

generated (referred to as exact sampling);

• A Monte Carlo estimator for the case when only approximate samples

X` ≈ X can be generated (single level approximate sampling);

• A Multilevel Monte Carlo estimator for the case when approximate sam-

ples X` ≈ X can be generated for ` = 1, . . . , L (multilevel approximate

sampling).

Throughout this section we require that Assumption 1 is satis�ed and, in

particular, that I := supp(ρ) ⊆ [−1, 1] =: I. Recall that Pk is the orthonormal-

ized Legendre polynomial of degree k. Then it easy to see that the following

auxiliary estimate holds.

Lemma 4. Suppose Z is a random variable with values in [−1, 1] and ρZ is its

probability density function. Then it holds that

Var[Pk(Z)] ≤ ‖ρZ‖L∞(−1,1).
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Proof. We have for any k ∈ N

Var[Pk(Z)] = E[P 2
k (Z)]− E[Pk(Z)]2 ≤

∫ 1

−1
P 2
k (z)ρZ(z) dz ≤ ‖ρZ‖L∞(−1,1)

and hence the assertion.

In this work we focus on the case when the cost of generation of all necessary

samples signi�cantly dominates the computational cost of solving the system of

nonlinear equations (5). This situation typically occurs when generation of one

sample requires an approximate solution of a di�erential model e.g. by the

Finite Element Method or some other numerical method. Therefore the term

�computational cost� refers to the computational cost required for generation

of all necessary samples neglecting the cost of solving the system of nonlinear

equations (5).

The minimal smoothness assumptions on the log-density throughout this

section will be that log(ρ) ∈ Hs(I), s > 1. In this case the constants in (9),

(10) and (16) are uniformly bounded.

Next, we address the accuracy and the cost of the aforementioned Maximum

Entropy Monte Carlo estimators.

4.1. Monte Carlo estimators based on exact samples

In this section we assume that X is a random variable and exact samples of

X can be generated so that the following assumption is satis�ed.

Assumption 2. Let X be a random variable in a complete probability space

(Ω,Σ,P) having the probability density function ρ with I := supp(ρ) ⊆ [−1, 1] =:

I. We assume that iid samples Xi of X can be generated and the cost to generate

one sample Xi is independent of i and is equal to C(X).

Then exact moments µk from (11) can be approximated by sample means

µ̃MCk := EM [Pk(X)]. (17)

Notice that all approximate moments {µ̃MC1 , . . . µ̃MCR } can be evaluated for the

same set of samples. Evaluation of the Legendre polynomials Pk is fast, therefore
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we assume that the computational cost is independent of the number of involved

statistical moments R. The following bound holds for this approximation.

Lemma 5. Suppose that Assumptions 1 and 2 are satis�ed and µk and µ̃MCk

are de�ned by (11) and (17) respectively. Then it holds that

E
[ R∑

k=1

(
µk − µ̃MCk

)2
]
≤ R

M
‖ρ‖L∞ .

Proof. Recall that E[EM [Pk(X)]] = µk. Then the assertion follows from

E
[ R∑

k=1

(
µk − µ̃MCk

)2
]

=

R∑

k=1

Var[EM [Pk(X)]] ≤ R

M
‖ρ‖L∞

where Lemma 4 has been used in the last step.

Theorem 3. Suppose that Assumptions 1 and 2 are satis�ed and ln(ρ) ∈ Hs(I)

for some s > 1. Let R ∈ N and ρ̃MCR be the Maximum Entropy solution of

problem (5) for a sequence of approximate moments {µ̃MC1 , . . . , µ̃MCR } de�ned in

(17). Then for any ε > 0 and p ∈ (0, 1) it is possible to select the number of

samples M and the number of moments R so that

DKL(ρ‖ρ̃MCR ) < ε (18)

is satis�ed with probability at least 1−p and the cost of evaluation of all samples

required for the recovery of ρ̃MCR satis�es the following asymptotic relations:

when ln(ρ) ∈ Hs(I) for some s > 1, it holds that

C(ρ̃MCR ) ∼ p−1ε−1− 1
2s , (19)

when, moreover, ln(ρ) is analytic, it holds that

C(ρ̃MCR ) ∼ p−1ε−1| ln(ε)|. (20)

Proof. When ln(ρ) ∈ Hs(I) for some s > 1 we have by Theorems 1, 2 and

Lemma 5 that

DKL(ρ‖ρ̃MCR ) . R−2s +
R

pM

14



with probability at least 1− p. The cost of evaluation of all required samples is

proportional to M , thus DKL(ρ‖ρ̃MCR ) is minimized for a �xed cost and satis�es

(18) when

R−2s ∼ R

pM
∼ ε,

or analogouslyM ∼ p−1R2s+1 and R ∼ ε− 1
2s . In this case the cost of evaluation

of all samples scales as

C(ρ̃MCR ) = M · C(X) ∼ p−1ε− 2s+1
2s

and (19) follows. When ln(ρ) is analytic, Theorems 1, 2 and Lemma 5 imply

DKL(ρ‖ρ̃MCR ) . R−1a−2R +
R

pM
. (21)

for a > 1. Both summands in the right-hand side are comparable (and thus

DKL(ρ‖ρ̃R) is minimized for a �xed computational cost) when M ∼ p−1Ra2R

and (18) holds for R = − 1
2 loga(ε). In this case

C(ρ̃R) = M · C(X) ∼ p−1ε−1| ln(ε)|

and the assertion follows.

Remark 1. Notice that both summands in (21) are asymptotically of the same

order when M ∼ p−1R2a2R (rather than M ∼ p−1Ra2R). However this leads to
the same asymptotic estimate for the computational cost. Indeed, in this case

(18) holds when

R−1a−2R = ε ⇔ R = c−1W (ε−1c) for c = 2 ln(a)

where W is the Lambert function. Thus

C(ρ̃MC
R ) = M · C(X) ∼ p−1ε−1R ∼ p−1ε−1W (ε−1)∼ p−1ε−1| ln(ε)| (22)

since for su�ciently small ε

W (ε−1) ∼ | ln(ε)| − ln(| ln(ε)|) ∼ | ln(ε)|,

see [27], and the new estimate (22) is equivalent to (20). An analogous situation

appears in the proofs of Theorem 4 and 5. In order to keep the presentation

simple we do not further elaborate on this.
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4.2. Approximate single level Monte Carlo estimators

Now, let us assume that it is not possible to sample from X, but X` is

available for sampling instead and X` is close to X in the sense of Assumption 3.

Assumption 3. Let X be a random variable in a complete probability space

(Ω,Σ,P) having the probability density function ρ with I := supp(ρ) ⊆ [−1, 1] =:

I. We assume that it is possible to generate iid samples of random variables

X` ≈ X, where C` is the cost required for generation of one sample of X`. Let

{N`}∞`=1 be an exponentially increasing sequence satisfying c ≥ N`/N`−1 ≥ c

for some �xed c ≥ c > 1. Moreover, assume there exist constants β, γ > 0 and

δ ≥ 0 such that the following asymptotic bounds hold

1) E
[(
Pk(X`)− Pk(X)

)2]
. kδN−β` , 2) C` . Nγ

` .

As we shall show next, relation 1) in Assumption 3 can be replaced by a

simpler relation (23). Then relation 1) follows with δ = 5 in the general case,

or with δ = 2 if additional assumptions are satis�ed. However, in the numerical

experiments we observed that this estimate for δ may be too pessimistic (see

Figure 8 in Section 5) and therefore prefer to put relation 1) as an additional

assumption.

Proposition 1. If Assumption 3 holds with relation 1) replaced by

E[(X` −X)2] . N−β` , (23)

then relation 1) is satis�ed too. Moreover, relation 1) is satis�ed with δ = 2

when I ⊂ (−1, 1) and Im(X`) ⊂ (−1, 1) for all `, and with δ = 5 otherwise.

Proof. By the mean value theorem there exists ξ in the interval (a, b) where

a = inf
x∈R

{
x ∈ I ∪ Im(X`)

}
> −1 and b = sup

x∈R

{
x ∈ I ∪ Im(X`)

}
< 1 such that

E[(Pk(X`)− Pk(X))2] = E[P ′k(ξ)2(X` −X)2] ≤ ‖P ′k‖2L∞E[(X` −X)2].

Recalling the classical result [26, Theorem 7.32.2, p. 168,(4.21.7)] that

‖P ′k‖L∞(−1,1) . k
5
2 , and ‖P ′k‖L∞(a,b) . k, −1 < a < b < 1

we obtain the assertion.
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Now we are in the position to prove the counterpart of Lemma 5 for the case

of approximate estimation of moments where the exact moments from (11) are

estimated by approximate (single level) sample means

µ̃SLk := EM [Pk(XL)]. (24)

Lemma 6. Suppose Assumptions 1 and 3 are satis�ed and let µk and µ̃SLk be

de�ned by (11) and (24) respectively. Then it holds that

E

[
R∑

k=1

(
µk − µ̃SLk

)2
]
. Rδ+1N−βL +

R

M
.

Proof. Recall that E[µ̃SLk ] = E[Pk(XL)] which is in general not equal to µk.

Then, analogously to (1), we observe that

E
[(
µk − µ̃SLk

)2
]

= E
[
(Pk(X)− Pk(XL))

]2
+

1

M
Var[Pk(XL)]

. kδN−βL +M−1(kδN−βL + ‖ρ‖L∞(−1,1))

where Jensen's inequality, Assumption 3 and Lemma 4 were used in the last

step. Then the assertion follows by the summation over k = 1 . . . R.

Theorem 4. Suppose Assumptions 1 and 3 are satis�ed and let ln(ρ) ∈ Hs(I)

for some s > 1. Let {µ̃SL1 , . . . , µ̃SLR } be a sequence of perturbed moments de�ned

in (24) for some �xed values of the parameters R,M,L and suppose ρ̃SLR is the

corresponding perturbed Maximum Entropy solution. Then for any ε > 0 and

p ∈ (0, 1) the parameters R,M,L can be selected such that the bound

DKL(ρ‖ρ̃SLR ) < ε (25)

is satis�ed with probability at least 1−p and the cost of evaluation of all samples

required for the recovery of ρ̃SLR satis�es the following asymptotic relations: when

ln(ρ) ∈ Hs(I), s > 1, it holds that

C(ρ̃SLR ) ∼ p− β+γβ ε−
β+γ
β −

1
2s
β+γ+γδ

β , (26)

when, moreover, ln(ρ) is analytic, the computational cost scales as

C(ρ̃SLR ) ∼ p− β+γβ ε−
β+γ
β | ln(ε)| β+γ+γδβ . (27)
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Proof. Recalling decomposition (6), Theorem 2 and Lemma 6 we get

DKL(ρ‖ρ̃SLR ) . DKL(ρ‖ρR) +
1

p

(
Rδ+1N−βL +

R

M

)
(28)

with probability at least 1−p, whereas the computational cost satis�es C(ρ̃SLR ) =

M · CL ∼ MNγ
L. For a �xed computation cost the expression in parentheses in

(28) is minimized for

M ∼ R−δNβ
L .

In this case we can estimate (28) by

DKL(ρ‖ρ̃SLR ) . DKL(ρ‖ρR) +
1

p
Rδ+1N−βL . (29)

Theorem 1 allows to determine the optimal choice of the number of moments R

depending on the smoothness of the log-density ln(ρ). In particular, assuming

that ln(ρ) ∈ Hs(I) with s > 1 we �nd with (9) that (29) is minimised when

R−2s ∼ 1

p
Rδ+1N−βL ∼ ε,

or, equivalently, when R ∼ ε−
1
2s and NL ∼ (p−1R2s+δ+1)

1
β . In this case the

computational cost is proportional to

C(ρ̃SLR ) ∼MNγ
L ∼ R−δNβ+γ

L ∼ p− β+γβ ε−
β+γ
β −

1
2s
β+γ+γδ

β .

On the other hand, when ln(ρ) is analytic, we select R = − 1
2 loga(ε) and

NL ∼ (p−1Rδ+1a2R)
1
β . Then (25) is satis�ed and the computational cost is

proportional to

C(ρ̃SLR ) ∼ p− β+γβ ε−
β+γ
β | ln(ε)| β+γ+γδβ

The proof is complete.

4.3. Approximate multilevel Monte Carlo estimators

Finally, we analyse the Multilevel Monte Carlo estimator for the statistical

moments. For this purpose we de�ne

µ̃MLk := EML[Pk(X)] =

L∑

`=1

EM`
[Pk(X`)− Pk(X`−1)], X0 := 0 (30)

where EM`
[Pk(X`)−Pk(X`−1)], ` = 1, . . . , L are based on independent samples.
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Lemma 7. Suppose Assumption 1 and 3 are satis�ed and let µk and µ̃MLk be

de�ned by (11) and (30) respectively. Then it holds that

E
[ R∑

k=1

(
µk − µ̃MLk

)2
]
. Rδ+1

(
N−βL +

L∑

`=1

N−β` M−1`

)
.

Proof. The Lemma follows by the same arguments as in Lemma 6 and anal-

ogously to the standard Multilevel Monte Carlo estimate (2). Recall that

E[µ̃MLk ] = E[Pk(XL)], and thus by Jensen's inequality and Assumption 3

E
[
(µk − µ̃MLk )2

]
= E

[
Pk(X)− Pk(XL)

]2

+

L∑

`=2

1

M`
Var

[
Pk(X`)− Pk(X`−1)

]
+

1

M1
Var[Pk(X1)]

. kδ
(
N−βL +

L∑

`=1

M−1` N−β`

)
+

1

M1
‖ρ‖L∞(−1,1).

The last summand can be absorbed by the sum in parentheses, thus the assertion

follows by summation over k = 1 . . . R.

Theorem 5. Suppose Assumptions 1 and 3 are satis�ed. Let {µ̃ML1 , . . . , µ̃MLR }
be a sequence of perturbed moments de�ned in (30) for some �xed values of

the parameters R,L and {M1, . . . ,ML} and suppose ρ̃MLR is the corresponding

perturbed Maximum Entropy solution. Then for any ε > 0 and p ∈ (0, 1) the

parameters R,L and {M1, . . . ,ML} can be selected such that the bound

DKL(ρ‖ρ̃R) < ε (31)

holds with probability at least 1 − p and the cost of evaluation of all samples

required for the recovery of ρ̃MLR satis�es the following asymptotic relations:

when ln(ρ) ∈ Hs(I) with s > 1 it holds that

C(ρ̃MLR ) ∼





p−1ε−1−
δ+1
2s , if β > γ,

p−1ε−1−
δ+1
2s (| ln(p)|+ | ln(ε)|)2, if β = γ,

p−
γ
β ε−

γ
β−

(δ+1)γ
2sβ , if β < γ,

(32)
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when ln(ρ) is analytic the computational cost is proportional to

C(ρ̃MLR ) ∼





p−1ε−1| ln(ε)|δ+1, if β > γ,

p−1ε−1| ln(ε)|δ+1(| ln(p)|+ | ln(ε)|)2, if β = γ,

p−
γ
β ε−

γ
β | ln(ε)|(δ+1) γβ , if β < γ.

(33)

Proof. Recalling decomposition (6), Theorem 2 and Lemma 7 we get

DKL(ρ‖ρ̃MLR ) . DKL(ρ‖ρR) +
Rδ+1

p

(
N−βL +

L∑

`=1

M−1` N−β`

)
(34)

with probability at least 1 − p. We start by minimizing the expression in the

parentheses w.r.t. {M1, . . . ,ML} so that the computational cost

C(ρ̃MLR ) =

L∑

`=1

M`C` ∼
L∑

`=1

M`N
γ
`

remains �xed. Solving this constraint minimization problem analytically we �nd

the optimal sample size

M` ∼ N−
β+γ

2

`





Nβ
L , if β > γ,

LNβ
L , if β = γ,

N
β+γ

2

L , if β < γ,

which is the standard selection of the sample size in MLMC (cf. [4, 8]). This

implies the computational cost

C(ρ̃MLR ) ∼





Nβ
L , if β > γ,

L2Nβ
L , if β = γ,

Nγ
L, if β < γ.

From (34) it follows that

DKL(ρ‖ρ̃MLR ) . DKL(ρ‖ρR) +Rδ+1p−1N−βL ,

which is the same estimation as (29) and thus the error is minimized for the

same R,NL as in Theorem 4. Suppose that ln(ρ) ∈ Hs(I) for s > 1 then we

have for NL ∼ (p−1R2s+δ+1)
1
β and R ∼ ε− 1

2s the computational cost of order

C(ρ̃MLR ) ∼





p−1ε−1−
δ+1
2s , if β > γ,

p−1ε−1−
δ+1
2s (| ln(p)|+ | ln(ε)|)2, if β = γ,

p−
γ
β ε−

γ
β−

(δ+1)γ
2sβ , if β < γ.
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For analytic ln(ρ) we choose NL ∼ (p−1Rδ+1a2R)
1
β and a−2R ∼ ε. Hence the

computational cost is proportional to

C(ρ̃MLR ) ∼





p−1ε−1| ln(ε)|δ+1, if β > γ,

p−1ε−1| ln(ε)|δ+1(| ln(p)|+ | ln(ε)|)2, if β = γ,

p−
γ
β ε−

γ
β | ln(ε)|(δ+1) γβ , if β < γ

and the proof is complete.

5. Numerical Experiments

In this section we present results of numerical experiments assessing theoret-

ical convergence estimates from the previous sections. We describe a numerical

algorithm for solution of the truncated moment problem and report results of

the convergence studies.

5.1. Synthetic probability density functions

We start by setting up a series of synthetic problems involving random vari-

ables with known probability density functions of di�erent regularity. In particu-

lar, we study approximations of density functions ρ = ρ1, . . . , ρ4 of four di�erent

random variables, explicitly de�ned in Table 1 and visualized in Figure 1. Ob-

serve that ρ1 is analytic, but not polynomial, ρ2 is piecewise constant with one

jump, ρ3 and ρ4 are piecewise linear and continuous with one kink. Notice that

ρ2 and ρ4 violate the minimal smoothness assumption ln(ρ) ∈ Hs(−1, 1) for

some s > 1, so that the convergence theory from the previous sections is not

applicable in these two cases.

For a given random variable X with the density function ρ we introduce

an approximation X` at level ` with the density function ρ` as follows. Let

T` be a uniform mesh on the interval I := [−1, 1] consisting of N` := 2`+1

subintervals of the same length. Then let ρ` be the piecewise constant function

on T` determined by
∫

K

(ρ(x)− ρ`(x)) dx = 0 ∀K ∈ T`.
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Figure 1: Graphs of the synthetic probability

density functions ρ1, . . . , ρ4.
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Figure 2: Density function ρ1 and its approx-

imation ρ1` for ` = 1.

Observe that ρ` is the L2 projection of ρ. For example, ρ1(x) and the corre-

sponding ρ1` for ` = 1 are visualized in Figure 2.

Let F be the cumulative distribution function of X. Then Xi = F−1(Zi) is

a sample of X where Zi is a sample from the uniform distribution Z ∼ U(0, 1).

Recall that the multilevel estimator (30) involves dependent pairs of samples Xi
`

and Xi
`−1 corresponding to two approximations of the sample Xi of di�erent

�delity. To ful�l this dependence requirement we generate samples Zi of the

uniformly distributed random variable Z ∈ U(0, 1) and declare Xi
` := F−1` (Zi)

and Xi
`−1 := F−1`−1(Zi) where F` is the cumulative distribution function of X`.

The estimators (17), (24) and (30) for the Legendre moments are then evaluated

directly by computing involved sums.

pdf ρ1 ρ2 ρ3 ρ4

x0 −1
√

1
2 − 1

√
1
2 0.8

ρ(x), x < x0

√
1
2 0.5x+ 0.55 0

ρ(x), x ≥ x0 1
log(3)

1
x+2

1
4−
√
2

≈ −1.8314x+ 2.1985 50x− 40

Table 1: The de�nition of the density functions ρ1, . . . , ρ4. In the second row x0 denotes the

location of a possible discontinuity of ρn or its derivative. The second and third row contain

explicit expressions for ρn on both sides of x0.
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5.2. Solution algorithm

In this section we describe the numerical procedure of computing the Maxi-

mum Entropy solution ρR for a given set of moments µ1, . . . , µR (strictly speak-

ing the moments µk are estimated by sampling and therefore are inexact, but

the skip the tilde-notation for the perturbed quantities until the end of this

section to simplify the notations). For a �xed basis of global algebraic polyno-

mials {φ0, . . . , φR} this task reduces to �nding unknown expansion coe�cients

λ = (λ0, . . . , λR)> so that (4) is ful�lled. This leads to a system of nonlinear

equations F (λ) = 0 with

Fj(λ) =

∫ 1

−1
φj(x)ρ[λ](x) dx− µj , ρ[λ] := ρR = exp

(
R∑

k=0

λkφk

)
(35)

which can be solved by the Newton method. The Newton update step reads

λ(m+1) = λ(m) − J [λ(m)]−1F (λ(m)), m = 1, 2, . . .

with the Jacobi matrix

J [λ(m)]jk =

∫ 1

−1
φj(x)φk(x)ρ[λ(m)](x) dx.

The choice of the basis {φk} has, of course, no in�uence on the solution of

the problem in the exact arithmetic, but it has a crucial impact on stability and

convergence properties of the Newton algorithm. For example, for the monomial

basis φk(x) = xk the Jacobi matrix is a Hankel matrix with the condition num-

ber growing exponentially with the number of moments R, cf. [28]. On the other

hand, the Jacobi matrix in the basis of Legendre polynomials φk(x) = Pk(x) is

well-conditioned with linearly increasing condition number [29]. However, the

constants in this estimate blow up when the minimum of the probability density

function ρ[λ] on [−1, 1] is close to zero.

In our numerical experiments we use the basis of orthonormalized Legendre

polynomials and de�ne the initial value λ(0) = (ln( 1
2 ), 0, . . . , 0) corresponding to

the uniform distribution ρ[λ(0)] = 1
2 . It is expected that the Newton algorithm

will not perform well when the target probability density function ρ vanishes
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Figure 3: Convergence of the Newton method

for R = 100 statistical moments.
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Figure 4: The number of Newton iterations

needed until convergence for R di�erent num-

ber of prescribed statistical moments.

or is close to zero on the interval [−1, 1]. When the Newton iteration does

not achieve the prescribed level of accuracy, we select as an output the vector

of coe�cients λ(m∗) at the iteration m∗ having the smallest residual, that is

m∗ = argminm
∑R
k=0(µk − µ(m)

k )2 where µ(m)
k =

∫ 1

−1 Pk(x)ρ[λ(m)](x) dx.

Now we discuss a series of numerical experiments where we use the exact �rst

R moments µ1, . . . , µR of the target density ρ (i.e. in this case the estimation

error equals zero) in the nonlinear system (35) and compute the Maximum

Entropy solution using the Newton method as described above. Figure 3 shows

the convergence of the Newton algorithm for R = 100 moments for the four

synthetic density functions ρ = ρ1, . . . , ρ4. The plotted value is the squared

Euclidean norm of the error between Legendre coe�cients of the logarithms of

ρ and ρ[λ(m)]
R∑

k=1

(λk − λ(m)
k )2.

Observe that the Newton algorithm for the �rst three density functions achieves

machine precision in a few (4-5) iterations. The fourth example starts with a

slow convergence, but then the error saturates and the method diverges at the

17th iteration.

Figure 4 shows the number of iterations needed to converge to precision
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10−15 dependent on the number of prescribed moments. The �rst three prob-

ability density functions only need a few iteration steps to converge almost

independently of the number of moments. For ρ4 the Newton method does not

converge to the tolerance 10−15 when R > 5 and returns only an approximate

solution.

5.3. Convergence of the Maximum Entropy method for synthetic density func-

tions

In this section we discuss convergence of the Maximum Entropy method

and compare it with a Kernel Density Estimator from [30]. Here the target

distribution ρ is one of the synthetic distributions ρ1, . . . , ρ4 de�ned in Section

5.1.

First we study the behaviour of the truncation error estimated in Theo-

rem 1 which is independent of the type of the moment estimator. Recall that

log(ρ2), log(ρ4) /∈ H1(I) violating assumptions of Theorem 1. Nonetheless, we

observe in Figure 5 that the slope of the convergence curves for ρ1, ρ2, ρ3 is

as predicted in Theorem 1. The approximations to ρ4 converge at a reduced

rate of about R−1. This indicates that the minimal smoothness assumption

ln(ρ) ∈ H1(I), s > 1 may be relaxed. Notice that the convergence curve for ρ4

is non-monotone. This e�ect may be due to inaccurate iterative approximation

of ρ4R by the Newton method.

Next, we validate the stability bound (14) in Lemma 3. For this we introduce

an arti�cial noise in the moments µ̃k = (1 + yξk)µk, where ξk are iid normal

random variables and the scaling parameter y taking di�erent values for each

data point. Figure 6 indicates that (14) is a sharp bound for ρ1, ρ2 and ρ3

whereas the graph for ρ4 shows a very di�erent behaviour. It can be explained

by the very large value of the constant CR for the approximation ρ4R (indeed,

in this example we estimate C20 > 10100) and thus it is not surprising that

the stability relation (14) is not realized. On the other hand, this e�ect (and

also the non-monotone convergence in Figure 5) can be explained by the poor

accuracy of the Newton solution in the case ρ = ρ4, as mentioned in Section 5.2.
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Figure 5: Truncation error versus the number

of exact moments.
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Figure 6: Estimation error versus the size of

the moment perturbation with R = 20 per-

turbed moments.

Our next aim is to verify the bound 1) in Assumption 3. In Figure 7 we

plot the values E[(X`−X)2] for varying `. The slope of the convergence curves

indicates that β ≈ 4 in all four examples. In Figure 8 we show the values

E[(Pk(X`)−Pk(X))2] for the �xed approximation level ` = 3 and varying poly-

nomial degree k. In all cases we observe that δ ≈ 2. Of course, in the described

synthetic examples the generation cost for approximate samples is independent

of `. To make a meaningful test for the MLMC estimator (30) with synthetic

density functions we make a convention that the cost to generate one sample of

X` is proportional to N4
` , i.e. Assumption 3 is ful�lled with γ = β.

As seen from the proof of Theorem 5, the number of the statistical moments

R has to be coupled to other discretization parameters, e.g. the sample size.

To verify the statement of Theorem 5 we chose the optimal value R manually

(a practical estimator would ideally choose R in an adaptive manner). In what

follows we compare the Maximum Entropy method with the Kernel Density

Estimators from [30] (their implementation makes use of an adaptive selection

of the kernel width).

We start by verifying the statement of Theorem 3. Figures 9 and 10 show

the error of the Maximum Entropy method and the Kernel Density Estimator
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from [30] dependent on the sample size for ρ1 and ρ2 (the data points represent

averages of 30 independent simulations). The two other examples with ρ = ρ3

and ρ4 show similar behaviour and therefore are omitted. The dashed line

indicates the rate of the Maximum Entropy method predicted by Theorem 3.

Recall that the bound (18) only holds on a set of probability smaller than 1,

therefore there might be runs with no ME solution. However, this problem

has never occurred in the experiments for ρ1 and ρ2. This seems reasonable if

we recall Figure 6. Comparing the Maximum Entropy method and the Kernel

Density Estimate we observe in both cases a similar convergence behaviour.

In Figures 11 and 12 we show the relations between R and h−1 (where h is

the kernel width) and the number of moments M . Notice the very di�erent

behaviour of R(M) and h−1(M) for the analytic density function ρ1 and the

step-function ρ2. The behaviour R = R(M) is in excellent agreement with the

one suggested in the proof of Theorem 3 in both cases.

In Figures 13 and 14 we compare the MLMC-ME approach to the Kernel

Density Estimator for ρ1 and ρ2 (again, each data point is an average over

30 independent runs). Each curve in the KDE method corresponds to a �xed

level of approximation ` = 1, . . . , 4 and an increasing number of samples. This

explains the saturation of the KDE convergence curves once the sampling error

has achieved the magnitude of the �xed approximation error. The convergence

of the MLMC-ME approach is in good agreement with Theorem 5 and is faster

than that of the envelope of all KDE curves. By construction, it is naturally

re�nable in both the sample size and the level of sample approximation, and

therefore does not saturate.

5.4. Application to contact with rough random obstacles

In this section we apply the Multilevel Monte Carlo Maximum Entropy

method to a class of contact problems with rough random obstacles. We utilize

the mathematical framework and notations from the recent articles [8, 11] and

recall the most important ingredients for the sake of completeness.

Let D = [−1, 1]2 and assume that the obstacle is parametrized by a con-
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tinuous function ψ satisfying ψ ≤ 0 on ∂D and f ∈ L2(D). The deterministic

obstacle problem can be formulated as �nding u : D → R such that




−∆u ≥ f in D,

u ≥ ψ in D,

(−∆u− f)(u− ψ) = 0 in D,

u = 0 on ∂D.

(36)

The weak formulation of (36) is a variational inequality of the �rst kind having

a unique solution u ∈ H1
0 (D) satisfying u ≥ ψ a.e. in D and depending contin-

uously on the data ψ and f . We are interested in the probability distribution

of the area of the coincidence set

X = |Λ|, Λ = {x ∈ D : u(x) = ψ(x)}

in the case when ψ = ψ(x, ω) is uncertain. Precisely, we assume that

ψ(x) =
∑

q0≤|q|≤qs

Bq(H) cos(q · x+ ϕq), (37)

where the oscillation amplitudes Bq(H) obey the law

Bq(H) =
π

25
(2πmax(|q|, ql))−(H+1), q0 ≤ |q| ≤ qs,

q0 = 1, ql = 10, qs = 26
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see [8, Sect. 8], [11, Sect. 6] and references therein for the details. The values

of the Hurst coe�cient H correspond to obstacles of di�erent roughness [31]

(notice that H is independent of the frequency q). In the subsequent numerical

experiments we assume that H is uniformly distributed in [0, 1] and the phase

shifts ϕq in (37) are uniformly distributed in [0, 2π].

Evidently, exact samples of X are out of reach and we shall work with

approximate samples X` ≈ X at the approximation level `. The samples X` are

obtained from the approximate Finite Element solutions u` computed on the

Finite Element meshes T` consisting of congruent triangles: the coarsest solution
u1 involves 13 degrees of freedom whereas the �nest solution u8 involves 130 561

degrees of freedom. Clearly, the sizes of the the exact coincidence set X and

of its Finite Element approximations X` are enclosed in the interval [0, 4]. In

the forthcoming numerical experiments the unknown probability density ρ is

approximated on a smaller interval [x∗ − ∆, x∗ + ∆] ⊂ [0, 4] where x∗ and

x∗ are the smallest and the largest realizations of X` for all ` = 1, . . . , L and

∆ := (x∗ − x∗)/10.

Figure 15 shows graphs of the Maximum Entropy solutions for di�erent num-

ber of statistical moments computed by the MLMC. Observe that a signi�cant

number of moments (50 to 60) is required to reach a reasonable approxima-

tion of the target density function which appears quite concentrated around the

value x0 = 1.13 and having a heavy tail towards smaller values of X (notice

non-negligible spurious oscillations in that region). The parameters are selected

so that the computational cost for every ME solution in Figure 15 is the same.

The outcomes of this simulation can be compared directly with approximate

density functions computed by KDE simulations at �xed levels ` = 4, . . . , 7, see

Figure 16. The KDE density functions are quite rough in the left tail region

and are quantitatively close to the ME density functions with 50�60 statistical

moments. The computation of each KDE density requires the same computa-

tional cost which is, however, by factor 9 smaller than the computational cost

for the ME density functions. Figure 17 shows the zoom into the tips of the

KDE and ME distributions.
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Next, we consider convergence of the truncation error DKL(ρ||ρR). Since

the target density function ρ is unknown, we use the overkill approximation

ρ ≈ ρ̃ML60 instead which involves L = 9 levels of approximation and ML = 300

samples on the �nest grid. The convergence history for di�erent values of R is

shown in Figure 18 and indicates the convergence rate of order R−1.

The behaviour of the estimation error DKL(ρR‖ρ̃R) can be seen in Figure 19

(each data point is an average over 30 independent runs). The approximations

ρ̃R are computed with 10 samples on the �nest level. Observe that for rising

number of moments the slopes of the convergence curves rapidly become �at.

To interpret this e�ect we show in Figure 20 the behaviour of the corresponding

moment perturbation. Recall that due to Lemma 3 this is an upper bound for

DKL(ρR‖ρ̃R). Here the slope of the convergence curves rapidly becomes parallel

and decaying for all moments up to R = 50. This indicates that the stability

constant CR in (14) should grow signi�cantly with increasing R. Indeed, we

observe huge values of CR in the course of the simulation.

6. Conclusions and discussion

In this work we have developed a complete convergence theory of the Multi-

level Monte Carlo Maximum Entropy method and presented numerical examples

showing that this approach provides a good alternative for numerical approxi-

mation of probability density function of the system output. If the target proba-

bility density function is strictly positive and smooth, this can lead to signi�cant

savings in computation time. On the other hand, when the target probability

density function has low regularity, the savings are smaller, but the method still

has a good error-versus-cost relation. The convergence of the method is not

guaranteed if the probability density function is not strictly positive.

An important open question for practical computations, which lies outside

the scope of this paper, is how to choose the number of statistical moments R in

the Maximum Entropy method dependent on the discretization and sampling

parameters in the case when the smoothness of the target distribution is not

31



0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

5

10

15

20

25

30

35

40
R=2

R=5

R=10

R=30

R=50

R=60

Figure 15: Solutions of the MLMC-ME for

di�erent number of moments R.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

5

10

15

20

25

30

35

40
l=4

l=5

l=6

l=7

Figure 16: Solutions of the KDE with sam-

ples taken from di�erent discretization lev-

els `.

1.125 1.13 1.135 1.14 1.145

26

28

30

32

34

36

38
KDE l=4
KDE l=5
KDE l=6
KDE l=7
MLMC ME R=60

Figure 17: Zoom into the tips of the proba-

bility density functions in Figures 15 and 16.

100 101

10−2

10−1

100

R

D
(ρ

6
0
‖ρ
R
)

MLMC ME approach

t−1

Figure 18: Convergence of the MLMC-ME

solution for an increasing number of mo-

ments.

1 2 3 4 5 6 7 8

10−3

10−1

101

Level L

E[
D
(ρ
R
‖ρ̃
R
)]

R = 2

R = 5

R = 10

R = 30

R = 50

Figure 19: Expected KL-divergence of the

ME solution for approximating R moments.

1 2 3 4 5 6 7 8

10−5

10−3

10−1

101

Level L

E[
∑
R k
=
1
(µ
k
−
µ̃
k
)2
]

R = 2

R = 5

R = 10

R = 30

R = 50

Figure 20: Mean square error of R approxi-

mated moments with the MLMC.

32



known. A possible adaptive strategy may start with low values of R and increase

them in the course of the simulation when necessary.
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