

Studiengangsvorstellung

Master Marine Umweltwissenschaften

Dr. Cora Kohlmeier

4. Juni 2025

Der Master Marine Umweltwissenschaften ist

- hauptsächlich deutschsprachig
- einige Module englischsprachig
- zulassungsfrei

Beginn im Wintersemester

im Ausnahmefall im Sommer

Studienvoraussetzungen

Bachelorabschluss oder gleichwertiger Abschluss

in

Umweltwissenschaften

oder

Studiengang mit mindestens 90 KP in Naturwissenschaften/Technik

Für alle naturwissenschaftlichen Bachelor der Uni Oldenburg erfüllt

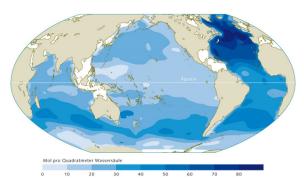
Deutscher Abschluss, Muttersprache deutsch oder deutscher Sprachnachweis Englisch Niveau B2 dringend empfohlen

Warum marine Umweltwissenschaften?

IPCC 2021

Viele Veränderungen aufgrund vergangener und künftiger Treibhausgasemissionen sind über Jahrhunderte bis Jahrtausende unumkehrbar, insbesondere Veränderungen des Ozeans, von Eisschilden und des globalen Meeresspiegels.

Das Meer ist bedeutend


Die Ozeane

- bedecken 71% der Erdoberfläche
- erzeugen 50% der
 Primärproduktion bei ca. 1% der
 Biomasse
- enthalten 16-mal soviel Kohlenstoff wie die Landbiosphäre und 60-mal soviel Kohlenstoff wie die vorindustrielle Atmosphäre

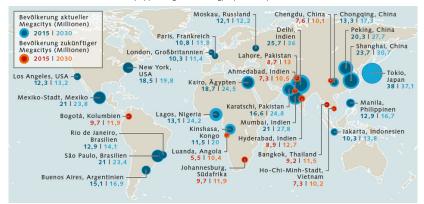
Quellen: Pixabay, Bar-On, Y.M. et al. (2018): The biomass distribution on Earth. PNAS doi:10.1073/pnas.1711842115, maribus: world ocean review 1 (2010)

Der Ozean ist Senke für anthropogenes CO2

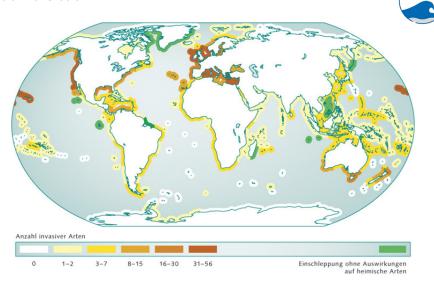
Gesamtaufnahme anthropogenes CO2 industrielle Revolution bis 1994

- **IPCC 2007** Ohne Meeresorganismen läge der *CO*₂ Gehalt der Atmosphäre bei 430 statt **380 ppm**
- Wert April 2025 429.64 ppm

 $Quellen: \ maribus: \ world \ ocean \ review \ 1 \ (2010) \ Abb. \ 2.4 \ https://gml.noaa.gov/ccgg/trends/weekly.html$


https://globalcarbonatlas.org

Das Meer ist menschlicher Lebensraum


- 1 Milliarde Küstenbewohner leben unterhalb von 20 m ü. NN
 http://worldoceanreview.com/wor-1/kuesten/lebensraum-kueste/
- jährlich ca. 100 Millionen t Fischfang

92 Mio Tonnen in 2006 https://www.greenfacts.org/de/fischerei/

Quelle: maribus: world ocean review 5 (2017) Abb. 2.28

Biodiversität

Quelle: maribus: world ocean review 1 (2010) Abb. 5.9

ICBM

Institut für Chemie und Biologie des Meeres

Fakultät für Mathematik und Naturwissenschaften (FK V)

Carl von Ossietzky Universität Oldenburg

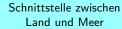
- Interdisziplinäres Forschungsinstitut
- grundlegende und angewandte Meeres- und Umweltforschung
- Heimatinstitut des Forschungsschiffes SONNE

Standort Oldenburg

Standort Wilhelmshaven

Infrastruktur

- kleinere und größere Forschungschiffe
- Dauermessstation im Wattenmeer
- moderne analytische Geräte


Forschungsschwerpunkte des ICBM

Mikrobielle Interaktion und geochemische Stoffkreisläufe

von Molekülen und Zellen zu globalen Prozessen

Stoffumsätze und -flüsse

Biodiversität mariner Ökosysteme

Triebkräfte und Wechselwirkungen

1

Nachhaltige Nutzung für gesunde Ozeane

Antworten auf die Herausforderungen des Anthropozäns

Kooperationen

Arbeitsgruppen am ICBM

- Allgemeine und molekulare Mikrobiologie
- Benthische Mikrobiologie
- Benthosökologie
- Biodiversitätstheorie
- Biodiversität und biologische Prozesse der Polarmeere
- Biodiversität und Evolution der Tiere
- Biologie geologischer Prozesse
- Fischökologie und -evolution
- Geoökologie
- Planktologie

- Mathematische Modellierung
- Biogeochemische Ozeanmodellierung
- Marine Geochemie (MPI)
- Marine Isotopengeochemie
- Organische Geochemie
- Umweltbiochemie
- Physikalische Ozeanographie
- Prozesse und Sensorik mariner Grenzflächen
- Theoretische Physik/Komplexe Systeme
- Hydrogeologie und Landschaftswasserhaushalt
- Marine Sensorsysteme
- Marine Governance

Studium am ICBM

- Interdisziplinäre und forschungsorientierte Ausbildung
- fächerübergreifende Studiengänge
 - Bachelor Umweltwissenschaften
 - Master Marine Umweltwissenschaften
 - Master Microbiology
 - Master Umweltmodellierung
 - Master Marine Sensorik

Praxisnahes studieren

ICBM

- kleine Studiengruppen
- Exkursionen und fachpraktische Übungen vor Ort

Forschungsorientiertes studieren

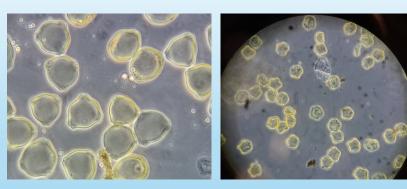
• Einbindung in AGs

Marine Umweltwissenschaften

Universität Oldenburg

Studentenperspektive von Eva Foth

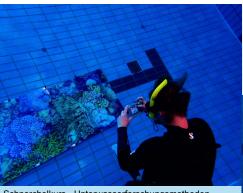
Über Mich ☺


- Bachelor: Umweltnaturwissenschaften in Freiburg
- · Arbeit im Labor oder im Freien
- Warum Oldenburg?
 - Viele praktische Kurse und freie Studiengestaltung
 - Schöne Stadt

Studieren in Oldenburg

- Viele Seminare und praktische Kurse
- Vielfältiges Angebot
- Kleine Kurse und gute Betreuung
- Familiäre Atmosphäre
- Exkursionen

Persönliche Highlights



Praktikum: Faziesansprache von Küstenablagerungen


Ausfahrt auf der Senckenberg

Schnorchelkurs - Unterwasserforschungsmethoden

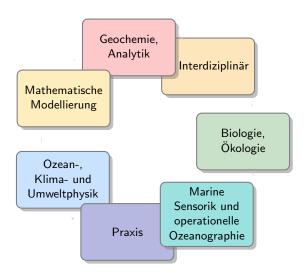
Masterarbeit und Pläne

- Lichteinflüsse auf Phytoplanktonwachstum
- · AG Planktologie in WHV
- PhD, Arbeit in Forschung oder Meeresschutz

Vielen Dank für eure Aufmerksamkeit!

Vielleicht sehen wir uns bald am ICBM.

Der Master Marine Umweltwissenschaften



- vermittelt tiefes Verständnis für die naturwissenschaftlichen Prozesse mariner Ökosysteme
- umfangreiche methodisch-praktische Ausbildung in weltweit forschenden Arbeitsgruppen
- bietet aktuelle Projekte während des Studiums zur eigenständigen Forschung
- interdisziplinär
- zahlreiche Wahlmöglichkeiten

Wahlpflichtbereiche

Aufbau des Studiums

1. Semester	Einführung MUWI	WP MatMod	WP OKUP	WP Chemie	WP Bio
	6 KP	6 KP	6 KP	6 KP	6 KP
2. Semester	WP Bio	WP Bio	WP Chemie	WP MarSens	WP OKUP
	6 KP	6 KP	6 KP	6 KP	6 KP
3. Semester	WP Inter 6 KP	WP Praxis 6 KP	WP Chemie 6 KP	Umweltwissenschaftliches Forschungsprojekt (UFP) 12 KP	
4. Semester	Masterarbeit 30 KP				

Pflichtmodule			
Wahlpflichtbereich			
Biologie, Ökologie	WP Bio	mindestens 1 Modul	
Geochemie, Analytik	WP Chemie	mindestens 1 Modul	
Mathematische Modellierung	WP MatMod	mindestens 1 Modul	
Ozean-, Klima- und Umweltphysik	WP OKUP	mindestens 1 Modul	
Marine Sensorik und operationelle Ozeanographie	WP MarSens	mindestens 1 Modul	
Praxis	WP Praxis	maximal 3 Module	
Interdiziplinär	WP Inter	frei	

Studienformen

Empfehlungen für das 1. Fachsemester

Ergänzung bisheriger Qualifikation durch maßgeschneiderte einführende Module auf Masterniveau

- Pflichtmodul (6 KP) Einführung marine Umweltwissenschaften
- 4 Wahlpflichtmodule (4 x 6 KP, je nach Vorkenntnissen)
 - Grundlagen mathematischer Modellierung
 - Ozean-Klima-Umweltphysik
 - Meeres- und Geochemie
 - Biologische Ozeanographie
 - Grundlagen mariner Sensorik

Module

Code	Pflichtmodule	Verantwortlich	Semeste
mar350	Einführung marine Umweltwissenschaften	Blasius	1
mar420	Umweltwissenschaftliches Forschungsprojekt (UFP)	Blasius 3	
nam	Masterabschlussmodul	Lehrende	4
	Wahlpflichtmodule Interdisziplinär	Verantwortlich	
mar490	Current Topics and Methods in Marine Environmental Sciences	Studiengremium	1-3
	Modul aus dem zulassungsfreien Masterprogramm der Universität	Lehrende	1-3
mar475	Ocean Governance and Policy	Peters	3
	Wahlpflichtmodule Mathematische Modellierung	Verantwortlich	
mar353	Grundlagen mathematischer Modellierung	Kohlmeier	1*
mar354	Advanced mathematical modelling	Blasius	1
mar363	Theorie ökologischer Gemeinschaften	Blasius	2
mar364	Zeitreihenanalyse	JFreund	2
mar365	Stochastische ProzeSe	JFreund	2
mar366	Current topics in modelling and data analysis	Blasius	2
mar376	Statistische Ökologie	JFreund	3
mar758	Biogeochemische Modellierung	Lennartz	3
	Wahlpflichtmodule Ozeanographie, Klimatologie, Umweltphysik	Verantwortlich	
mar355	Physikalische Ozeanographie	Lettmann	1
mar356	Ozean-Klima-Umweltphysik	Ryaboy	1*
mar367	Ozeanmodelle Lettmann		2
mar368	Klimamodelle	Lettmann	
mar373	Praxisseminar Modellierung	NN	3
	Wahlpflicht-Module Geochemie, Analytik	Verantwortlich	
mar246	Hydrogeologie und Biogeochemie der Küste	Waska	3
mar248	Basics of NMR Spectroscopy Vern		3
mar248	Advanced NMR Spectroscopy Vernulaps Vernulaps		4
mar357	Meeres- und Geochemie	Pahnke-May	1*
mar430			2
mar431	Marine Klimatologie	Wurl	2
mar432	Biogeochemie	Wilkes	2
mar433	Fachpraxis Marine Grenzflächen Wurl		2
mar434	Fachpraxis Organische Geochemie Scholz-Böttcher		2
	Fachpravis Biogeochemie Niggemann		3
mar435	1 '	Wurl	3
	Marine Grenzflächen		
mar435 mar436 mar437	Marine Grenzflächen Isotopengeochemie	Pahnke-May	3
mar436			
mar436 mar437	Isotopengeochemie	Pahnke-May	3

^{*} Empfehlung für Quereinsteiger für das 1. Fachsemester

Code	Wahlpflichtmodule Biologie, Ökologie	Verantwortlich	Semester	
mar358	Basic ecological processes	NN	1	
mar359*	Biologische Ozeanographie Garcia		1*	
mar450	Marine Community Ecology	Striebel	riebel 2	
mar451	Ökologie mariner Mikroorganismen 1	Garcia	2	
mar452	Ökologie mariner Mikroorganismen 2	Garcia	2	
mar453	Microbial ecology of marine sediments	Engelen	2	
mar454	Einführung in die DNA-Sequenzierung und Sequenzanalyse	Brinkhoff	2	
mar456	Küstenholozän	HFreund	2	
mar457	Ökologie benthischer Mikroorganismen	Engelen	2	
mar458	Gewässerökologie	Simon	3	
mar459	Macrobenthos communities	Schupp	3	
mar460	Chemical ecology	Schupp	3	
mar461	Eunctional marine biodiversity	Hillebrand	3	
mar462	Unterwasser Forschungsmethoden	Schupp	3	
mar463	Aquatische mikrobielle Ökologie	Brinkhoff	3	
mar464	Marine Mikrobiologie	Brinkhoff	3	
mar474	Current issues in plankton ecology	Hillebrand	3	
mar476	Marine Ecological Genetics	Puebla	3	
mar362	Chronobiology meets Ecology	Tessmar-Raible	2	
	Wahlpflichtmodule Marine Sensorik und op. Ozeanographie	Verantwortlich		
mar478	Grundlagen mariner Sensorik	Badewien	1*	
mar377	Regionale Ozeanographie	Badewien	2	
mar961	Aquatische Optik	Wollschläger	3	
mar962	Vertiefungspraktikum Systemtechnik	Badewien	3	
mar963	Robotik	NN	3	
mar479	Marine Feldforschung - Data processing and Analysis,	Badewien	3	
mar480	Marine Feldforschung - Expedition	Badewien	2	
	Wahlpflichtmodule Praxis	Verantwortlich		
mar465	Korallenriff Exkursion	Schupp	3	
mar466	Forschungstaucher 1	Donat	3	
mar467			2	
mar468	Meeresbiologische Geländeübung Donat 2		2	
mar469	Terrestrische und Marine Ökologie des Mittelmeers	NN	1-2	
mar470	Programmierkurs Meereswissenschaften	Feenders	1	
mar471	Tages - Exkursionen	Schupp	1-3	

Aktuellen Stand bitte dem Modulhandbuch entnehmen

^{1,2,3,4} empfohlenes Semester

Beispiel Studienplan

1. Sem.	Einführung Marine Umweltwissen- schaften	Grundlagen mathematischer Modellierung	Ozean-Klima- Umweltphysik	Meeres- und Geochemie	Basic Ecological Processes
2. Sem.	Ökologie benthischer Mikro- organismen	Functional marine biodiversity	Biogeochemie	Regionale Ozeanographie	Tages- Exkursionen
3. Sem.	Freies Mastermodul	Chemical Ecology	Marine Umweltchemie	Umweltwissenschafliches Forschungprojekt	
4. Sem.	Masterarbeit				

Pflichtmodule Wahlpflichtbereiche			
Biologie, Ökologie	mindestens 1 Modul		
Geochemie, Analytik	mindestens 1 Modul		
Mathematische Modellierung	mindestens 1 Modul		
Ozean-, Klima- und Umweltphysik	mindestens 1 Modul		
Marine Sensorik und op. Ozeanographie	mindestens 1 Modul		
Praxis	maximal 3 Module		
Interdiziplinär	frei		

Berufsfelder

- Wissenschaft → Promotion
- Umwelt-, Klima- und Küstenschutz
- Umweltplanung
 - Fischereiwesen und Aquakulturmanagement
- Umweltbildung
 - Wattenmeer-Besucherzentren
 - Museen
- Behörden, Bundesämter, etc.
 - Umweltbundesamt
 - Bundesamt für Seeschifffahrt und Hydrographie
 - Nds. Kompetenzzentrum Klimawandel
 - Deutscher Wetterdienst
 - Wasserverbände

Infos zum Studium

- Studiengangswebseite des ICBM https://uol.de/muwi-msc
- Studiengangswebseite der Uni https://uol.de/studiengang/marine-umweltwissenschaften-master-210
- Modulhandbuch https://uol.de/muwi-msc/studieren/modulhandbuch
- Fachschaft master.icbm@uol.de
- Studienberatung f
 ür den Studiengang

Prof. Dr. Bernd Blasius blasius@icbm.de
Dr. Cora Kohlmeier kohlmeier@icbm.de

- Studienberatung allgemein https://uol.de/studium/beratung-studierende
- Bewerben bis 15. Juli 2025, spätestens bis 30. September 2025 https://uol.de/studium/bewerben/master

Studium im Ausland

- Verbesserung der Sprachkompetenz
- persönliche Entwicklung
- fremde Kultur kennenlernen
- internationale Arbeitsumfelder kennen lernen
- interkulturelle Begegnungebn, Kontakte und Netzwerke
- Verbesserung der Karrierechancen

ERASMUS-Partnerhochschulen

→ 22 Partner in 14 Ländern

ERASMUS

- keine Studiengebühren
- Zuschuss ca. 540 600 €/Monat + evtl. "TopUps" für z.B. grünes Reisen oder Erstakademiker*innen, Studierende mit Kind oder bei Berufstätigkeit
- Erleichterte Anerkennung von Kreditpunkten
- Je Studienzyklus (Bachelor, Master) bis zu 12 Monate Förderung möglich
- Bewerbung für das folgende akademische Jahr bis spätestens
 31. Januar
- Infos unter https://uol.de/studieren-im-ausland
- Ansprechpartnerin Dr. Marion Pohlner (erasmus@icbm.de)

ERASMUS-Praktikum

- Auslandsaufenthalt für Praktika an Unternehmen, Instituten oder Organisationen unabhängig von Partnerhochschulen
- Dauer: 2 bis 12 Monate
- Förderung: 21 25 € täglich → monatlich 640 750 €
- Bewerbung bis 6 Wochen vor Praktikumsstart
- Ansprechpersonen am International Office:
 A. Männle und L. Hasselbrink, mailto:goingabroad@uol.de
- Mehr Infos unter https://uol.de/erasmus/erasmus-praktikum

Aufenthalte außerhalb Europas

- Auslandssemester an über 50 Kooperationsuniversitäten der UOL möglich
- Ausschreibung jährlich im Oktober/November für USA/Kanada

Ausschreibung jährlich Mai/Juni für übrige Länder

- Infos unter https://uol.de/wege-ins-ausland
- Kontakt im International Office: goingabroad@uol.de
 - R. Behrends (Afrika, Asien, Ozeanien, Naher Osten, Russland und Zentralasien)
 - J. Janßen (Nord- und Lateinamerika)

Forschungstauchen

Qualifikation für das Gerätetauchen im wissenschaftlichen Bereich

Probennahme, Beobachtungen, Messungen, Manipulation

Ablauf der FT-Ausbildung

- Schwimmen und Schnorcheln
- Theorie Regelkunde, Physik, Medizin, Technik
- autonomes Leichttauchgerät aLTG in Schwimmbad und Freiwasser
- Endausbildung
 - wissenschaftliche Arbeitstechniken Schwerpunkt Biologie
 - Tauchen vom Boot, Sicherheitsübungen
 - Prüfung durch Kommission der Berufsgenossenschaft

Voraussetzungen, Kosten, Anrechnung, Infos

- Voraussetzungen
 - Ärztliche Bescheinigung zum Schwimmen und Schnorcheln
 - spez. Tauchuntersuchung f
 ür das aLTG
 - Deutsches Rettungsschwimmabzeichen mind. Silber
- Gesamtkosten der Ausbildung ca. 2600 €
 - 1640 € Ausbildungsgebühren
 - ca. 810 € Ausrüstung (falls noch nicht vorhanden)
 - ca. 150 € Fahrtkosten
- Anrechnung
 - Ausbildung zum Forschungstaucher I+II: 2 x 6 KP
 - Meeresbiologische Geländeübung: 6 KP
- Infos
 - https://www.youtube.com/watch?v=uIElt1GBSOQ
 - https://uol.de/icbm/umweltbiochemie/forschungstauchen
- Ansprechpartner: Frank Donat frank.donat@uol.de

Vielen Dank für die Aufmerksamkeit!