Grundvorlesung Organische Chemie

(Modul che190)

von

Prof. Dr. S. Doye

Inhalt

1. Einleitung

Definition Organische Chemie, Wöhler Harnstoff-Synthese

2. Struktur und Bindung organischer Moleküle

Ionenbindung, Kovalente Bindung, Atom- und Molekülorbitale, σ - und π -Bindung, Hybridisierung (sp³, sp², sp), Einfach-, Doppel- und Dreifachbindung (Methan, Ethan, Ethin), Elektronegativität, Induktiver Effekt (+I, -I), Resonanzformeln, Formalladung, Zeichnung von Molekülen, Funktionelle Gruppen und Stoffklassen

3. Alkane und Cycloalkane

Homologe Reihe der n-Alkane, Verzweigte Alkane, Konstitutionsisomere, IUPAC-Nomenklatur, Cycloalkane, Bi- und Polycyclische Alkane, Spiro-Verbindungen, Vorkommen, Erdöl-Aufbereitung, Benzin, Fischer-Tropsch-Verfahren, Physikalische Eigenschaften, Konformationen von Ethan und n-Butan, Newman-Projektion, Übergangszustand, Ringspannung (Baeyer, Pitzer), Konformationen von Cyclobutan, -pentan, -hexan und cis/trans-Decalin, Substituenten am Cyclohexan (axial/equatorial), Gleichgewichtsreaktion, ΔG° , Relative Konfiguration, Mittlere Ringe (transannulare Wechselwirkung), Homolytischer Bindungsbruch, Heterolytischer Bindungsbruch, Verbrennung von Alkanen, Octanzahl, Antiklopfmittel, Cracken, Radikalische Halogenierung, Stabilität von Radikalen, Hyperkonjugation, Resonanzstabilisierung, Bindungsstärken, Regioselektivität der Halogenierung, Autoxidation, Hydroperoxide

4. Stereochemie

Chiralität, Chiralitätszentrum, Enantiomere, Racemat, Helicale, Planare und Axiale Chiralität, Diastereomere, *Meso*-Verbindungen, CIP-Nomenklatur (*R/S*), Optische Aktivität, Spezifische Drehung, Contergan

5. Halogenalkane

Nomenklatur, Physikalische Eigenschaften, Nucleophile Substitution, S_N1 , S_N2 , S_N2 , Nucleophilie, Fluchtgruppen, Einfluss von Substratstruktur und Lösungsmittel (aprotisch/protisch polar), Stabilität von Carbenium-Ionen, Stereochemie (S_N1 , S_N2 , S_ni), Organometall-Verbindungen (Grignard, Li, Zn, Cu), Reaktionen von Organometall-Verbindungen (Basizität und Nucleophilie), Wurtz-Reaktion, Radikalische Dehalogenierung von Halogenalkanen

6. Alkohole und Ether

Nomenklatur, Physikalische Eigenschaften, H-Brücken, Amphoteres Verhalten der Alkohole, Definition p K_a , ausgewählte p K_a -Werte, Herstellung Alkoholate, Synthese von Alkoholen und Ethern über S_N -Reaktionen, Williamson-Ether-Synthese, Industrielle Synthesen (MeOH, EtOH), S_N -Reaktionen an Alkoholen und Ethern (HI, HBr), Wagner-Meerwein-Umlagerung, Tosylate, Mesylate und Triflate als Fluchtgruppen, Reaktion mit $SOCl_2$ und PBr_3 , Ester-Bildung mit Carbonsäuren, Schwefelsäure-, Salpetersäure-, Borsäure- und Phosphorsäureester (DNA), Oxidation von Alkoholen, Oxidationszahlen, Jones-Oxidation, H_2CrO_4 -Mechanismus, Pyridiniumchlorochromat (PCC), MnO_2 -Oxidation von Allylalkoholen

7. Organische Schwefelverbindungen

Thiole, Sulfide, Nomenklatur, Physikalische Eigenschaften, Geruch, Redox-Reaktionen, Disulfide, Sulfonsäuren, Sulfoxide, Sulfone, Synthese von Thiolen und Sulfiden (S_N) , Nucleophilie der Sulfide, Nucleophile Substitution mit Sulfonium-Ionen, S-Adenosylmethionin

8. Amine

Primäre, sekundäre und tertiäre Amine, Nomenklatur, Physikalische Eigenschaften, Basizität, Nucleophilie, Alkylierung, Ammoniumsalze, Amin-Synthesen (S_N, Gabriel, Nitrile, Azide), Acidität, LDA, Nitrosierung, Nitrosamine, Diazonium-Ionen

9. Alkene und Alkine

Stereoisomerie, *cis/trans*, *E/Z*, Nomenklatur, Cyclische Alkene und Alkine, Physikalische Eigenschaften, Thermodynamische Stabilität, Eliminierungsreaktionen (E1, E2), Regio- und Stereoselektivität, Hofmann-Eliminierung, E2 am Cyclohexan-Ring, Eliminierung zu Alkinen, Thermische

Eliminierungen, Ester-Pyrolyse, Cope-Eliminierung, Xanthogenate, Katalytische Hydrierung von Alkenen und Alkinen (Lindlar-Katalysator, Na/NH₃), Elektrophile Addition von Halogenwasserstoffen, Radikalische HBr-Addition an Alkene, Thiol-En-Kupplung, Hydratisierung von Alkenen, Oxymercurierung, Hydroborierung, 9-BBN, Industrielle MTBE-Synthese, Halogenierung von Alkenen und Alkinen, Stereochemie, Halogenalkohole, Regio- und Stereoselektivität der HOX-Addition, Epoxidierung, MCPBA, Epoxid-Öffnung, Ethylenoxid, Kronenether, Dihydroxylierung (KMnO₄, OsO₄), Ozonolyse, Carben-Addition (CCl₂) an Alkene, Phasentransferkatalysator, Polymere, Polymerisation (kationisch, radikalisch, Ziegler-Natta), Iso-, Syndio- und Ataktisches Polypropylen, Acidität terminaler Alkine

10. Aldehyde und Ketone

Nomenklatur, Physikalische Eigenschaften, Additionen an die Carbonylgruppe, Hydrate (Oxidation Aldehyd → Carbonsäure), Halbacetale, Acetale, Thioacetale, Imine, Oxime, Hydrazone, Wolff-Kishner-Reduktion, Enamine, Bisulfit-Addukte, Addition von Organometall-Verbindungen an Carbonylverbindungen, Grignard-Reduktion, Meerwein-Pondorf-Verley-Reduktion/Oppenauer-Oxidation, Synthese aus Alkoholen, Reduktion zu Alkoholen mit LiAlH₄ und NaBH₄, Reduktive Aminierung, Acetale als Schutzgruppen, Baeyer-Villiger-Oxidation, Acidität in der α -Position von Carbonylgruppen, Enolate, LDA, Alkylierung von Enolaten, Enamine (Stork), Keto-Enol-Tautomerie, Halogenierung von Carbonylverbindungen, Haloform-Reaktion, Aldol-Reaktion und -Kondensation, Knoevenagel-Kondensation, Mannich-Reaktion, Nitro-Aldol-Reaktion, Cannizzaro-Reaktion, 1,4-Addition an α,β -ungesättigte Carbonylverbindungen, (HSAB-Prinzip), Michael-Addition, Robinson-Anellierung, Anionische Polymerisation, Cyanhydrine, Benzoin-Kondensation, Wittig-Reaktion, McMurry-Reaktion, Schwefel-Ylide, Herstellung Aldehyde/Ketone durch Periodatspaltung, Hydratisierung von Alkinen, Pinakol-Umlagerung

11. Carbonsäuren und Derivate

Nomenklatur, Trivialnamen, Fettsäuren, Physikalische Eigenschaften, Acidität, Carboxylate, Phosphon- und Sulfonsäuren, Synthese von Carbonsäuren aus Alkoholen, Grignard-Reagenzien und Nitrilen, Nucleophile Substitution am Carbonylkohlenstoffatom, Reaktivität von Carbonsäurechloriden, -anhydriden, thioestern, -estern und -amiden, Esterbildung, -hydrolyse und -reduktion,

Reaktion von Estern mit Grignard-Reagenzien, Veresterung mit Diazomethan, Alkylierung von Carboxylaten, Umesterung, Vorkommen von Estern, Aromastoffe, Wachse, Fette, Verseifung, Seife, Herstellung Carbonsäurechloride (SOCl₂) und deren Reaktion mit Wasser, Alkoholen, Thiolen, Carbonsäuren und Aminen, Hilfsbasen bei der Amid-Synthese, Herstellung und Reaktivität von Ketenen, Reduktion von Säurechloriden zu Aldehyden (Rosenmund), Reaktionen von Carbonsäureanhydriden (Aspirin), Amidbildung, Bedeutung Amide, Amidbildung mit DCCI, Beckmann-Umlagerung, Hydrolyse von Amiden und Nitrilen, Ketone aus Nitrilen, Weinreb-Amide, Hofmann-Abbau von Amiden (Curtius, Schmidt), Arndt-Eistert-Kettenverlängerung, Alkylierung von Estern und Amiden, Kohlensäure-Derivate, Phosgen, Urethane/Carbamate, Harnstoff, Guanidin

12. Polyfunktionelle Carbonylverbindungen

Dicarbonsäuren, Malonsäure, Synthese, Decarboxylierung, Malonester-Synthesen, Anhydride, Polyamid (Nylon), Ketocarbonsäuren, Acetessigester, Claisen- und Dieckmann-Kondensation, Acetessigester-Synthesen, Brenztraubensäure, Synthese, Iminbildung, Hydroxysäuren, Synthese Mandelsäure, Milchsäure, Fischer-Projektion, *D/L*-Nomenklatur, H₂O-Abspaltung von β-Hydroxycarbonsäuren, Lactone, Lactide

13. Delokalisierte π -Systeme

Allylradikal, -kation, -anion, kumulierte und konjugierte Diene, Konformationen, Elektrophile Addition, Diels-Alder-Reaktion, Größere π -Systeme, Lichtabsorption, Carotinoide, Terpene

14. Aromaten und Heteroaromaten

Benzol, Bindungsverhältnisse, Nomenklatur, Reaktivität, Resonanzenergie, Hückel-Regel, Aromatizität und Antiaromatizität, Cyclobutadien, Cyclooctatetraen, Andere Aromaten $(2\pi, 6\pi, 10\pi, 18\pi)$, Elektrophile aromatische Substitution, Halogenierung, Nitrierung, Sulfonierung, Friedel-Crafts-Alkylierung und -Acylierung, Clemmensen-Reduktion, Gattermann-Koch-Reaktion, Vilsmeier-Reaktion, Zweitsubstitution, *ortho*-, *meta*- und *para*-dirigierende Substituenten, Seitenketten-Halogenierung (SSS, KKK), Seitenkettenoxidation mit KMnO₄, Spaltung von Benzylethern, Birch-Reduktion, Nucleophile aromatische Substitution, Additions-Eliminierungs-Mechanismus, Sanger-Reagenz, Eliminierungs-Additions-Mechanismus, Phenole, Acidität,

Kolbe-Reaktion, Reimer-Tiemann-Reaktion, Hock-Verfahren zur Synthese von Phenol, Hydrochinon/Chinon, Anilin, Basizität, Azo-Kupplung und Azo-Farbstoffe, Sandmeyer-Reaktionen

15. Aminosäuren, Peptide und Proteine

Strukturen von Aminosäuren, Physikalische Eigenschaften, Zwitterionen, Proteinogene Aminosäuren, Strecker-Synthese, Veresterung, Amidbildung, Ninhydrin-Farbreaktion, Struktur von Peptiden und Proteinen, Schreibweise, Nund C-Terminus, Primär-, Sekundär-, Tertiär- und Quartärstruktur, Synthese von Peptiden, Boc-Schutzgruppe

16. Kohlenhydrate

Photosynthese, Monosaccharide, Aldosen, Ketosen, Triosen, Tetrosen, Pentosen, Hexosen, Halbacetal-Form der Pentosen (Ribose) und Hexosen (Glucose, Fructose), Furanosen, Pyranosen, Anomeres Zentrum, Haworth-Formeln, α - und β -Anomere, Sesselkonformation der Pyranosen, Gleichgewicht zwischen α - und β -Anomeren (Glucose), Acetalbildung, Glycoside, Glycosidspaltung, Di- und Polysaccharide, Cellulose, Stärke, Cyclodextrine, Saccharose, *N*-Glycoside, Nucleoside, Nucleotide, RNA, DNA