Synthesis of Optically Active Dimethyl 3-Isopropylpimelate

OLDENBURG Julian Küppers,^[a] Nevenka Cakić,^[b] Ralf Rabus,^[b] Heinz Wilkes^[b] and Jens Christoffers^{*[a]}

[a] Institut für Chemie, [b] Institut für Chemie und Biologie des Meeres Universität Oldenburg, Carl von Ossietzky-Str. 9–11, D-26111 Oldenburg

An asymmetric synthesis of dimethyl 3-isopropylpimelate was accomplished in five steps from cyclohexenone. This compound is an important reference standard to study the anaerobic metabolic degradation of *p*-cymene by bacterial strain *A. aromaticum* pCyN1.

Microbiological Background

CARL

OSSIETZKY UNIVERSITÄT

A suggestion of the anaerobic degradation of *p*-cymene by bacterial strain *Aromatoleum aromaticum* pCyN1 is given in Scheme 1. After oxidation of the methyl group, a biological "Birch-type reduction" leads to the formation of a stereocenter in compound **3**. Its configuration is expected to be retained in the subsequent products **4a–7a**. Especially the β-alkylated pimelic acid **5a** seems to be a good system to explore the metabolic mechanism.^[1]

Scheme 1: The proposed anaerobic metabolic degradation pathway of *p*-cymene (1) by denitrifying betaproteobacterium *Aromatoleum aromaticum* pCyN1.^[1]

Comparison of Synthetic Compounds and Extract

The comparison of the synthetic standards **5c** with the extracted compound (after transesterification) from pCyN1 showed, that during the anaerobic metabolic degradation of p-cymene by pCyN1 only the (*S*)-enantiomer is formed (Figure 1).

Figure 1: Comparison of the synthetic standards **5c** with the culture extract from *A. aromatoleum* pCyN1 after transesterification by gas chromatography.

Asymmetric Synthesis

First step of the route to optically active title compound (R)-**5c** was the metal-catalyzed conjugated addition of a boronic ester to cyclohexenone (**8**) using a chiral phosphane-ligand followed by Claisen reaction. Retro-Claisen cleavage of the six membered ring lead to the pimelic acid derivative (R)-**5b**. The dimethyl ester (R)-**5c** was prepared *via* the acid chloride. In a similar manner we synthesized the enantiomer (S)-**5c**.

(R)-5c (R = Me) quant.

Scheme 2: a) Boronic ester, NEt₃, [Rh(cod)₂]BF₄, (*R*)-DTBM-SEG-PHOS, toluene–water 2:1, 60°C, 19 h; b) 1 atm H₂, PtO₂, EtOH, 23°C, 1.5 h; c) CO(OMe)₂, NaH, THF, 75°C, 20 h; d) Na, 1-pentanol, 145°C, 19 h; 2. H₂O, 23°C, 5 min; e) 1. SOCl₂, DMF, 23°C, 3 h; 2. pyridine, MeOH, CH₂Cl₂, 23°C, 19 h.

Further Organic Synthesis

In addition to the optically active title compound **5c** we have synthesized three more synthetic standards **4b**, **6b** and **7b** to support our proposed metabolic degradation pathway. Therefore the reduction of **6b** with NaBH₄ lead to three different diastereomers of the alcohol **7b** which could be eliminated *via* the brosylate to prepare the α,β -unsaturated ester **4b**. The fourth diastereomer of **7b** was obtained by epimerization at the 1-position with NaOMe in MeOH.

Scheme 3: a) NaBH₄, MeOH, 23°C, 2 h; b) 1. 4-BrC₆H₄SO₂Cl, pyridine, 23°C, 1 d; 2. NaNO₂, DMF, 90°C, 3 h; c) NaOMe, MeOH, 23°C, 1 d.

 J. Küppers, P. Becker, R. Jarling, M. Dörries, N. Cakić, M. Schmidtmann, J. Christoffers, R. Rabus, H. Wilkes, Chem. Eur. J. 2019, in press. (doi: 10.1002/chem.201805837).