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Abstract. Biological species do not represent independent units of analysis because
of the pattern of descent with modification through evolution. Although this fact has
been appreciated since at least the time of Darwin, it is only in the past 15 years
that biologists have increasingly appreciated the need to account for evolutionary re-
latedness in their analyses. However, phylogeny transcends pure biology to play an
important role in related fields. For instance, alignment programs like Clustal rely on
phylogenetic information in constructing their guide trees. Unfortunately, finding the
optimal phylogeny for a given data set, like most other interesting problems in com-
putational biology, is an NP-hard problem because the number of potential solutions
(tree space) grows super-exponentially with the number of taxa in the analysis. With
the rapid growth of phylogenomic data and thus the scope of the analyses based on
them, phylogenetic inference has also garnered increasing attention from computer
scientists eager to find fast solutions to this difficult problem. In this talk, I introduce
the problem of phylogenetic inference in general and discuss several optimization cri-
teria (parsimony, likelihood, and distance methods) and the strengths and weaknesses
of each for building evolutionary trees.
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1 Introduction

Evolutionary biology has been undergoing a renaissance recently, attracting renewed
interest from the scientific community over the past two decades and especially in
this, the bicentennial of the birth of Charles Darwin. Although the role of evolution
as the framework underlying all biology was finally cemented in the early 20th cen-
tury through the fusion of Darwinian evolution and Mendelian genetics (the Modern
Synthesis), the realization of the need to account explicitly for the evolutionary his-
tory of the organisms under investigation is comparatively recent [14,20]. Because
all organisms have a shared evolutionary history, similarities between any two species
can arise either through this shared history (phylogenetic inertia) and/or because of
a common selection pressure. As such, deciphering the relative roles of these two
respective causes of similarity requires knowledge of the phylogenetic relationships of
the organisms in question. This realization in the mid-1980s increased the profile for
phylogenetic systematics as a research field, with further fuel being added around the
same time by the molecular revolution. Thanks to tremendous advances in sequencing
technology, it was not only the case that phylogenetic trees were needed to perform
good biology, but also that large-scale data sets became available to help meet this
goal. Whereas typical morphology-based data sets continue to be only on the order of
a few tens to hundreds of species and characters, multigene data sets now commonly
include thousands of species and/or many tens of thousands of base pairs of DNA
sequence data (e.g., [4,30,36,46]).

But how do we make the jump from the data to the trees? What are the prob-
lems involved in this inference and what is the best method to obtain a phylogenetic
tree? As I will show, the fundamentally difficult problem that is finding the optimal
phylogenetic tree for a data set typically requires solutions that themselves are less
than optimal. In this lecture, I outline the basic hurdles that need to be overcome in
phylogenetic inference and outline several different schools of thought on how to find
the optimal tree. Despite their differences, these schools are all united in their desire
to describe natural groups, clusters pertaining to real evolutionary entities.

2 The basic problem — navigating tree space

The inherent limitation to phylogenetic inference, quite simply, is that there are too
many trees. Whereas there are only exactly three unique rooted, binary topologies
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Figure 1: All possible binary rooted trees for three (left) and four (right) taxa.

for three taxa, there are 15 for four taxa, and 105 for five taxa (Fig. 1). The numbers
become even larger when we do not require that each internal node in the tree have
only two descendants (i.e., are binary). In fact, the increase in the number of possible
topologies with the number of taxa is super-exponential. When restricted to binary,
rooted topologies (the kind of trees that biologists prefer to work with), the number
of trees for a given set of taxa (n) is [15]:

(2n —3)!

(2n—3) = =Ty 3x5xTx...(2n—3). (1)

As Table 1 shows, the number of possible tree topologies rises extremely quickly,
such that with only 67 taxa, the number of topologies is on the order of 10!, or
roughly the volume of the universe in cubic Angstroms (= 10~'%m). Given that these
values are a lower bound (trees need not be fully resolved and unrooted solutions
also exist), how can it ever be possible to find the best solution(s) for a given data
set? And, yet, evidence exists that even if we are not finding the absolute optimal
solution(s), we are usually finding trees that are probably only slightly suboptimal

(e.g., [24)).
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Number of taxa | Number of rooted binary trees
3 3

4 15

5 105

6 945

7 10395

10 34459425

50 2.75 x 1076

Table 1: Number of rooted, binary tree topologies for a given number of taxa
based on the formula from Felsenstein [15].

The philosophical answer to this problem is rooted in the principle of parsimony,
also known as Ockham’s Razor after the English Franciscan friar who formally de-
scribed it, William of Ockham (1285 — 1349). Ockham’s Razor states quite simply
that the preferred solution is the one that minimizes the number of ad hoc assump-
tions. In a phylogenetic sense, the simplest solution is the one that posits the fewest
number of evolutionary changes. It is far more parsimonious to assume that a shared
feature in two species arose once in the common ancestor of those species (= homol-
ogy) than independently in either lineage (= homoplasy). This assumption is both
in accord with the idea underlying evolution (namely descent with modification) and
also gives us a mechanism to infer clusters of closely related organisms on a tree.
Thus, through the principle of parsimony, we assume that hair evolved once in the
common ancestor of all ~ 5000 species of mammal and not several thousand times.
The presence of hair also serves as a character supporting the recognition of mammals
as a natural group. Conflicts do occur, however, and similar features can and have
arisen independently on multiple occasions. For instance, it is clear that wings have
evolved independently among several animal groups: insects, birds, pterosaurs, and
bats to name but a few. Revealing those features that are homologous from those that
are homoplasious requires the application of global parsimony over all characters to
find the tree topology that minimizes the number of instances of homoplasy (= ad hoc
assumptions). Using this approach, we could determine on the basis of a larger data
set, for instance, that hair is a shared homology of mammals, whereas the presence
of wings is homoplasious between mammals (bats) and the other groups listed. (But,
at the same time, this procedure will also enable us to determine that the presence
of wings within mammals represents a shared homology for the bats!)
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3 Finding the optimal tree

Ockham’s Razor, however, really just provides us with a criterion for assessing the
best tree. It does not provide a mechanism for actually finding that tree out of the
super-exponentially many that are possible for a given data set. Here, instead, we
need to rely on search strategies to find the path through tree space that leads to the
optimal solution.

For small data sets, exact solutions that guarantee finding the optimal tree for a
data set and any and all equally optimal trees are possible. The more direct solution
here is an exhaustive, brute-force method that explicitly searches every possible tree
topology. However, even with the recent increases in computer speed, the super-
exponential increase in the number of trees means that exhaustive searches can only
be performed on data sets with about 10 taxa at most (at least on a single desktop
PC).

A more sophisticated exact method is branch-and-bound [22], which is able to
preemptively discard unproductive paths through tree space. Branch-and-bound al-
gorithms essentially operate by establishing an initial path through tree space to a
particular tree. The optimality score of the tree is noted (the bound) and then other
paths to other trees are examined. Once the tree length along the new path exceeds
the stored bound, the path is aborted, regardless of whether or not a full tree has
been reached or not. Continuing along the path can only lead to an increasingly less
optimal solution. If, however, the new path does lead to a shorter tree in the end,
then the length of the latter is stored as the new bound. In any case, the procedure
repeats until all possible paths have been at least implicitly examined.

More precisely, the branch-and-bound method proceeds as follows. The different
paths are built up through the process of taxon addition such that the trees are grown
in a stepwise fashion. For the initial step, three taxa are chosen and joined together,
with the optimality score of this subtree noted. A fourth taxon is then added to one
of the three possible positions (effectively demonstrated in Fig. 1) and the score of
this subtree is stored. The procedure then repeats until all taxa have been added
in turn to yield a complete tree. The optimality score of this tree represents the
initial value of the bound. Thereafter, a new round of taxon addition begins (the new
path in tree space). If the length of any subtree in this process exceeds the current
bound, the process of taxon addition is aborted and the remainder of that path is not
examined: adding more taxa can only result in an increasingly less optimal solution.
Thus, depending on how well the initial bound is chosen, a branch-and-bound method
can quickly abort many unproductive paths up a tree and so be used on larger data
sets than can an exhaustive search. Even so, the upper bound here for such searches
is on the order of only about 20 taxa.

Beyond this point, there is no other option but to apply heuristic search strategies
that, although usually very effective, cannot guarantee that any or all optimal solu-
tions will be found. Most heuristic search strategies navigate tree space by perturbing
an initial starting tree (typically obtained via taxon addition as for branch-and-bound
searches except that each new taxon is added to its optimal position in the subtree)
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through some form of random branch swapping: a branch on the tree is pruned,
regrafted on to some other part of the tree, and the optimality scores of the two
respective trees are compared. If the new tree is more optimal than the old one, then
it is retained for additional rounds of branch swapping. Should it be less optimal,
then it is discarded and the initial tree is used again instead. The procedure contin-
ues until some preset limit has been obtained (e.g., time taken, number of equally
optimal solutions found, or number of branch swaps performed) or no more swapping
is possible.

As effective as this basic procedure can be, it also runs the real danger of becom-
ing stuck in regions that are only locally, and not globally, optimal. Most heuristic
algorithms apply a search strategy known as hill-climbing: new solutions can be re-
tained only if they are more optimal. Less optimal solutions are always discarded.
Thus, the solution obtained depends not only on the shape of tree space (e.g., is there
one clear peak or many?), but also on the starting point and the robustness of the
branch-swapping algorithm applied. Consider the following example. Say we want
to determine the highest point in Germany (the Zugspitze at 2962 m) using a simple
hill-climbing solution: we can only go up, not down. If we start near Garmisch-
Partenkirchen (elevation 708 m and already in the Alps close to the Zugspitze), then
we stand a good chance of obtaining a reasonably optimal solution, if not reaching
the top of the Zugspitze itself. If, however, we start in Oldenburg (elevation 4m),
we are likely to end up somewhere in the nearby Harz mountains (highest elevation
1141 m). Although these mountains are the highest point in the nearby countryside,
they are merely a local optimum and definitely not the highest point in Germany.

One way to improve our chances of escaping a local optimum is to increase the
degree of the tree perturbations that are performed, essentially enabling us to bridge
wider valleys between the hills. For instance, we could employ more robust forms of
branch swapping (see [52]). Whereas nearest-neighbour interchanges (NNI) can only
swap neighbouring branches (small steps), subtree pruning and regrafting (SPR) or
tree bisection and reconnection (TBR) can move entire clusters and to far removed
parts of the tree (large steps). This increased thoroughness (NNI moves being a
subset of SPR moves, which, in turn, are a subset of TBR moves) comes at the
price of (much) longer analysis times. Other solutions include algorithms like the
(parsimony) ratchet [38,55], which uses character reweighting to jump between peaks
in tree space, or any other of a host of new algorithms and shortcuts (e.g. [18,48]),
many of which represents contributions from the computer science community. In all
cases, it is helpful to begin many independent searches from different starting points,
thereby increasing the chances of starting the search close to Garmisch-Partenkirchen
and not Oldenburg.

4 Schools of phylogenetic thought

The history of phylogenetic research has been loud and controversial. Whereas early
disagreements dealt entirely with what the true set of relationships for a given group
were, later discussion has revolved around what the right methodology is to find this
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tree. The latter discussion gained steam in the 1960s with the English translation
of the book Phylogenetic Systematics [23] in which the German entomologist Willi
Hennig (1913 — 1976) set forth his ideas on how to conduct systematic research. These
ideas were readily adopted (albeit with some delay) by the phylogenetic school now
known as cladistics, who fought a long-running battle with the established school at
the time (phenetics) before essentially winning by the early 1980s. (For a fascinating
account of this entire period, see [27].) The victory, however, was short-lived because
of the vast increase in sequence-based molecular data fueling the rise of statistical
phylogenetics, which is now arguably the most commonly used method, at least for
the analysis of molecular sequence data. In this last section, I briefly examine each
of the three main schools, largely on the basis of the optimization criteria underly-
ing them to bring some background information to the debate of the best method, a
question with no clear answer. My focus will be largely on the application of these
methods to the analysis of molecular sequence data, by far the most commonly an-
alyzed data type today, although many of the same arguments still apply for other
forms of data (e.g., morphological data). More detailed information about the differ-
ent methods, including their implementations and mathematical foundations, can be
found elsewhere. T'wo excellent references here are the book Inferring Phylogenies by
Joe Felsenstein [13] or the German language book Gene und Stammbdume by Volker
Knoop and Kai Miiller [32].

4.1 Neighbour joining (phenetics)

The school of phenetics essentially holds that the phylogenetic relationships of or-
ganisms can best be revealed on the basis of their overall similarity: fish look like
other fish, birds like other birds, and mammals like other mammals. Again, this
tends to agree with our understanding of evolution and the process of descent with
modification causing more closely related organisms to be similar to one another phe-
notypically (and genotypically). The pheneticists of the 1950s and 1960s attempted
to apply this principle through an objective analysis of the entire phenotype (or at
least of as many characters as possible), thereby attempting to remove the subjective
selection and analysis of the data that had occurred before this point. Two of the
ultimate death blows to this form of phenetics, however, was that not all similarity
is in fact informative (see below) and that no single, objective optimization criterion
existed, with different criteria often giving different results.

Phenetics survives today in the form of distance methods, and neighbour joining
(NJ) in particular. These methods characterize the overall evolutionary distance
between two taxa, something that is easy to calculate with DNA sequence data for
a given model of evolution. Differences in the distances, however, cannot be traced
back easily to differences in the raw character data. Thus, we would only know that
the two taxon pairs A and B, and B and C are each separated by an evolutionary
distance of, say, 2, and not whether the differences characterizing A and B are the
same as those for B and C (in whole or in part).
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This loss of information, however, is counteracted by the speed of the distance
analyses, with NJ easily being the fastest of the major methods and able to analyze
huge data sets of several thousand taxa within hours, if not minutes, on an ordinary
desktop PC [26,34]. The exact details of the NJ algorithm can be found elsewhere
(e.g., in either of the Felsenstein or Knoop and Miiller books mentioned above) and, for
small trees, the NJ score is easily worked out by hand. Essentially, NJ is a heuristic
for finding the tree with the shortest total branch length (the minimum evolution
tree). Its speed (on the order of O(n?)) is therefore slightly deceptive compared to
the other methods. Unlike the other methods, NJ only engages in a single round of
taxon addition with no subsequent branch swapping. Thus, the method is both fast
and yields a single solution because it completely forgoes the arduous task of combing
tree space for increasingly optimal solutions. (Indeed, it is the intensive nature of
branch swapping that contributes in large part to making both maximum parsimony
and maximum likelihood NP-hard [17] problems [6,42]. However, tree building from
incomplete distance matrices is also NP-hard [9] and the use of distance methods does
not preclude branch swapping. If branch swapping is tacked on to the end of a NJ
analysis, it is referred to instead as a minimum evolution (ME) analysis, which does
attempt to find the tree with the shortest branch length.) For many, this fast, decisive
analysis has much to recommend it; however, it has been shown repeatedly that NJ
typically shows less accuracy than the remaining methods in recovering known model
trees in simulation [5,25,53]. The solutions are not necessarily bad in the absolute
sense, just not as good as those delivered by the other methods. The speed of NJ,
however, cannot be denied, and NJ is often used to generate fast starting trees upon
which to perform branch swapping in the other methods (e.g., the maximum likelihood
program PHYML [19)).

4.2 Maximum parsimony (cladistics)

One of the key insights by Willi Hennig was that not all similarity is accurate when
reconstructing evolutionary relationships. Lungfish look more similar to other fish
on the whole than they do to us, but they are still more closely related to us! (Put
another way, lungfish and humans exclusively share a more recent common ancestor
than either do with other fish.) The key is to distinguish between primitive similarities
inherited from a distant common ancestor (the general fish-like form of lungfish and
other fish) and derived similarities from the most recent common ancestor (lungs
and the skeletal morphology of the limbs in lungfish and humans). These two types
of similarity are referred to as symplesiomorphies and synapomorphies, respectively,
and only the latter are informative for defining clusters (= clades) on evolutionary
trees. As mentioned above, it was this realization that helped cladistics triumph over
phenetics, together with a lot of appeals to the philosophical soundness of cladistics
and Popperian hypothetico-deductive falsification in particular (see [1]).

Cladistic analyses employ maximum parsimony (MP) as the optimization crite-
rion, and the two terms have become so closely linked so as to have become virtually
inseparable today. MP, however, is nothing more than a direct application of Ock-
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ham’s Razor and by no means exclusive to cladistics. The objective function in this
case is to find the tree with the minimum number of evolutionary changes, thereby
minimizing the number of homoplasies.

Although MP has apparently performed well with morphological data (although
there has, until recently, been no alternative), its objective function has shown some
problems with molecular sequence data and its limited character state space. For
instance, DNA sequence data present only four character states, the nucleotide bases
A, C, G, and T. As such, even two species that are infinitely distantly related will
have DNA sequences that are about 25% similar on average, and these similarities
will generally be entirely homoplasious. MP, however, will often interpret such large
numbers of convergent similarities as homologies (the more parsimonious solution) and
so will tend to cluster taxa together that sit isolated on long branches, where there is
the strong likelihood for such convergent similarities to arise. This phenomenon, first
identified by Felsenstein [11] has been come to known as the long-branch attraction
(LBA) problem (for a review, see [3]). Worse yet, under conditions where MP is
susceptible to this problem, it is statistically inconsistent, meaning that increasing
the amount of sequence data in the analysis will only exacerbate the problem to
increase the chances of going astray [11]. Thus, where MP is susceptible to LBA,
using infinite amounts of data only guarantees getting the wrong answer!

Many of the problems exhibited by MP in this case also derive from it not being
able to fully incorporate a model of evolution for molecular sequence data (including
parameters such as base frequencies, transition probabilities between bases, or site-
to-site rate heterogeneity), which would help it to distinguish homoplasies as such.
Problems with LBA in MP analyses can be ameliorated to some degree by including
specific taxa designed to subdivide suspected long branches. However, suitable taxa
are not always available such that some taxa are always fated to sit problematically on
a long branch (e.g., many of the basal angiosperm taxa and Amborella in particular;
see [50]). Another potential solution is to delete fast-evolving sites beforehand (which
will contribute the most to LBA) and it is often argued that third-codon positions
for coding DNA sequences should be removed for this very reason (e.g., [56], but
see [29,45]).

The fact that MP does not include an explicit model of evolution has been hailed
as a philosophical advantage of the method by some (e.g., [44]) because it minimizes
the number of strong auxiliary assumptions being made. It also enables MP to be
used as an optimization criterion for most data types, be they morphological or molec-
ular. However, it has been shown through simulation that incorporating differential
transition probabilities for sequence data in a MP analysis via weighting schemes
does result in greater accuracy (e.g., [24]). In any case, the relative simplicity of the
objective function makes it comparatively rapid and efficient solutions also exist for
it (e.g., Fitch [16] and Farris [10] optimization for unordered and ordered characters,
respectively). Thus, as mentioned previously, the speed bottleneck for MP analyses
derives largely from the intensive nature of branch swapping needed for tree surfing
and not from determining the parsimony score for any given tree, which is only on the
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order of O(nm), where n = the number of taxa and m = the number of characters.

Practically, MP searches often bog down because many trees possess the same
parsimony score and so are equally optimal. Searching through and saving all these
alternatives, and there can often be hundreds of thousands, strains the memory ca-
pacity of most desktop PCs (not to mention taking a great deal of time), typically
causing the analysis to be aborted prematurely. Depending on the shape of tree space,
this phenomenon will often prevent the MP analysis from proceeding to find trees that
are increasingly optimal. This problem can be circumvented by reducing the number
of equally optimal solutions that are saved at any point in the analysis. However,
this is also not without its problems given that this strategy can prevent those few
equally optimal paths that point further up the hill from being examined. A more
sophisticated implementation of this idea is the parsimony ratchet [38], which through
its combination of random character reweighting and restrictions on the numbers of
equally optimal trees sampled causes the analysis to quickly visit more disperse points
in tree space and thus escape local optima.

4.3 Maximum likelihood and Bayesian inference (statistical
phylogenetics)

Likelihood has its roots in Bayes’ Theorem, developed by the British mathemati-

cian and Presbyterian minister Thomas Bayes (1701/1702 (?) — 1756) and published

posthumously in 1764:

P(D|H) x P(H)
P(D) ’

where D = the data (e.g., the multiple sequence alignment), and H = the hypothesis
(a given phylogenetic tree).

Pure maximum likelihood (ML) analyses largely concern themselves with the con-
ditional probability P(D|H) — how likely it is to see the data if the hypothesis is
true? — and attempt to find the tree that maximizes the likelihood of observing the
data. Both P(D) and P(H) are effectively ignored, the former being unknown in
most cases and the latter being assumed to be equal across all trees. As such, the
fundamental problem of phylogenetic analysis again pertains, namely finding those
solutions among the super-exponentially large number that exist that are optimal for
the given data set.

ML analyses add an extra computational wrinkle to this problem, however, be-
cause of their explicit model-based nature. Thus, the likelihood for a given tree
depends not only on the tree topology (as for MP), but also on the branch lengths for
a given topology (~ amount of evolution that has occurred), and the parameters for
the model of evolution. To make this problem somewhat tractable, several simplifying
assumptions are made. First, the existing models of evolution are stochastic. Second,
they are time reversible, meaning that it does not matter if sequence one evolves into
sequence two or vice versa. This assumption in particular enables the use of unrooted
trees, eliminating another parameter (the position of the root) from the calculations.
Third, most models assume that the evolution of different sites and different lineages

P(H|D) = (2)
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within the tree are independent. Certain models, however, can explicitly account for
potential non-independence among sites. One such model is the doublet model of
Schoniger and von Haeseler [43], which can account for nucleotide pairing (e.g., as
occurs in the stem regions of ribosomal sequences).

However, even with these simplifying assumptions, ML remains a daunting com-
putational problem because of the many parameters that need to be optimized in
addition to simply the tree topology. Even calculating the likelihood of a tree with
a fixed topology, fixed branch lengths, and fixed parameters for the chosen model of
evolution is more intensive than calculating the analogous parsimony score because
one needs to integrate over all possible combinations of nucleotides for all internal
nodes (only these data for the tips of the tree are normally known, these being our
observed sequence alignment) for each position in the alignment. Thus, both the
number of taxa and the number of characters in a ML analysis will impact on its
speed (whereas the latter was comparatively negligible for MP).

Interestingly, despite the much greater computational intensity of ML analyses
compared to other methods, recent implementations of the method such as RAxML
[47] or PHYML are faster than many MP implementations. This is especially true
when compared to the program PAUP* [51], which, despite being the workhorse for
MP analyses, uses search algorithms that are at least seven years old. The speed of
these ML implementations is due in part to the use of dirtier search heuristics (e.g.,
the first versions of PHYML only used NNI branch swapping) plus various tricks from
the computer science community to speed up the likelihood calculations or to reduce
the memory footprint of the program. Thus, ML analyses of thousands of taxa on an
ordinary desktop PC are now feasible, if one is prepared to wait a little bit. Even more
remarkably, support values for trees of the same dimensions can also be calculated
relatively efficiently [2,48].

Related to ML is Bayesian inference (BI), which, unsurprisingly, is also based on
Bayes’ Theorem. Key differences with ML include BI focusing instead on the left-hand
side of Bayes’ Theorem (i.e., the posterior probability P(H|D)) and also its imple-
mentation via Markov chain Monte Carlo (MCMC) methods (see the contribution by
Katzgraber in this volume [31]). Thus, instead of attempting to find the tree pro-
viding the highest likelihood, BI seeks to find those clades with the highest posterior
probabilities. However, doing so now requires some knowledge of P(H), the so-called
prior probabilities that are ignored in ML analyses. Priors can be defined for almost
any variable relevant to the analysis: tree shapes allowed, model parameters such as
transition probabilities or base frequencies, or the probability of any single tree, to
name but a few. These priors are usually defined based on previous knowledge and
experience and are generally not fixed such that they can change during the analysis.
They also have a markedly reduced influence in larger data sets, where they tend
to be overruled in favour of the actual observations (i.e., the sequence alignment).
Practically, however, the defining of priors tends to be a strong assumption that most
biologists shy away from, such that flat (also known as Dirichlet) priors are usually
used, essentially mimicking ML analyses where P(H) is assumed to be equal among
all alternatives.
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Another important difference in most BI implementations is that they do not
search for the tree with the highest posterior probability, but instead sample from the
stable posterior distribution of nearly optimal trees to determine individual clades
with the highest posteriors (i.e., those that appear in the distribution the most often).
This procedure then yields a tree that automatically provides support values for
the individual nodes, namely their posterior probabilities. This sampling strategy,
however, cannot operate using a classic hill-climbing strategy, which is geared to
find the peak only. BI instead wants to wander around the peak and so requires a
mechanism enabling it to occasionally go downhill as well. It doesn’t want to wander
too far down the hill and away from the posterior distribution, however, and so only
accepts less optimal trees with a probability proportional to the ratio of the difference
in likelihood between the two trees being tested. A common implementation of this
strategy in an MCMC framework is the well-known Metropolis-Hastings algorithm
[21,37].

BI has grown increasingly popular for phylogenetic inference because of the power
and flexibility of the approach, combined with an excellent, full-featured implemen-
tation in MrBayes [40]. BI also appeals to biologists in that it automatically provides
many hundreds and thousands of trees (those sampled from the posterior distribu-
tion), thereby providing an estimate of the phylogenetic uncertainty surrounding the
main hypothesis that can be incorporated into subsequent analyses using the tree as
a framework. (One must add, however, that similar estimates could easily be ob-
tained for the other methods as well through methods such as the non-parametric
bootstrap [12].) A fundamental problem in BI remains that there is no objective
method to determine when the analysis has reached the stable posterior distribution,
a point known as stationarity or convergence. The Metropolis-Hastings algorithm
will reach this point after an infinite number of generations, but few people are will-
ing to wait that long for the results. Fortunately, MrBayes and a number of other
programs incorporate several robust diagnostics to help determine when convergence
has likely been achieved. In the end, however, the best strategies still remain to run
the analyses for longer (e.g., many millions of generations depending on the size and
complexity of the data set) and then in parallel (so-called multiple chain MCMC or
MC3). The latter suggestion is based on the reasoning that it is unlikely that two
fully independent runs will end up in the same region of tree space unless this region is
the posterior distribution. Whether or not this logic is absolutely true remains to be
shown (and is probably data set dependent), but it is similar in spirit to performing
multiple runs in a pure hill-climbing strategy to increase the likelihood of reaching
the global optimum.

5 Conclusions

Phylogenetic analysis remains a field in a state of flux and one that has seen great
methodological advances in the past decade. As mentioned in the Introduction, many
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of these advances derive from the increasing input of computer scientists, who have
built upon the earlier work of several pioneering, computer literate biologists and/or
mathematical biologists. The rise of DNA sequence data as the premier data source for
phylogenetic analysis has also played a role, with it presenting a much more interesting
and tractable problem for the computer scientists. Likelihood models also exist for
non-sequence data (e.g., [33,54]) and, most recently, for combining tree topologies in
a supertree framework [49], but have failed to generate the same kind of interest and
widespread usage.

These advances, however, have only made biologists hungry to infer even larger
phylogenetic trees. Whereas trees with hundreds of taxa were remarkable at the turn
of the century, trees with thousands of taxa are becoming increasingly common, and
the data potentially available in databases like GenBank (www.ncbi.nlm.nih.gov)
offer the promise of even larger trees. Solving problems of this scale will require,
in the first instance, ever more efficient implementations of existing methods. For
instance, by relying on the construction of nodal profiles instead of building a tra-
ditional distance matrix, the ME program FastTree [39] was able to infer a tree for
186743 aligned sequences from the GreenGenes database of 16S rDNA sequences [7]
in only 29 hours (albeit relying on NNI moves only).

However, in solving such problems, it will also be important to develop new search
strategies in addition to using faster implementations on faster computers or larger
computer clusters. A potential solution here is a divide-and-conquer strategy, which
splits the large global problem into several smaller problems that are computation-
ally more tractable, both because they are smaller and because they are of a more
restricted phylogenetic diameter (i.e., comprise sets of more closely related species).
The latter consideration potentially combats an emergent property of extremely large
data sets, namely that it becomes increasingly difficult to align sequence data across
increasingly distantly related organisms. Although early results using divide-and-
conquer approaches have been promising (e.g., [5,41]), the speed and accuracy in-
creases that have been observed to date have not been as impressive as was hoped.
As such, the approach has yet to find favour among phylogeneticists, who have instead
turned more to parallel computing as a solution for the analysis of large phylogenetic
data sets.

A final consideration is that the Tree of Life most phylogeneticists have long
been striving to infer might actually not be very tree-like at all for many groups.
Instead, reticulate processes such as horizontal gene transfer or hybridization cause
the tree to resemble a network. This is particularly true for groups such as Prokaryota
(which is likely not a natural group), which display rampant horizontal gene transfer,
even between distantly related species [8,35]. Fortunately, a strict tree-like structure
(whether fully resolved or not) merely represents a special case of a network and the
past decade has seen increasing interest into developing methods to infer phylogenetic
networks (see [28]).

All told, the present day represents an exciting time for phylogenetic systematics,
with the promise of new data, new methods, and especially new insights into the phy-
logenetic history of life. If the tremendous developments in phylogenetic methodology
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of the past decade carry on into the near future, then we might very well soon be able
to derive a robust vision of the “Tree” of Life.
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