HISTORICAL CONSENSUS THROUGH SUPERTREE ANALYSIS

Olaf R. P. Bininda-Emonds

pERHAPs NO QUESTION in mammalian
systematics has engendered such long-term
controversy and uncertainty as the phylogenetic
placement of the giant panda (Ailuropoda
melanoleuca). Although its formal introduction
to Western science placed it as a member of the
bear family (Ursidae) (David 186g9), similarities
to the lesser or red panda (Ailurus fulgens) and,
by extension, raccoons and allies (Procyonidae)
were quickly noted (Milne-Edwards 1870). Since
that time, a variety of evidence has been used to
ally Ailuropoda with ursids, procyonids, or Ailu-
rus (either within the previous two families or as
the separate family Ailuridae), or to placeitina
family by itself (Ailuropodidae). Fueled largely
by molecular evidence, there is perhaps finally a
growing consensus that Ailuropoda represents
the sister group to the remaining ursids.

In this chapter, I approach the question of
panda phylogeny from a historical perspective to
examine trends in the placement of Ailuropoda
through time. My work follows on from that of
O’Brien et al. (1991), although it differs in two
key respects. First, I employ a phylogenetic rather
than a taxonomic perspective. The taxonomic
status of any species is highly subjective (e.g., is

Ailuropoda “sufficiently distinct” to justify being
placed in its own family?), whereas a study of
its phylogenetic or sister-group relationships is
much more objective and concrete. Second,
through the use of supertree construction (sensu
Sanderson et al. 1998), 1 am able to infer the
consensus estimate of the affinity of Ailuropoda
for any given time period. Thus, I can demon-
strate how consensus opinion has shifted over
time and by how much. This resembles work
done previously with Ailurus and the pinnipeds
(Bininda-Emonds 2000a). Because Ailurus has
played a critical historical role in the controversy
surrounding the origin of Ailuropoda, I also per-
form similar analyses for it here.

ISSUES OF EVIDENCE
AND CONVERGENCE

The uncertainty surrounding the placement of
Ailuropoda derives from the numerous similar-
ities that it shows to each of ursids, procyonids,
and especially to Ailurus. In fact, were it not for
the existence of the procyonid-like Ailurus, the
acceptance of Ailuropoda as an ursid would likely
be considerably less—if at all—in dispute. The
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TABLE 1.1
Shared Features between Ailuropoda and Ursids, Procyonids, and Ailurus

FEATURE OF AILUROPODA

URSIDAE

PROCYONIDAE AILURUS

Morphology
Size and gross morphology
Skull robustness
Brain morphology
Auditory region and ossicles
Epipharyngeal bursa
Ridges on hard palate
Dentition (especially massive size)
Skeletal robustness
Specialized sesamoid on forepaw
Respiratory tract
Intestines (shorter and less complex)
External (soft) morphology
Genitalia
Coloration
Hair structure

Molecular
Karyotype
Serology/immunology
Sequence data

Behavioral
Vocalizations
Life history traits
Scent marking (and glands)
Feeding behavior
Mating behavior

Other
Fossil affinities

- +

? (unique)
+

? (unique)

|
+ + + v+

+

NOTES: A plus sign indicates that the feature is similar between the two taxa. A minus sign indicates that the feature has been
used to argue against a relationship between the two taxa, even if Ailuropoda does not share the feature with another taxon.

key lines of evidence used to infer the ancestry
of Ailuropoda historically are given in table r.1.
The majority of evidence, both morphological and
molecular, allies Ailuropoda with ursids. Fossil
evidence, particularly the inferred close relation-
ship with the Pliocene fossil ursid Hyaenarctos
(now included in Agriotherium, a member of
the extinct sister group to ursids) (McKenna and
Bell 1997; Hunt, chapter 3), also unanimously
indicates an ursid origin.

In one of the most thorough and impressive
comparative morphological investigations for
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any species, Davis (1964: 322) declared that “every
morphological feature examined indicates that
the giant panda is nothing more than a highly
specialized bear.” However, a few morphological
features have been used to argue against such a
relationship, even if they do not indicate a rela-
tionship with either procyonids or Ailurus (“neg-
ative evidence”; see below and table 1.1). These
include the greater than expected robustness of
the skull, skeleton, and dentition of Ailuropoda
for an animal of its size (Morris and Morris

1981).



Virtually all molecular evidence points to
an ursid affinity for Ailuropoda (Waits, brief re-
port L.1). Only the karyotype is equivocal. In its
diploid number, Ailuropoda (2 N= 42) resembles
procyonids (e.g., 2N = 42 for Procyon lotor) and
Ailurus (2N = 44) more so than ursine bears
(2N =74). Although this observation is correctly
attributed to Newnham and Davidson (1966),
the attendant implication of procyonid ancestry
is not. Newnham and Davidson (1966: 161) ex-
plicitly pointed out that large differences in karyo-
types and diploid numbers occur within such
families as Canidae (dogs) and that the evidence
merely indicates Ailuropoda to be a different
species from ursine bears. They added that the
number of chromosomal arms (“nombre fonda-
mental”) might be a more informative measure
in this regard. Along these lines, O’Brien et al.
(1985) discovered that, although Ailuropoda pos-
sesses a procyonid-like diploid number, the band-
ing patterns of its chromosomes are virtually
identical to those of ursine bears. Together with
other molecular evidence, they persuasively ar-
gued that Ailuropoda is related to ursids and that
its reduced diploid number is a result of exten-
sive chromosomal fusion in the past (see also
Nash et al. 1998). It is noteworthy that similar,
albeit independent, fusions have been inferred
to explain the karyotype of the spectacled bear
(Tremarctos ornatus) (2N = 52) {Nash and O’Brien
1987; Nash et al. 1998).

Finally, behavioral characteristics strongly
group the two panda species together. Only life
history traits are similar between Ailuropoda
and ursids (Garshelis, chapter 4). Otherwise, Ail-
uropoda resembles Ailurus in its unusual scent-
marking behavior and in its mating and feeding
behaviors. The latter is the most remarkable,
with both pandas being renowned for the ability
to manipulate precisely their herbivorous food
items, although only Ailuropoda possesses an
enlarged sesamoid that acts as an analog of an
opposable thumb.

Researchers have sought to make sense of
the conflicting signals within the phenotypic
evidence (i.e., morphological and behavioral data)
through one of two evolutionary scenarios. The

first holds that Ailuropoda is an ursid that has
shifted to an almost exclusively herbivorous diet
(the so-called “bear school”). This scenario ac-
counts for such features as the more robust
dentition as being obvious (convergent) adapta-
tions for herbivory. The second holds that Ail-
uropoda is instead derived from a small herbi-
vore, typically with procyonid affinities, that has
converged secondarily on a larger bearlike body
plan (the “raccoon school”). The greater than
expected robustness of the skull and skeleton
has been used as evidence of rapid growth in the
lineage leading to Ailuropoda (Morris and Mor-
ris 1981). The raccoon school in particular has
relied on the negative evidence found in table 1.1
in combination with behavioral information.
Proponents of the raccoon school concede
that the majority of evidence places Ailuropoda
with ursids (e.g., Ewer 1973; Morris and Morris
1981). In supporting a nonursid origin, they in-
stead argue that the fewer features that cluster
Atluropoda with either procyonids or Ailurus rep-
resent evolutionary novelties that are more diffi-
cult to envisage evolving on multiple occasions
(Ewer 1973; Morris and Morris 1981). Similar
reasons have been used to cluster megachirop-
teran bats with primates on the basis of a shared
optic network and other neural features, in spite
of an overwhelming number of similarities,
mostly related to flying, with microchiropteran
bats (Pettigrew 1986, 1991). An extension of this
general argument is that organisms with a sim-
ilar body plan are more likely to develop conver-
gently evolved features, given similar selective
regimes. This argument was used to explain
why the two main groups of pinnipeds (true seals
versus sea lions and walruses) were so similar
morphologically, despite formerly being believed
to have separate ancestors (McLaren 1960;
Mitchell 1967; Repenning 1990). This conclu-
sion is now held to be false (Wyss 1987; Vrana
et al. 1994; Bininda-Emonds et al. 1999). With
respect to Ailuropoda, the full argument is that
its overall similarity with ursids applies only to
features that are phenotypically plastic or that
are expected to show a greater degree of conver-
gence in regponse to similar selection pressures,
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possibly due to the inheritance of a common,
primitive, arctoid body plan (Ewer 1973; Morris
and Morris 1981).

The issue is not easily resolved. Molecular
evidence has played a valuable role, because con-
vergence at this level is unlikely to mirror that
at the morphological level. However, problems
remain within a purely morphological domain.
Character weighting continues to be a contro-
versial area in phylogenetic systematics, with no
clear guidelines. Presumably, the use of as much
evidence as possible, both morphological and
molecular (“total evidence”) (sensu Kluge 1989),
is the key to resolving this issue. Itis widely held
that the best phylogenetic inference is the one
supported by the most independent lines of evi-
dence (Mickevich 1978; Farris 1983; Penny and
Hendy 1986; Kluge 1989; Novacek 1992; De Jong
1998). So long as homoplasy, of which conver-
gence is one form, remains relatively rare and
randomly distributed both among features
and the relationships it infers (see Sanderson and
Hufford 1996), the true phylogenetic history will
be reflected in the majority of features. Thus, sur-
veying as many features as possible in a cladistic
framework (to distinguish shared primitive and
shared derived features) (Hennig 1966) should
be sufficient to overrule any instances of con-
vergence, however improbable they might seem.

METHODS

To examine the affinities of both panda species
through time, I surveyed the systematic litera-
ture from the description of Ailuropoda by David
(1869) to the present. In total, 105 studies pre-
sented evidence on the position of either Ailuro-
poda or Ailurus; this list is not exhaustive. A break-
down of the studies according to data source and
whether they provided phylogenetic information
about Ailuropoda, Ailurus, or both is provided in
tables 1.2 and 1.3.

DATA

Information from the literature was analyzed in
one of two ways. These methods differ with re-
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spect to whether panda relationships were ex-
amined in isolation or not. The first method
assessed simple statements of phylogenetic affin-
ity of the form “Ailuropoda is most closely related
to. . .. ” To summarize this information quanti-
tatively, I derived a simple affinity metric. State-
ments advocating an ursid origin were scored
arbitrarily as 1, those advocating a procyonid
origin as —I. If ursids or procyonids formed the
sister group, but not the immediate sister group
to either panda species (an “extended” relation-
ship), scores of 0.5 and —o.5 were given, respec-
tively. When neither ursids nor procyonids could
be said to be more closely related than the other,
a score of o was given, regardless of the identity
of the inferred sister group. This includes the
case for which the pandas were held to be one
another’s closest relatives. For any set of studies,
the average value of the metric varies between —1
and 1, with more positive values indicating in-
creasing ursid affinity and more negative values
indicating increasing procyonid affinity. Values
tending to zero indicate a relationship to neither
group, whether due to conflicting opinions and/
or an inferred relationship to another carnivore
taxon.

The second method used the supertree con-
struction method of matrix representation with
parsimony analysis (MRP) (Baum 1992; Ragan
1992) to maintain the context of all other carni-
vore taxa mentioned in the source study. In this
way, a consensus of carnivore phylogeny at any
given time could be obtained, something that is
possible only through supertree analysis. Combi-
nation of the primary data (total evidence) (sensu
Kluge 1989) requires that these data be available
and compatible. For many studies, particularly
the older ones, the primary data were either not
provided or were given simply in the form of a
statement of phylogenetic affinity. Data types
were also incompatible, meaning that they could
not be analyzed simultaneously using a common
algorithm. Combination of the source tree topolo-
gies using various consensus techniques (“taxo-
nomic congruence”) (sensu Mickevich 1978) was
also impossible, due to the requirement that all
source trees possess the same set of species.
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TABLE 1.3
Number of Studies Providing Statements of Phylogenetic Affinity for Ailuropoda and Ailurus,
or Providing Source Trees for the Supertree Analysis

PHYLOGENETIC AFFINITY SUPERTREE ANALYSIS

Ailuropoda 90 71
Ailurus 79 76
Either panda species 105 80
Both panda species 72 64

Total 105 116

SOURCES: Thirty-six source trees that do not mention either Ailuropada or Ailurus were included in the su-
pertree analysis to give a better estimate of the family level relationships within Carnivora. Additional source
trees were obtained from Gregory and Hellman (1939), Sarich (1969a,b), Seal et al. (1970), Hunt (1974),
Radinsky (1975), Tedford (1976), Arnason (1977), Hendey (1978), Ling (1978), Schmidt-Kittler (1981), Dutril-
laux et al. (1982), Flynn and Galiano (1982), Goodman et al. (1982), De Jong (1986), Wyss (1587), Holmes

(1988), Rodewald et al. (1988), Ahmed et al. (1990), Nojima (1990}, McKenna (1991), Janczewski et al.
(1992), Arnason and Ledje (1993), Garland et al. (1993), Hunt and Tedford (1993), Veron and Catzeflis
(1993), Berta and Wyss (1994), Hunt and Barnes (1994), Masuda and Yoshida (1994), Slade et al. (1994),
Arnason et al. (1995), Austin (1996), Bininda-Emonds and Russell (1996), Werdelin (1996), and Ortolani

(1999)-

In contrast, MRP can combine phylogenetic
information from any study, be it in the form of
a tree or a simple statement, by coding it as a
series of binary elements. These elements are
then combined into a single matrix that is ana-
lyzed using parsimony to derive a tree that best
summarizes the hierarchical information in the
set of source trees. Briefly, each node from every
source tree is coded in turn as follows: if a given
species is descended from that node, it is scored
as 1; if it is not, it is scored as o. Species that
are not present in a particular study, but are
present in others, are scored as ? for that par-
ticular study (figure 1.1) (Sanderson et al. 1998§;
Bininda-Emonds 2000Db). In this way, supertree
construction can combine studies examining
different sets of species. Simulation studies show
that MRP is as accurate as total evidence in cases
in which both methods can be applied (Bininda-
Emonds and Sanderson 2001).

Matrix representations for all source trees
were constructed by eye. Supertree analysis used
PAUP* version 4.ob2 (Swofford 199g). Searches
always used the exact branch-and-bound algo-
rithm, thereby guaranteeing that all of the most
parsimonious solutions for the data were found.

20 QLAF R. P. BININDA-EMONDS

The supertree was the strict consensus of all
equally most parsimonious solutions. Differen-
tial support for the relationships within a super-
tree was quantified using the Bremer decay in-
dex (Bremer 1988; Killersjs et al. 1992), because
the bootstrap is inappropriate due to character
nonindependence (Purvis 1995). The Bremer
decay index measures the number of additional
steps over the most optimal length before a node
of interest is contradicted. Nodes that remain in
the strict consensus solution of increasingly
suboptimal trees are not readily contradicted
and are therefore inferred to have more support.

SLIDING WINDOW ANALYSIS

To view changes in phylogenetic opinion over
time, I employed a sliding window approach to
time series analysis. Specifically, the data sources
were arranged in ascending chronological order
and secondarily by author name in ascending
alphabetical order. Contiguous, overlapping sets
of data sources (e.g., sources 1-10, 2—11, 3~12)
were then analyzed.

For statements of phylogenetic affinity, I cal-
culated the average value of the affinity metric
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FIGURE 1.1. Basic procedure of supertree construction using matrix representation with parsimony (MRP).
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FIGURE 1.2. Backbone constraint trees used for the supertree analyses in PAUP*, forcing Ailuropoda or Ail-
urus into a sister group relationship with either ursids or procyonids.

for windows that were either five or ten studies
in size. The overall consensus opinion at any
given point in time was also obtained from the
curnulative average of the affinity metric for all
studies thus far included.

For the supertree analyses, the window size
was fifteen studies. I used the affinity metric to
summarize the placement of both Ailuropoda
and Ailurus in the supertree of each window. 1
also examined the support for these inferred
placements by using backbone constraint trees
(see Swofford 1999) to force PAUP* to search
only for solutions in which each panda species
was more closely related to ursids than to pro-
cyonids and vice versa (figure 1.2). Support for
these alternative placements was quantified by
how much less parsimonious they were than

PHYLOGENETIC POSITION OF THE GIANT PANDA

the optimal length for that window. Unlike the
Bremer decay index, higher values in this case
indicate decreasing support for the constrained
placement.

RESULTS
TYPES OF EVIDENCE

Unsurprisingly, morphological evidence domi-
nates until the late 1970s (see table 1.2). There-
after, molecular data come to bear increasingly
on the question of panda relationships, either
alone or in concert with morphological evidence
(total evidence). From the late 1980s, the phylo-
genetic placement of either Ailuropoda or Ailu-
rus has been examined using molecular data
almost exclusively. Behavioral information has
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TABLE 1.4
Summary of Statements of Phylogenetic Affinity for Ailuropoda and Ailurus

NUMBER OF STUDIES

SISTER GROUP AILUROPODA AILURUS
Ursidae 57 12
Other panda species within Ursidae 4 4
Total 61 16
Procyonidae 11 41
Other panda species within Procyonidae 7 7
Total 18 48
Other panda species 3 3
Other panda species within Ursidae or Procyonidae 11 11
Total 14 14
Unresolved or other 8 4

only been used sporadically throughout the sur-
vey period.

STATEMENTS OF PHYLOGENETIC AFFINITY

Taken together, all statements of phylogenetic
affinity strongly place Ailuropoda and Ailurus
within separate carnivore families (table 1.4).
Roughly two-thirds of the ninety studies men-
tioning Ailuropoda cluster it with ursids, whereas
a slightly smaller fraction of the seventy-nine
studies for Ailurus place it with procyonids. The
two panda species were held to be one another’s
closest relative only fourteen times, and usually
within either Ursidae or Procyonidae. These
observations are captured by the affinity metric.
Over all studies, Ailuropoda possesses a value of
0.48, whereas Ailurus shows a value of —0.41.
The sliding window analysis demonstrates
that these overall opinions are largely reflected
in any time window since 1869 (figure 1.3). The
trends are roughly identical for windows of
either five or ten studies in size, although the
former unsurprisingly displayed slightly greater
fluctuations. Except for two occasions, Ailuro-
poda is always inferred to be more closely related
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to ursids on average. This is especially true from
the late 1980s on, when all windows unequivo-
cally indicate Ailuropoda to be a member of the
Ursidae. Procyonid or uncertain affinities for Ail-
uropoda are only obtained sporadically across a
relatively broad period from the 1940s to the
mid-1970s, and a single instance around the
mid-198os. Ailurusis usually firmly held to have
procyonid affinities, although the windows tend
toward o (i.e., unresolved or other affinities) with
time. In the 1990s, many windows indicate Ail-
urus to have ursid affinities. However, the most
recent windows again cluster Ailurus more closely
with procyonids.

These same trends are also evident when
statements of phylogenetic affinity are viewed
cumulatively (figure 1.4). Even during an initial
period of uncertainty (marked by large fluc-
tuations), the weight of all opinion up to a given
time almost always has Ailuropoda more closely
related to ursids than to procyonids. Moreover,
this opinion is generally strengthening with time,
particularly from the mid-1980s, as the line
moves to more positive values. In contrast, Ail-
urus is always held as being more closely related
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FIGURE 1.3. Sliding window analysis of statements of phylogenetic affinity for (A) Ailuropoda and (B} Ailu-
rus, using the affinity metric discussed in the text. Approximate time spans of the windows are given on the
x-axis. The dotted extensions apply to the windows of ten studies only. The overall averages for all studies

were 0.48 for Ailuropoda and —o.41 for Ailurus.
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FIGURE 1.4. Cumulative values of statements of phylogenetic affinity for Ailuropoda or Ailurus using the

affinity metric discussed in the text.

to procyonids. Again, this placement is becom-
ing slightly more uncertain with time, as the line
tends toward less negative values.

SUPERTREE ANALYSIS

The sliding window analysis of consensus super-
trees, in which the positions of the panda species
were put in the context of higher-level carnivore
relationships, largely identified the same trends
as noted above (figure 1.5). The only area of
disagreement exists before 1950. During this
period, both panda species show identical place-
ments, either (1) not distinctly related to either
ursids or procyonids or (2) as the sister taxon to
procyonids plus some other carnivore taxon.
Although this disagreement mirrors the sliding
window analysis of phylogenetic statements for
Ailuropoda, it weakly contradicts the analogous
findings during this time that held Ailurus to
be more closely related to procyonids (see fig-
ure 1.3B; but see below). After the 1950s, super-
trees in virtually every window place Ailuropoda
as the sister group to ursids. Ailurus meanwhile
is usually clustered with procyonids, except for
periods in the 1980s and 199o0s, when it clusters
distantly with ursids or its placement is equivocal

OLAF R. P. BININDA-EMONDS

24

between ursids and procyonids. On the whole,
81.0% of the windows in figure 1.5 placed Ailuro-
poda more closely with ursids, whereas 81.9%
placed Ailurus more closely with procyonids.
Support for an ursid versus procyonid relation-
ship for each panda species is given in figure 1.6.
For Ailuropoda, an ursid affinity is usually the
more parsimonious solution, particularly from
the mid-1980s onward. A sister group relation-
ship with procyonids is more parsimonious only
before 1950 and for a brief time during the mid-
1980s. The reverse is true for Ailurus: a pro-
cyonid affinity is usually the more parsimonious.
This includes the period before 1950, indicating
that Ailurusalso clusters equally parsimoniously
with other nonursid carnivore groups to pro-
duce the unresolved result seen in figure 1.5, It
is only during the late 1980s to mid-r9gos that
an Ailurus-ursid pairing is the more parsimo-
nious. The placement of Ailurusis also generally
more uncertain than that of Ailuropoda. The dif-
ference in the length of the competing topolo-
gies for Ailurus (maximum = 7.9%) is typically
much less than those for Ailuropoda (maximum
= 14.8%), revealing that placements of Ailurus
are not as strongly supported. Moreover, whereas
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FIGURE 1.5. Sliding window analysis of supertrees to examine the inferred sister groups of Ailuropoda and

Ailurus, as quantified using the affinity metric discussed in the text.

the length difference is increasing for Ailuropoda
with time (indicating increasing certainty), it is
decreasing slightly for Ailurus.

The supertree obtained from all 116 source
trees is completely resolved (figure 1.7). The high
values for the goodness-of-fit measures the con-
sistency index (CI), the retention index (RI), and
the rescaled consistency index (RC) (see Farris
1989) indicate generally good agreement among
the source trees. There is strong support for a
sister group relationship between Ailuropoda
and ursids. Ailurus clusters with procyonids, but
this is comparatively weakly supported. Super-
trees obtained for each of the major data sources
used (morphological, molecular, and total evi-
dence; figure 1.8) also place Ailuropoda with ur-
sids. Again, support for this placement is strong,
but comparatively higher for the molecular and
total evidence supertrees. The different data
sources indicate different affinities for Ailurus:
as the sister group to procyonids (morphologi-
cal) or musteloids (mustelids plus procyonids;
molecular), or unresolved within arctoids (total
evidence). Except for the morphological super-

tree, support for each placement is compara-
tively weak within each supertree.

DISCUSSION

Despite being one of the most celebrated cases
of controversy in mammalian systematics, vir-
tually all lines of evidence hold Ailuropoda to be
more closely related to ursids than it is to pro-
cyonids. Moreover, such a placement is favored
relatively consistently through time and by each
of morphological and behavioral (i.e., pheno-
typic), molecular, and total evidence studies. This
arrangement enjoys strong support at most times
and has not been contradicted since the mid-
1980s. Little doubt should now remain that Ail-
uropoda is the sister group to the true bears.
Instead, despite receiving much less atten-
tion due to a greater apparent consensus, it is
the position of Ailurus within carnivores that is
much more doubtful. Although it is usually held
to have procyonid affinities at any given period
since 1869, the strength of this inference is
comparatively weak and perhaps decreasing with
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time. Only morphological studies provide rea-
sonable support for this arrangement. Instead,
several recent, mostly molecular studies propose
an ursid affinity for Ailurus and many others are
equivocal on the matter (see table 1.2). As such,
the position of Ailurus is perhaps less clear now
than at any time in the past. Much of this may
derive from other evidence that indicates Ailurus
to be the last surviving member of a relatively
ancient lineage, one that may extend close to the
origins of the major arctoid lineages (Sarich 1976;
O’Brien et al. 1985; Bininda-Emonds et al. 1999).
Compounded with evidence of a rapid adaptive
radiation around this time (Bininda-Emonds et
al. 1999), it has proved extremely difficult to
resolve the position of Arflurus with any certainty
or consistency. Much more research effort, us-
ing a wide variety of data types, is required.

Of the alternative evolutionary scenarios men-
tioned earlier, Ailuropoda should be viewed as a
bear adapted to a herbivorous diet (as are Helarc-
tos, Tremarctos, and Ursus thibetanus) rather than
a small herbivore that has converged on a larger
ursid body plan (cf. Davis 1964). Features shared
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with the herbivorous procyonids, such as an
enlarged dentition, are therefore instances of
convergence, possibly facilitated by both lineages
being derived from the same arctoid body plan.

Likewise, the apparent procyonid affinities
of Ailurus mean that derived features shared by
the two panda species (perhaps including the
common name “panda”) (see Mayr 1986) should
be viewed as convergent. However, a definitive
statement in this regard is not possible, given
the uncertain position of Ailurus. If Ailurus does
have ursid affinities, as suggested by several re-
cent studies, then its similarities with Ailuropoda
would cease to be convergent, although they
might still be primitive.

I refrain from making any taxonomic con-
clusions in this chaptet, even for Ailuropoda, for
which the phylogenetic position seems reason-
ably secure. Although conservation decisions and
priorities can be based on taxonomic informa-
tion (e.g., Lockwood 1999; see also May 1990;
Vane-Wright et al. 1991), such information is
often only a crude approximation to the phylo-
genetic history of a group. Furthermore, taxonomic
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form of Bremer decay indices.

assessments are subjective and can frequently
obscure or even misrepresent phylogenetic in-
formation. For instance, by placing Ailuropoda
in its own family (Ailuropodidae), we gain the
knowledge that it is (subjectively) “distinct” at
the cost of realizing its close relationship and
therefore similarity with ursids. Although the
former piece of information is an important
factor in establishing conservation priorities,
the latter is critical for conservation practice. In
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managing Ailuropoda, we will likely have greater
success by adapting existing ursid conservation
programs because of key similarities between all
the species (e.g., the slow reproductive rate and
associated life history traits) (see Garshelis, chap-
ter 4). Instead, we would be better served by us-
ing the more resolved and accurate phylogenetic
information whenever possible (Crozier 1997;
Nee and May 1997; Vizquez and Gittleman
1998). Conservation priorities can be set using
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Adapted from Bininda-Emonds et al. (1999).

metrics that quantify phylogenetic diversity or
distinctiveness from phylogenies with branch
length information (e.g:, Faith 1994; Crozier
1997). In this regard, both Ailuropoda and Ailu-
rus would be regarded as worthy of conservation,
because they represent the sole surviving mem-
bers of relatively ancient lineages. This can be
clearly seen from figure 1.9, which contains
what I think to be the best current estimate of
higher-level relationships and divergence times
within the carnivores. Based on both fossil and
molecular data, the lineage giving rise to Ailurus
probably diverged from the common ancestor of
mustelids and procyonids about 29.3 million
years before present, whereas the lineage for Ail-
uropoda separated from that leading to the true
ursids about 21.8 million years before present
(Bininda-Emonds et al. 1999).
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