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ABSTRACT

 

The scope of phylogenetic analysis has increased greatly in the last decade, with analyses of
hundreds, if not thousands, of taxa becoming increasingly common in our efforts to reconstruct
the tree of life and study large and species rich taxa. Through simulation, we investigated the
potential to reconstruct ever larger portions of the tree of life using a variety of different methods
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(maximum parsimony, neighbour joining, maximum likelihood and maximum likelihood with a
divide-and-conquer search algorithm). For problem sizes of 4, 8, 16 … 1,024, 2,048 and 4,096
taxa sampled from a model tree of 4,096 taxa, we examined the ability of the different methods
to reconstruct the model tree and the running times of the different analyses. Accuracy was generally
good, with all methods returning a tree sharing more than 85% of its clades with the model tree
on average, regardless of the size of the problem. Unsurprisingly, analysis times increased greatly
with tree size. Only neighbour joining, by far the fastest of the methods examined, was able to
solve the largest problems in under 12 hours. However, the trees produced by this method were
the least accurate of all methods (at all tree sizes). Instead, the strategy used to sample the taxa
had a larger impact on both accuracy and, somewhat unexpectedly, analysis times. Except for the
largest problem sizes, analyses using taxa that formed a clade generally both were more accurate
and took less time than those using taxa selected at random. As such, these results support recent
suggestions that taxon number in and of itself might not be the primary factor constraining
phylogenetic accuracy and also provide important clues for the further development of divide-and-
conquer strategies for solving very large phylogenetic problems.

 

6.1 INTRODUCTION

 

Reconstructing the tree of life accurately and precisely represents the holy grail of phylogenetics
and systematics. However, the impact of obtaining the tree goes well beyond these research fields
to include all of the life sciences because, as it was nicely put recently by Rokas and Carroll

 

1

 

, the
conclusions we make as phylogeneticists form part of the assumptions underlying the analyses of
the other biologists. Evolutionary information is now becoming increasingly included in fields as
diverse as comparative biology, genomics and pharmaceutics. In the past decade, the increasing
accumulation of phylogenetic data, made possible by the molecular revolution, has brought the
dream of realising a highly comprehensive tree of life tantalisingly close.

Currently, however, the continued lack of suitable phylogenetic data represents a proximate
hindrance in our efforts to reconstruct the tree of life. Although whole genomic data is becoming
available at an increasing rate (but more so for prokaryotic organisms with their smaller genomes),
molecular sampling has generally been sparse and restricted largely to model organisms and model
genes

 

2,3

 

. However, even with the prospect of abundant whole-genome sequence data, the ultimate
hindrance is the sheer size of the tree of life itself, which has been estimated to comprise anywhere
from 3.6 million to 100

 

+

 

 million species (but most commonly 10–15 million)

 

4

 

.
It has long been appreciated that the number of possible phylogenetic trees increases superex-

ponentially with the number of taxa

 

5

 

. For example, there are three distinct rooted phylogenetic
trees for three species, 15 for four species, 105 for five species, and so on. For only 67 species,
the number of possible trees is on the order of 10 to the power of 111 trees, a number that just
exceeds the volume of the universe in cubic Ångstroms (a comparison first heard by the first author
from David Hillis). Phylogenetic analyses are now routinely conducted on data sets of this size
and larger (up to hundreds of taxa). Albeit comparatively rare, analyses of thousands of taxa have
also been performed, mostly as proof of concepts for new algorithmic implementations. These
include a neighbour joining (NJ) analysis of nearly 8,000 sequences

 

6

 

, a maximum likelihood (ML)
analysis of 10,000 taxa

 

7

 

, and a maximum parsimony (MP) analysis of 13,921

 

 

 

taxa

 

8,9

 

. However, we
are unsure of the prospects of achieving a correct or nearly correct answer for studies of these size,
given the literally astronomical size of ‘tree space’.

Compounding this limitation is the fact that the general problem of reconstructing a tree (or a
network, given that the tree of life is not always tree-like) from a given data set is one of a set of
non-deterministic polynomial time (NP) problems for which no efficient solution is known or, more
pessimistically, one for which no such solution potentially exists (NP-complete)

 

10

 

. Thus, the analysis
of larger data sets requires a disproportionately longer time (or disproportionately more computer
resources) and/or the use of increasingly less efficient heuristic search strategies, with both factors
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impacting negatively on our ability to recover the best solution for that given data set. Fortunately,
several studies using empirical and/or simulated data have shown that even phylogenetic analyses
at the high end of the scale currently examined are both tractable and show acceptable, if not
surprising, accuracy with shorter sequence lengths than might be expected

 

11–13

 

, thereby reinforcing
some theoretical work in the latter area

 

14,15

 

. Additionally, advances in computer technology and
architecture such as parallel and distributed computing and programs that exploit them efficiently
in combination with the continual development of faster search strategies promise to make even
larger phylogenetic problems increasingly tractable. However, the NP-completeness of the phylogeny
problem represents a fundamental limitation in our efforts to unearth the tree of life.

As such, we face a dilemma in attempting to reconstruct the tree of life (or even major portions
thereof). Smaller problems are computationally easier to solve, but at the extreme, have been
demonstrated to be susceptible to the adverse effects of taxon sampling and, for parsimony in
particular, long branch attraction

 

16

 

 

 

(for a review of the latter, see Bergsten

 

17

 

). In these cases, the
fact that DNA has only four character states can lead to a high number of convergent changes
(noise) along two long branches leading to unrelated taxa. These convergent changes can pull the
two branches together, thereby leading the phylogenetic analysis astray. Thus, the general consensus
is that, given a suitable sampling strategy

 

18

 

, the addition of species to a phylogenetic analysis is
usually beneficial in terms of accuracy because it ameliorates the effects of these two problems

 

19,20

 

(see Rosenberg and Kumar

 

21

 

 for a contrary view). At some point, however, the computational com-
plexity of the phylogeny problem must begin to outweigh the benefits of adding taxa. Although it is
not stated explicitly in the literature, it seems that the general expectation is that phylogenetic accuracy
shows a convex distribution with respect to the number of taxa in the analysis, with taxon sampling
and computational complexity limiting accuracy when species numbers are low and high, respectively.

It remains to be demonstrated whether or not this expectation is true and, if so, at what point
accuracy is maximised, while simultaneously considering the running time of the analysis. Estab-
lishing the latter could be especially important to the further development of the so-called ‘divide-
and-conquer’ search strategies such as quartet puzzling

 

22

 

 and disk-covering

 

9,23,24

 

. These strategies
generally seek to solve large phylogenetic problems by breaking them down into numerous smaller
subproblems that are computationally easier to solve precisely because they are smaller with respect
to both the number of taxa and the evolutionary distance between those taxa. The results from the
subproblems are then combined to provide an answer for the initial, global problem. As such,
divide-and-conquer strategies essentially attempt to bridge the gap between the problems of taxon
sampling and computational complexity. However, it is unknown what the optimal sizes of the
subproblems should be in order to achieve the greatest accuracy in the shortest time possible. To
date, subproblem sizes have usually been determined empirically on a case-by-case basis.

Thus, the goal of this chapter is to extend on previous analyses examining the scalability of
phylogenetic accuracy with respect to the number of species in the analysis (the ‘size’ of the analysis).
Specifically, we use simulation to investigate the changes in various parameters (accuracy, resolution
and running time) related to the analysis of increasingly larger phylogenetic problems under different
optimisation criteria (NJ, MP and ML) and methods of data set selection (random or clade sampling).
Our results elucidate the prospects for phylogenetic analyses of very large phylogenetic problems, as
might be needed to infer the tree of life or study large and species rich taxa, and provide additional
insights into the potential of divide-and-conquer search strategies within this context.

 

6.2 MATERIALS AND METHODS

6.2.1 S

 

IMULATION

 

 P

 

ROTOCOL

 

The simulation protocol used was modelled on that followed by Bininda-Emonds et al.

 

13

 

 to examine
the scaling of accuracy in very large phylogenetic trees. For each run, a model tree of 4,096 taxa
was generated according to a stochastic Yule birth process using the default parameters of the
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YULE_C procedure in the program r8s v1.60

 

25

 

. Branch lengths on the tree were modelled assuming
a model of substitution that departs from a molecular clock. Specifically, branch-specific rates of
evolution were determined by drawing random normal variates (mean of 1.0 and standard deviation
of 0.5, truncated outside of [0.1, 2.0]) and multiplying by an overall tree-wide rate of substitution.
Branch lengths were determined by multiplying branch-specific rates with branch durations
obtained from the Yule process model.

A model data set was then created by evolving a nucleotide sequence down the model tree
using a standard Markov process model as implemented in Seq-Gen v.1.2.7

 

26

 

. The sequence length
was 2,000 bp, which is of sufficient length for simulated data with its stronger signal to achieve
good accuracy for even the largest tree examined herein

 

13

 

, but is also short enough to keep running
times within acceptable limits. Sequences were generated under a Kimura 2-parameter model

 

27

 

with a transition/transversion ratio (ti:tv) of 2.0, site-to-site rate heterogeneity (that is, Gamma
model) with shape parameter of 0.5, and an overall average rate of evolution of 0.1 substitutions/site,
measured along a path from the root to a tip of the tree. No invariant sites were explicitly modelled.

The model data set was then sampled to create test data sets where the number of taxa varied on
a log

 

2

 

 scale from 4 to 2,048. No sampling of characters was performed so that the sequence length
was always 2,000 bp. Taxon sampling was accomplished by either selecting taxa at random (random
sampling) or by selecting a single clade from the model tree of the same size as the number of taxa
to be retained (clade sampling); all other taxa were pruned from the test data sets. The expectation
is that clade sampling should result in improved accuracy, given that it minimises the evolutionary
diameter of the problem; this is the logic underlying the disk-covering family of divide-and-conquer
methods

 

28

 

. By contrast, random sampling will tend to result in an increased number of long branches
and/or extend the diameter of the problem, especially when the proportion of taxa sampled is very
low. Both factors have been demonstrated to reduce the accuracy of phylogenetic inference.

Clade sampling requires the model tree to possess at least one clade for all the test sizes.
Because this situation was difficult to achieve, clades that were within 

 

±

 

2.5% of the desired size
were used when there was no clade of exactly the size desired. When multiple clades for a given
size existed, one was chosen at random. If the model tree did not contain clades of all the desired
sizes, it was discarded, and a new model tree was generated.

Each subsampled data set (for both random and clade sampling) as well as the full data set
were analysed using three optimisation criteria, each of which accounted for the model of evolution
Kimura 2-parameter 

 

+

 

 Gamma (K2P 

 

+

 

 G) as far as possible: MP, NJ, and ML. For the four largest
matrices (512; 1,024; 2,048; and 4,096 taxa), a ML analysis in conjunction with a disk-covering
divide-and-conquer framework (ML-DCM3) was also used. Bayesian analysis was not examined
due to time and memory constraints

 

29

 

. Because Bayesian analysis samples from the posterior
distribution of trees, it is necessarily significantly slower than the other methods examined here,
especially if a high number of generations is employed to ensure reliable results. Even without
Bayesian analysis, each replicate required just over five days to complete.

Thus, the results for each individual run were based on data matrices all derived from the same
model set of molecular data evolved along the same model tree. This procedure differs substantially
from that used by Bininda-Emonds et al.

 

13

 

, in which model trees of the desired problem size were
generated (that is, there was no sampling performed). Additionally, for each subproblem size and
sampling strategy, the same alignment was analysed by each of MP, NJ, ML and where appropriate
ML-DCM3. In total, 50 runs were conducted, comprising nearly eight CPU months of analysis time.

 

6.2.2 P

 

HYLOGENETIC

 

 A

 

NALYSIS

 

MP analyses used PAUP* v4.0b10

 

30

 

 with transversions weighted twice as much as transitions.
Different search strategies were employed depending on the size of the alignment. Below 16 taxa, a
branch-and-bound search was used, thereby guaranteeing that all optimal trees were found. For
matrices with 

 

≥

 

16 taxa, various heuristic searches were used depending on the size of the problem:
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a thorough heuristic (<256 taxa), the parsimony ratchet (<1,024 taxa

 

31

 

), and finally a greedy heuristic
(

 

Σ

 

4,096 taxa). The thorough heuristic consisted of 100 random addition sequences with TBR branch-
swapping, with a maximum of 10,000 trees being retained at any time during the analysis. The
parsimony ratchet consisted of 10 batches of 100 iterative weighting steps, with 25% of the characters
receiving a weight of two at each step. Thereafter, all equally most parsimonious trees were used as
starting trees for a heuristic search using TBR branch swapping and limited to one hour of CPU time.
Each replicate used the same command file for the ratchet, which was created using the Perl script
PerlRat v1.0.9a. However, for the largest matrices, even the parsimony ratchet proved to be too slow
during the test phase, especially because of the use of a step matrix to account for the ti:tv ratio.
Therefore, a greedy heuristic was used, consisting of a single simple stepwise addition sequence
followed by TBR branch-swapping with a maximum of 10 trees being retained at any time.

NJ analyses used QuickTree

 

32

 

 using a Kimura translation to determine the pairwise distances.
ML analyses used RAxML-V (Randomized Axelerated Maximum Likelihood)

 

33

 

, which is one
of the fastest and most accurate programs for ML-based phylogenetic inference. A key feature of
RAxML is its comparatively low memory consumption

 

29

 

, which in combination with its advanced
search algorithms and accelerated likelihood function

 

33,34

 

 makes it uniquely suitable for ML analyses
of large numbers of taxa. All RAxML analyses used the default hill-climbing search option (–f c)
using an HKY85 substitution model with an estimate of 50 distinct per site evolutionary rate
categories (CAT). This HKY 

 

+

 

 CAT model is essentially empirically equivalent to the better known
HKY 

 

+

 

 I 

 

+

 

 G model, but requires fewer floating point operations and memory.
Finally, we also performed ML analyses using a divide-and-conquer search algorithm at the

largest problem sizes (512 or more taxa) using RAxML in concert with the Recursive Iterative
Disk Covering Method (Rec-I-DCM3)

 

9

 

. This combination of methods has been more formally
referred to as Rec-I-DCM3(RAxML); however, we use the simpler ML-DCM3 throughout this
chapter. Based on an initial ‘guide tree’ containing all taxa (here, the starting tree for the ML
analyses as computed by RAxML), Rec-I-DCM3 intelligently decomposes the data set into smaller
subproblems that overlap in their taxon sets. These subproblems are then solved using RAxML
(using the same parameters as above), with the respective subtrees merged into a comprehensive
tree with the Strict Consensus Merger

 

23

 

. This global tree was then further improved using RAxML
(using the fast hill climbing heuristic; option –f f) to construct the new guide tree. The processes
of decomposition, subproblem inference, subtree merging and global refinement were repeated for
three iterations. The maximum size of the subproblems was 25% of the size of the full data set,
as suggested in the user notes to Rec-I-DCM3.

A time limit of 12 hours was imposed on each individual analysis. This limit was never invoked
for the NJ analyses and only for the largest matrices for MP (4,096 only), ML (2,048 and 4,096, but
not always for both sizes) and ML-DCM3 (2,048 and 4,096). The use of a time limit will obviously
impact accuracy negatively and potentially penalise the more computationally intensive ML analyses
to a greater extent. However, the reality is that shortcuts of various types (for example, time limits or
less thorough search strategies) must be employed when analysing very large matrices, so this constraint
might represent a reasonable one. To judge the effects of imposing a time limit, one additional run was
performed for the full data set of 4,096 taxa with all methods being allowed to run to completion.

In all cases, the inferred tree was held to be the strict consensus of all equally optimal solutions.
All analyses were conducted on a cluster of unloaded 2.4-GHz Opteron 850 processors, each with
8 GB of RAM, located at the Department of Informatics at the Technical University of Munich.
All programs used (including those used to simulate the data) were compiled as needed for this
platform.

 

6.2.3 V

 

ARIABLES

 

 E

 

XAMINED

 

Results were analysed with respect to three variables that are particularly relevant to the phyloge-
netic analysis of very large data sets: resolution, accuracy and running time. Resolution is the
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number of clades on the inferred tree relative to the total number of clades on a fully bifurcating
tree of the same size (

 

n 

 

– 2 for an unrooted tree, where 

 

n

 

 

 

=

 

 number of taxa). Resolution varies
between 0 and 1, with the former value indicating a completely unresolved bush and the latter
indicating a fully resolved tree. This parameter reflects the decisiveness of the analysis and is most
relevant for the MP analyses. NJ always returns a single, fully resolved tree, and ML analyses
invariably do so as well.

Accuracy was measured as the ability to reconstruct the model tree. In computer science, the
optimality score of an analysis (either in isolation or in relation to that of the model tree) is also often
used as a proxy for accuracy. However, the use of three different optimality criteria in this study
prevents such an approach, and the comparison to a known ‘true’ tree is perhaps more intuitive to
biologists. Accuracy was quantified using both the consensus fork index (CFI

 

35,36

 

) of the strict
consensus of the inferred and model trees and the symmetric difference (or partition metric) between
these two trees (d

 

S
37

 

). The CFI indicates the proportion of clades shared between the two trees, whereas
d

 

S

 

 indicates the number of clades found on one tree or the other, but not both. To make these values
comparable, d

 

S

 

 was normalised according to the number of taxa on the trees (by dividing by 2

 

n

 

 – 6,
where 

 

n

 

 

 

=

 

 number of taxa

 

38

 

) and subtracted from one to derive a similarity measure equivalent to
CFI. Although it is not strictly accurate, we continue to refer to this metric as d

 

S

 

 for convenience.
CFI and d

 

S

 

 differ most importantly in how they treat polytomies in the inferred tree (the model
tree is always fully bifurcating). CFI treats all polytomies as errors, whereas d

 

S

 

 essentially ignores
them because they do not specify any unique clades. Thus, in comparing a fully resolved tree with
a fully unresolved one, CFI 

 

=

 

 0 and d

 

S

 

 

 

=

 

 0.5. As such, the difference between CFI and d

 

S

 

 is again
most relevant for the MP analyses, which are the only ones expected to produce trees that are not
fully resolved. For the comparison of two fully resolved trees, CFI 

 

=

 

 d

 

S

 

.
Finally, the running time for each analysis was recorded in seconds. Again, an upper limit of

12 hours (43,200 seconds) was imposed on all analyses. However, analysis times could still
substantially exceed this limit in some cases due to the discrete nature of the stopping mechanisms.
For instance, a search can be terminated only after the completion of an iteration or calculation of
an optimality score, both of which can represent long-running operations at the largest tree sizes.

For each variable, results were compared using a multivariate analysis of variance (ANOVA),
with the method of analysis and sampling strategy as factors, and the size of the data set as a
covariate. The level of significance 

 

was 

 

α

 

 

 

=

 

 0.05. Fisher’s protected least significant difference
(PLSD) test was used to determine significant differences between categories within a factor.

 

6.2.4 S

 

OFTWARE

 

 A

 

VAILABILITY

 

The following software and/or source code used in this study are freely available at the following
URLs:

• PerlRat.pl: www.uni-jena.de/~b6biol2/ProgramsMain.html
• RAxML: diwww.epfl.ch/~stamatak (under ‘software’)
• Rec-I-DCM3: www.cs.njit.edu/usman/RecIDCM3.html

 

6.3 RESULTS

6.3.1 R

 

ESOLUTION

 

Resolution was always one for each individual NJ, ML, and ML-DCM3 analysis. MP produced
trees that were significantly less resolved (

 

P

 

 < 0.0001 for all pairwise comparisons) and, except
for a tree size of four with random sampling, were never fully resolved on average (Figure 6.1A).
Nevertheless, the MP trees were generally well resolved at all tree sizes, with the average resolution
being always greater than 0.90. Resolution for MP differs significantly with tree size (

 

P

 

 < 0.0001),
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showing a concave pattern that is noticeably higher at extremely small and extremely large tree
sizes. In the latter case, however, this is an artefact of only 10 trees being retained in analyses of
1,024 or more taxa. Otherwise, it appears that resolution reaches a plateau of about 0.90 for clade
sampling and 0.95 for random sampling. The average resolution for the MP analyses using clade
sampling was always significantly less than that for random sampling (

 

P

 

 < 0.0001); the ratio of
the values for clade versus random sampling fell between 0.94 and 0.98 at all tree sizes
(Figure 6.1B). All methods yielded fully resolved trees, or nearly so for MP, in the time-unlimited
analyses (Table 6.1).

 

FIGURE 6.1

 

Resolution of trees inferred using MP from data sampled from a model matrix of 2,000 bp for
4,096 taxa. (A) Average resolution over 50 individual runs; error bars represent standard errors. (B) Ratio of
average resolutions from clade sampling as compared to random sampling. Resolution for all other optimisation
criteria was always 1.
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6.3.2 A

 

CCURACY

 

Accuracy, whether measured by CFI or d

 

S

 

 was generally good at all tree sizes and for all methods
(Figure 6.2A and Figure 6.3A). In all cases, accuracy was greater than 80% on average and often
better than 90%. Tree size had a variable impact on accuracy. It did not influence accuracy for
either ML-DCM3 (

 

P

 

 

 

=

 

 0.4812; although only four sizes were tested for this method), MP as
measured by d

 

S

 

 (

 

P

 

 

 

=

 

 0.4132), or ML (

 

P

 

 

 

=

 

 0.1995), but had a significant effect for both NJ (

 

P

 

 

 

=

 

0.0244) and MP as measured by CFI (

 

P

 

 

 

=

 

 0.0087). However, the only clear trend is for NJ under
clade sampling where accuracy decreases with the size of the problem. In all the remaining cases,
the curves are reasonably flat and/or sigmoidal. Except for ML-DCM3, allowing all methods to
run to completion in the time-unlimited analyses produced significantly more accurate results when
compared to the 12-hour limited analyses (

 

P

 

 < 0.0001 according to a one sample 

 

t

 

-test).
The different optimisation criteria/methods used also had an impact on the accuracy of the

solutions. When CFI was used to measure accuracy (Figure 6.2A), ML and ML-DCM3 were not
significantly different (

 

P

 

 

 

=

 

 0.0763), and neither were MP and NJ (

 

P

 

 

 

=

 

 0.6982). However, the trees
derived using the former methods were significantly more accurate than those from the latter (

 

P

 

 <
0.0001). When d

 

S

 

 was used (Figure 6.3A), ML trees were statistically indistinguishable from those
from either MP (

 

P

 

 

 

=

 

 0.7037) or ML-DCM3 (

 

P

 

 

 

=

 

 0.0618), although the latter two were significantly
different from one another (

 

P

 

 = 0.0340). NJ yielded significantly worse trees in all cases (P < 0.0001).
Only the MP analyses showed a difference in accuracy as measured by the two metrics (compare

Figure 6.2A and Figure 6.3A), with the analogous values for dS being either equal to, or more
commonly, greater than those for CFI. The effect was the most pronounced for clade sampling,
which also produced solutions that were less resolved than were those from random sampling
(Figure 6.2B and Figure 6.3B).

For both NJ and MP (dS only), the sampling strategy had a significant effect on accuracy (P <
0.0001), with clade sampling generally leading to increasingly accurate solutions as the size of the
problem decreased. However, the two sampling strategies showed similar performance with respect
to accuracy for trees of 512 or more taxa. No effect was present for MP when accuracy was
measured using CFI (P = 0.1248). Likewise, there was no significant trend for ML with respect to
the sampling strategy (P = 0.0698). Random sampling produced slightly, but significantly more
accurate trees with ML-DCM3 at the three relevant problem sizes examined for it (512; 1,024; and
2,048 taxa; P < 0.0001).

6.3.3 RUNNING TIME

Except for NJ, no method obtained a solution for the full model data set (4,096 taxa) within the
12-hour time limit. The running times for the unlimited MP, ML and the three iteration ML-DCM3
analyses of 4,096 taxa (see Table 6.1) were 1.6, 7.0 and 4.5 times longer than the limit of 12 hours.

TABLE 6.1
Statistics Relating to a Time-Unlimited Analysis of the Full Dataset 
of 4,096 Taxa

Optimisation Criterion/Method Resolution

Accuracy

Time (seconds)CFI (1 – dS)

MP 1.000 0.903 0.917   69,392
NJ 1.000 0.857 0.857        193
ML (fast hill climbing) 1.000 0.912 0.912   38,737
ML (standard hill climbing) 1.000 0.923 0.923 303,450
ML-DCM3 1.000 0.921 0.921 195,371
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Running times were significantly influenced by all three factors and covariates examined, either
in isolation or in combination (all P < 0.0001). Fisher’s PLSD tests also revealed highly significant
differences (all P < 0.0001) between all pairs of categories within the factors of sampling strategy
and method of analysis.

For all optimisation criteria, running times increased approximately linearly with tree size on
a log-log scale (Figure 6.4A and Figure 6.4C). For each doubling in tree size, the running time of
NJ increased by a factor of about three on average (random sampling: 3.22 ± 0.60 (mean ± SE);
clade sampling: 3.33 ± 0.61). MP showed both the largest and most variable increases in running

FIGURE 6.2 Phylogenetic accuracy of trees inferred using different methods from data sampled from a model
matrix of 2,000 bp for 4,096 taxa. Accuracy was measured as the value of the CFI between the inferred tree
and the model tree upon which the data were simulated; both trees were pruned so as to have identical taxon
sets. (A) Average accuracy over 50 individual runs; error bars represent standard errors. (B) Ratio of average
accuracy from clade sampling as compared to random sampling.
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time (random sampling: 6.54 ± 2.31; clade sampling: 12.26 ± 5.84). The largest increases for MP
occurred for the comparisons 8–16 and 64–128 taxa (random sampling) and 16–32, 32–64 and
64–128 taxa (clade sampling). Many of these high rates corresponded with either the adoption of
a new, less thorough search strategy or when a given search strategy was apparently becoming
‘overloaded’ for a given problem size. Finally, the rate increases for ML were intermediate between
NJ and MP and with low variation (random sampling: 4.34 ± 0.69; clade sampling: 5.03 ± 0.87).

Compared to the other methods (Figure 6.4A), NJ always produced the shortest running times
(P < 0.0001), with the differences becoming the most marked at tree sizes of 16 taxa or greater.

FIGURE 6.3 Phylogenetic accuracy of trees inferred using different methods from data sampled from a model
matrix of 2,000 bp for 4,096 taxa. Accuracy was measured as one minus the normalised value of the partition
metric between the inferred tree and the model tree upon which the data were simulated; both trees were
pruned so as to have identical taxon sets. (A) Average accuracy over 50 individual runs; error bars represent
standard errors. (B) Ratio of average accuracy from clade sampling as compared to random sampling.
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The running times of MP and ML were roughly comparable, although MP was significantly faster
(P < 0.0001) on the whole. MP tended to run faster for the smallest and largest tree sizes with
clade sampling, whereas ML generally ran faster for all tree sizes under random sampling. In those
cases where the time limit was not exceeded, ML-DCM3 was faster on average than ML, but slower
than MP (in both cases by a factor of two to three).

Analysis times under clade sampling were almost always less than those for random sampling,
with the differences becoming smaller with increasing tree size (Figure 6.4B). For ML, running
times under clade sampling were faster by a factor of at least two for all tree sizes except four and
2,048. The most marked differences for MP were limited to tree sizes of 64 or fewer taxa, where
the differences were the largest for all the methods examined (including a factor of nearly 40 with

FIGURE 6.4 Analysis times for trees inferred using different methods from data sampled from a model matrix
of 2,000 bp for 4,096 taxa. The time used for 4,096 taxa derives from the single time-unlimited analysis for
MP, ML and ML-DCM3. (A) Average analysis time over 50 individual runs; error bars represent standard
errors. (B) Ratio of average analysis time from clade sampling as compared to random sampling. (C) Ratio
of average analysis time for a given sample size as compared to previous sample size.

A

A
ve

ra
ge

 a
na

ly
si

s 
tim

e 
(s

ec
on

ds
)

Size of subsampled tree

DCM (clade)

DCM (random)

ML (clade)

ML (random)

NJ (clade)

NJ (random)

MP (clade)

MP (random)
100000

10000

1000

100

10

1

0.1

0.01
1 10 100 1000 10000

B

R
at

io
 o

f 
av

er
ag

e 
an

al
ys

is
 ti

m
e

(c
la

de
 / 

ra
nd

om
)

Size of subsampled tree

100001 10 100 1000

1.5

1.0

0.5

0.0

DCM

ML

NJ

MP

9579_C006.fm  Page 87  Saturday, November 11, 2006  4:07 PM



88 Reconstructing the Tree of Life

16 taxa). Beyond 128 taxa, the respective running times for the different sampling strategies were
approximately equal for MP. For 256 and 512 taxa, at least, this result reflects the more deterministic
nature of the parsimony ratchet, which must perform a set number of iterations.

6.4 DISCUSSION

Our simulation study produced three key findings, some unexpected:

• That accuracy is at best only weakly influenced by the size of the problem
• That the methods of inference examined produce solutions of comparable, and good,

accuracy
• That the sampling strategy employed has a significant effect on both accuracy (to a point)

and, more strongly, on the running time of the analysis

Naturally, caveats abound. Our study used simulated data, which tend to be ‘cleaner’ and contain
more phylogenetic signal than real sequence data. Moreover, the model of evolution used (HKY
+ G) is less complicated, and therefore less computationally intensive, than those more commonly
used. Finally, the methods of inference were refined to match the known model as precisely as
possible. Thus, our results might, in isolation, represent a best case scenario. However, the com-
parative aspects of our study should be accurate.

6.4.1 ACCURACY AND SPEED

Although it is widely accepted that larger phylogenetic problems are more difficult to solve and
should therefore show decreased accuracy, there is now accumulating evidence to suggest that the
performance dropoff is not as severe as many would believe, at least up to problem sizes of about
10,000 taxa11,13. Our finding that accuracy is essentially flat with respect to tree size (Figure 6.2A
and Figure 6.2B) lends further support to these latter findings, indicating that good accuracy is
achievable even for very large phylogenetic problems and within a reasonable timeframe. Moreover,
our work indirectly supports recent work by Rokas, Carroll and colleagues1,39 that strongly argues

FIGURE 6.4 (Continued).
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that the amount of sequence data (number of genes), and not the number of taxa, is the more critical
factor influencing phylogenetic accuracy. In our case, the alignment length of 2,000 bp was
specifically chosen because it apparently contained sufficient phylogenetic signal for all problem
sizes examined here13, thereby minimising the effects of sequence length. In real terms, 2,000 bp
would represent perhaps one or two genes of lengths that are typically used in phylogenetic analysis.
Although this might be an insufficient number of genes to achieve good accuracy1,39 it must again
be remembered that the simulated sequence data often contain much more signal than real data
due to the absence of gaps and a lack of noise that would arise because of alignment errors.

Similarly, good evidence exists that the performance of NJ with respect to accuracy, although
acceptable, is generally inferior to that produced by ML and weighted MP40. This difference in
performance, as well as the vastly shorter running times of NJ, derives from the absence of branch-
swapping in NJ to correct for suboptimal topologies created during the tree construction process.
As such, NJ by itself seems ideally suited as a method to very quickly generate a relatively accurate
starting tree for subsequent and more computationally intensive branch-swapping. Exactly such an
approach is implemented in PHYML41 and could equally well be applied to MP or within a distance
framework (minimum evolution, ME).

Our results also attest to the recent advances in heuristic search strategies, particularly in a ML
framework. Despite the increased complexity of ML as compared to MP (which has long been
viewed as an obstacle to ML analyses), both accuracy and running times were comparable between
the two optimisation criteria. Moreover, the more complex nature of the likelihood surface means
that, at most, only a few equally optimal solutions are usually found (and typically only a single
solution)42, thus providing a more resolved solution than is usually the case for the analogous MP
analyses (Figure 6.1A). Many would see this as being a desirable feature in that the ML estimate
of the phylogeny of a large, species-rich group could be argued to be more decisive and definitive
than the MP estimate.

In addition, whereas MP running times were kept in check by applying increasingly faster
heuristic search algorithms, all ML searches used the same standard hill climbing searches in
RAxML. A less thorough, but faster hill climbing strategy also exists, which was used to optimise
the global tree in the ML-DCM3 analyses based on previous empirical work showing it to work
the best of all methods in this context. As revealed by the single analysis of the full data set, the
use of this option makes the ML analyses faster (by a factor of 7.8) with virtually no loss in accuracy
(see Table 6.1). In fact, the ‘fast’ ML analyses were both faster and more accurate than the MP
analyses performed. However, it should also be realised that faster implementations of MP searches
than those used here, such as those implemented in TNT (available from http://www.zmuc.dk/public/
phylogeny/TNT)43 also exist. Rec-I-DCM3 has also been used in conjunction with TNT9, boosting
performance even further. A faster implementation of NJ than that used here was also recently
published6. At the same time, it should be pointed out that the computational ‘arms race’ is still
ongoing, with the latest version of RAxML, RAxML-VI-HPC (v2.1), showing significant speed
improvements over the version used here, particularly for very large data sets.

Altogether, these findings bode well, not only for reconstructing very large phylogenies, but
also for estimating support for the groups present in those phylogenies44. Analogous to our finding
that accuracy is relatively flat with respect to the size of the problem and, in the case of MP, to the
use of greedier heuristic search strategies, Salamin et al.44 found that estimated bootstrap frequencies
are apparently robust to the use of less effective branch-swapping methods during the tree searching
operations (for example, in decreasing order of searching thoroughness, TBR versus SPR versus
NNI; see Swofford et al.27 for descriptions). Again, the use of NJ offers a means to quickly generate
a reasonably accurate starting tree for further branch-swapping operations. Finally, an additional
option for quickly determining support values in a ML framework is the use of the resampling of
estimated log-likelihood (RELL) approximation45,46, which apparently can estimate bootstrap pro-
portions for a given tree more accurately than a true bootstrap analysis that uses fast heuristics to
search through tree space47.
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6.4.2 THE IMPORTANCE OF SAMPLING STRATEGY

Instead of sample size, it was the form of the sampling strategy that had the greatest impact on
both phylogenetic accuracy (Figure 6.2A and Figure 6.2B) and, perhaps more unexpectedly, the
running time of the analyses (Figure 6.4A and Figure 6.4B). Given that we will always be working
with samples from the entire tree of life, the sampling strategy used, therefore, becomes a crucial
consideration in phylogenetic systematics.

The influence of sampling strategy on accuracy has long been discussed, but more in the context
of sampling density and the diameter of the problem. The former variable relates to how many
taxa for a given group are included in the analysis, whereas the latter roughly corresponds to how
much evolutionary history the sampled group contains. An especially stimulating paper was that
of Kim48, which showed that adding taxa to an analysis usually decreased phylogenetic accuracy.
However, the protocol used by Kim added taxa outside the reference group, thereby expanding the
phylogenetic diameter of the problem and decreasing the overall sampling density. Subsequent
studies designed to address Kim’s findings instead added the taxa within the reference group. As
such, the phylogenetic diameter of the problem was unchanged, and the sampling density was
increased. These studies instead demonstrated the general benefit of adding taxa to the analysis
(see 18 and references therein). Moreover, taxa that were added specifically to break up any long
branches (and therefore making the greatest increase in local density) were shown to improve
accuracy to the greatest extent. Thus, a general, long-standing recommendation for phylogenetic
analyses is to add taxa in such a way as to best represent the overall diversity of the group and/or
to potentially break up any long branches18.

The two sampling strategies used herein likewise can be viewed with respect to sampling
density and evolutionary diameter. For a given problem size, clade sampling always yields the
maximum density (there are no unsampled taxa for that group) and minimises the diameter. By
comparison, random sampling will usually yield samples of greater diameter and less density (and
therefore contain more long branches) for the same problem size, especially when the sample size
is only a small percentage of the overall problem size. As the sampling size increases, the difference
between clade and random sampling decreases, with the two strategies obviously converging when
the sampling size equals the overall problem size. This explains why the performance differences
between the strategies decreased as the sampling size increased.

More important, however, was the generally beneficial effect of clade sampling on running
time (Figure 6.4A and Figure 6.4B), an effect that was only absent at the largest subproblem sizes
and for ratchet-based MP searches (which will have a more rigid running time due to their more
deterministic nature). To our knowledge, although this general finding might have been suggested
informally, our results are the first to document it. The speed advantages to performing an analysis
in a divide-and-conquer framework have usually been ascribed to the smaller problem sizes, with
clade sampling being held to improve accuracy28.

As such, our findings in this regard provide another important reason (in addition to increased
accuracy) to ensure that the sampling is as complete as possible for a phylogenetic problem of a
given size. Moreover, this recommendation applies equally to conventional phylogenetic analyses
and to those performed in a divide-and-conquer framework. With respect to the latter, methods
such as the disk-covering family9,23,24 or IQPNNI49 that intelligently subsample the data matrix are
therefore to be preferred for reasons of both speed and accuracy over those such as classic quartet
puzzling22 that employ random sampling.

That said, technical considerations can occasionally override this general recommendation. A
primary example here includes the parallel implementation of a divide-and-conquer algorithm for
large scale phylogeny reconstruction, where the selected strategy has important practical implica-
tions. Recent work on a parallel version of Rec-I-DCM3(RAxML) revealed significant problems
of processor load imbalance due to the great variation in subproblem sizes yielded by the intelligent
decomposition method of Rec-I-DCM350. However, such load imbalance problems could be
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resolved based on our findings that the sampling strategy has a decreasing effect on accuracy and
inference times for proportionately larger sampling sizes, and that the choice of sampling strategy
does not significantly affect the accuracy of the ML analyses, which are known to be more immune
to the adverse effects of taxon sampling and long-branch attraction. As such, it should be possible
in a parallel implementation of Rec-I-DCM3(RAxML) to initially split the alignment naïvely into
relatively large subsets of approximately equal size (comprising approximately 12.5–50% of the
original dataset) based on the guide tree. This strategy should improve load balance without any
undue loss of performance. In turn, these large initial subproblems would then be optimised using
the more intelligent subdivision method employed by Rec-I-DCM3, where the benefits of clade
sampling take on greater importance. The potential utility of a similar naïve division method has
been observed with a proprietary divide-and-conquer algorithm implemented in RAxML
(Stamatakis unpublished data).

6.4.3 IMPLICATIONS FOR THE DIVIDE-AND-CONQUER FRAMEWORK

Although the ML-DCM3 strategy employed here showed slightly less accuracy (~1–2% less) than
a ML search using RAxML alone, it showed tremendous savings in terms of running time, running
faster by a factor of about 1.5 or greater on average. Admittedly, the fast ML heuristic was even
faster than the ML-DCM3 strategy for the time-unlimited analyses of 4,096 taxa; however, the
latter could be easily adapted to use the fast heuristic throughout and so also benefit from the speed
improvement. Similar, if not even greater, performance gains with respect to both running time and
especially accuracy for a MP analysis performed within a divide-and-conquer framework have also
been reported9,28.

Thus, it seems clear that a divide-and-conquer based strategy will form a key component for
studying very large phylogenetic problems. In this sense, it is instructive to compare the cumulative
running times for multiple analyses of a given subproblem size such that the total number of taxa
examined equals the global problem size of 4,096 taxa (Figure 6.5). For instance, for a subproblem

FIGURE 6.5 Number of analyses for a given tree size that could be completed in the same time needed for
an analysis of 4,096 taxa. For each tree size, the average running time over the 50 runs (see Figure 6.4) was
compared against the time required to analyse 4,096 taxa from the time-unlimited analyses (see Table 6.1).
The black line represents the number of analyses required such that 4,096 taxa are analysed in total.
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size of 32 taxa, this amounts to 128 individual analyses (although a global tree of all 4,096 taxa
could not be derived from these analyses because the trees do not overlap). However, Figure 6.5
reveals that over 20,000 MP analyses of 32 taxa selected using clade sampling could be conducted
in the time taken for a single MP analysis of 4,096 taxa, or 176 sets of 128 analyses. Note also
that these particular numbers are underestimates, given that the MP search strategy used for 4,096
taxa was considerably less robust, and therefore comparatively faster, than that used for 32 taxa.
For all optimisation criteria (including NJ) and at virtually all subproblem sizes, the time savings
are similarly enormous; only MP analyses at tree sizes of 128 to 512 taxa show a decrease in time
(Figure 6.5). Thus, there is tremendous scope in a divide-and-conquer framework for many indi-
vidual analyses to ensure high overlap between the trees, a factor that has been shown to improve
the accuracy of the merged supertree51.

Although it is tempting to try and derive the optimal subproblem size from Figure 6.5 under
the assumption that accuracy is approximately flat with respect to the size of the subproblem, it
must be remembered that these numbers do not account for the initial accuracy of the merged
solution and, therefore, the time required for any global optimisations of it. Because such optimi-
sations are computationally expensive (which accounts for the proportionately longer analysis times
of larger solutions), they represent an important performance bottleneck. For example, the global
optimisation step, even with the use of the fast ML algorithm, consumed the most execution time
for the ML-DCM3 analyses. Moreover, there is a general consensus among researchers involved
in the development of divide-and-conquer algorithms that global optimisations must be applied at
some point to obtain the most accurate trees possible52. As such, the role for divide-and-conquer
strategies will be, as for NJ, to yield as good a starting tree in as little time as possible. Research
should now focus, therefore, on determining the optimal subproblem size and merger method that
maximise the accuracy of the merged tree (so as to minimise the global optimisation time) in as
short a time as possible. To our knowledge, there has been little work in this area (although the
Rec-I-DCM3 user guide suggests a maximum subproblem size of 25% of the global size), nor in
examining the accuracy of the merged tree without any subsequent global optimisation. Additional
benefits would derive from pursuing this course of action with an eye toward the development of
efficient parallel optimisation methods, particularly for the computationally intensive global opti-
misation step.

6.5 CONCLUSIONS

Together with other similar findings11–13, the results we present here are encouraging for the
prospects of building ever larger phylogenetic trees in our efforts to reconstruct the tree of life.
Continued developments in computer technology and algorithm development can only increase our
feeling of optimism. Even so, it must be remembered that even 10,000 taxa, the approximate limit
for all simulations performed to date, represent only a minute fraction of the entire tree of life.
Larger problems have been analysed successfully, but without any real knowledge of how accurate
the answers might be. We simply do not know at this point how far the scalability of acceptable
accuracy extends. As such, it seems clear that a divide-and-conquer approach, whereby we can
break the problem down into pieces where we are confident of achieving good accuracy (and in
less time), must form a necessary part of our efforts to obtain the tree of life.
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