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ABSTRACT

Phylogenetic bootstrapping (BS) is a standard technique for inferring confidence values on
phylogenetic trees that is based on reconstructing many trees from minor variations of the
input data, trees called replicates. BS is used with all phylogenetic reconstruction ap-
proaches, but we focus here on one of the most popular, maximum likelihood (ML). Because
ML inference is so computationally demanding, it has proved too expensive to date to assess
the impact of the number of replicates used in BS on the relative accuracy of the support
values. For the same reason, a rather small number (typically 100) of BS replicates are
computed in real-world studies. Stamatakis et al. recently introduced a BS algorithm that is
1 to 2 orders of magnitude faster than previous techniques, while yielding qualitatively
comparable support values, making an experimental study possible. In this article, we
propose stopping criteria—that is, thresholds computed at runtime to determine when en-
ough replicates have been generated—and we report on the first large-scale experimental
study to assess the effect of the number of replicates on the quality of support values,
including the performance of our proposed criteria. We run our tests on 17 diverse real-
world DNA—single-gene as well as multi-gene—datasets, which include 125–2,554 taxa. We
find that our stopping criteria typically stop computations after 100–500 replicates (although
the most conservative criterion may continue for several thousand replicates) while pro-
ducing support values that correlate at better than 99.5% with the reference values on the
best ML trees. Significantly, we also find that the stopping criteria can recommend very
different numbers of replicates for different datasets of comparable sizes. Our results are
thus twofold: (i) they give the first experimental assessment of the effect of the number of BS
replicates on the quality of support values returned through BS, and (ii) they validate our
proposals for stopping criteria. Practitioners will no longer have to enter a guess nor worry
about the quality of support values; moreover, with most counts of replicates in the 100–500
range, robust BS under ML inference becomes computationally practical for most datasets.
The complete test suite is available at http://lcbb.epfl.ch/BS.tar.bz2, and BS with our stop-
ping criteria is included in the latest release of RAxML v7.2.5, available at http://
wwwkramer.in.tum.de/exelixis/software.html.
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1. INTRODUCTION

Phylogenetic trees are used to represent the evolutionary histories of related organisms (as well,

of course, as of any other units subject to evolutionary changes, from protein through genes and genomes

to languages and ecologies). Most phylogenetic reconstructions for a collection of organisms take as input

DNA or protein sequence alignments. These input sequences are placed at the leaves of the putative tree, and

reconstruction proceeds by searching for an optimal internal branching structure for the tree. Due to the rapid

and rapidly accelerating growth of sequence data in the last few years, reconstruction of trees with more than

1,000 leaves has become increasingly common, often using sequence data from many genes (so-called multi-

gene or phylogenomic alignments). Such practice represents a major departure from the typical practice of

the last 20 years, in which trees of 10–100 organisms were inferred from the sequence of a few simple

ribosomal genes. Scaling up inference in terms of the number of organisms, the length and complexity of the

sequence data, and the diameter (largest pairwise distance among the organisms) is a very challenging issue

(Moret, 2007). The search space (all possible distinct branching structures) is notoriously large

((2n� 5)!!¼ (2n� 5) � (2n� 7) … 5 � 3 � 1) (Edwards et al., 1963) and unstructured. Both maximum parsi-

mony and maximum likelihood (ML) approaches are known to be NP-hard (Foulds and Graham, 1982; Roch,

2006), but both are preferred to the simpler distance methods, especially in the presence of more complex

data or data with large diameters.

Significant progress has been achieved in the field of heuristic ML search algorithms with programs such

as PHYML (Guindon and Gascuel, 2003), GARLI (Zwickl, 2006), Lea-Phy (Whelan, 2007), and RAxML

(Stamatakis, 2006). However, there is still a major bottleneck in computing bootstrapping (BS) support

values on these trees, which can require more than one month of sequential execution time for a likely

insufficient number of 100 replicates (Soltis and Soltis, 2003) on a reasonably fast CPU. To date, it has

proved infeasible to assess empirically the convergence properties of BS values, much less to evaluate

means for dynamically deciding when a set of replicates is sufficiently large—at least on the size of trees

where computing BS values is an issue.

Recently, Stamatakis et al. (2008) introduced a fast BS algorithm that yields a run time acceleration of

one to two orders of magnitude compared to other current algorithms while returning qualitatively com-

parable support values. This improvement makes possible a large-scale experimental study on BS stopping

criteria, the results of which are the topic of this article.

We propose two stopping criteria. Both split the set of replicates computed so far into two equal sets and

compute statistics on the two sets. The frequency criterion (FC) is based on the observed frequencies of

occurrences of distinct bipartitions; the more conservative weight criterion (WC) computes the consensus

tree for each subset and scores their similarity. Both criteria can be computed efficiently, and so a stopping

test can be run every so many replicates until stopping is indicated. We test these criteria and the general

convergence properties of BS values on 17 diverse real-world DNA—single-gene as well as multi-gene—

datasets that include 125–2,554 sequences. We find that our stopping criteria typically stop computations

after 100–500 replicates (although the most conservative criterion may continue for several thousand

replicates) while producing support values that correlate at better than 99.5% with the reference values on

the best ML trees. Unsurprisingly, differences tend to occur mostly on branches with poor support—on

branches with support values of at least 0.75, over 98% of the values returned after early stopping agree

with the reference values to within 5%.

Our results show that the BS convergence speeds of empirical datasets are highly dataset-dependent,

which means that bootstopping criteria can and should be deployed to determine convergence on a per

alignment basis. The criteria help to conduct as many BS replicates as necessary for a given accuracy level

and thus help to reduce the computational costs for phylogenetic analyses. Practitioners will no longer have

to enter a guess nor worry about the quality of support values; moreover, with most counts of replicates in

the 100–500 range, robust BS under ML inference becomes computationally practical for most datasets.

The remainder of this article is organized as follows: In Section 2, we review the BS concept and related

work on stopping criteria for (mostly non-phylogenetic) BS procedures, including a brief overview of
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convergence criteria for MrBayes (Ronquist and Huelsenbeck, 2003). In Section 3, we describe our family

of stopping criteria. In Section 5, we describe our experimental study, give detailed results, and discuss

their implications.

Over and above the preliminary version of this article (Pattengale et al., 2009), we have added the

following content: The criteria are now fully implemented in the current release version 7.2.5 of RAxML,

which required a large re-engineering effort. We have added an entirely new section (Section 4), which

details our major undertaking to improve the runtime performance of our technique. Specifically, we

discuss and assess the applicability of bipartition hashing (Pattengale et al., 2007) to bootstopping (Section

4.1) and present timing data showing the speed-up that RAxML has enjoyed via the application of these

techniques (Section 4.3). These techniques have also been integrated with all other functions in RAxML

that operate on bipartitions, such as a fast implementation of the Robinson-Foulds (RF) distance. We

present new results on stability properties of our criteria (Section 5.3), namely that they appear tolerant to

reordering BS replicates, as well as seemingly independent of the BS procedure (standard versus Stama-

takis’ rapid BS [Stamatakis et al., 2008]). Finally, in Section 5.5, we have also included a comparison to

Hedges equation that demonstrates that the number of replicates required to achieve a certain accuracy

level is indeed highly dataset-dependent

2. RELATED WORK ON BOOTSTOPPING CRITERIA

2.1. The phylogenetic bootstrap

Phylogenetic BS is a fairly straightforward application of the standard statistical (nonparametric) BS and

was originally suggested by Felsenstein (1985) as a way to assign confidence values to edges=clades in

phylogenetic trees. Phylogenetic BS proceeds by generating perturbed BS alignments, which are assembled

by randomly drawing alignment columns from the original input alignment with replacement. The number

of columns in the BS alignment is identical to the number of columns in the original alignment, but the

column composition is different. Then, for each BS alignment, a tree is reconstructed independently. The

procedure returns a collection of tree replicates. The replicates can then be used either to compute con-

sensus trees of various flavors or to draw confidence values onto a reference tree, for example, the best-

scoring ML tree. Each edge=branch in such a reference tree is then assigned a confidence value equal to the

number of replicates in which it appears. The question we address in this article is: How many replicates

must be generated in order to yield accurate confidence values? By accurate confidence values, we mean

relative accuracy of support values (the ‘‘true’’ support values are unknown for empirical datasets) with

respect to support values obtained by a very large number (�10,000 in our experiments) of reference

replicates. The extent to which the question about the appropriate number of BS replicates has been

answered in other applications of the (non-phylogenetic) BS is the subject of the following subsection.

2.2 General bootstopping criteria

Most of the literature addressing (whether theoretically or empirically) the issue of ensuring a sufficient

number of replicates stems from the area of general statistics or econometrics. However, they are difficult

to apply to phylogenetic BS due to the significantly higher computational and theoretical complexity of the

estimator (Holmes, 2003). In addition, the problem is more complex since the number of entities (bipar-

titions) to which support values are assigned grows during the BS procedure—that is, adding more BS

replicates increases the number of unique bipartitions. This is not commonly the case for other application

areas of the general BS procedure and general bootstopping criteria that have recently been proposed (Guo

and Peddada, 2008).

Standard textbooks on BS such as Davidson and Hinkley (2003) and Efron and Tibshirani (1993) suggest

choosing a sufficiently large number, B, of BS replicates without addressing exact bounds for B. This does

not represent a problem in most cases where the BS procedure is applied to simple statistical measures such

as the mean or variance of univariate statistics. Efron and Tibshirani (1993) suggest that B¼ 500 is

sufficient for the general standard BS method in most case. Manly (1997) proposes a simple approach to

determine B a priori—that is, before conducting the BS analysis, based on a worst-case scenario by

approximating the standard deviation of BS statistics. The analysis in Manly (1997) concludes that a

general setting of B¼ 200 provides a relatively small error margin in BS estimation. This approximation
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can only be applied to standard BS procedures, based on simple, univariate statistics. However, a larger

number of BS replicates is required for other applications of the BS such as the computation of confi-

dence intervals or tests of significance. Hall (1986) proposes a general method for stopping the BS in

a percentile-t confidence interval. In the area of econometrics, Davidson and MacKinnon (2000) propose

a two-step procedure to determine B for BS P-values based on the most powerful test. Andrews and

Buchinsky (1997, 2000, 2001) propose and evaluate a general three-step algorithm to specify B in the BS

procedure. Andrews and Buchinsky (2002) then further extend their algorithm to BS BCA intervals.

With respect to phylogenetics, Hedges (1992) suggests a method to specify B a priori for a given level of

significance. In the approach of Hedges (1992), a bipartition is assumed to occur in BS replicates according

to a binomial distribution, with binomial parameter p equal to its true support. As such, it is possible (under

the binomial assumption) to calculate an upper bound B on the number of replicates needed to achieve a

specified accuracy. Figure 1 shows the estimation of B for three accuracy thresholds.

This approach does not take into account the number of sequences and hence the number of potential

alternative tree topologies, or the number of base-pairs or distinct patterns in the alignment. However, as

underlined by our experimental results, important alignment-specific properties such as the ‘‘gappyness’’

(percentage of gaps) of the alignment, the quality of the alignment, and the respective phylogenetic signal

strength greatly influence the estimator (the tree search algorithm) and hence the stability of BS replicates.

We conclude that an adaptive stopping criterion that is computed on the fly at regular intervals during the

actual BS search is best suited to take into account the particularities of real-world datasets and to

determine a useful trade-off between accuracy and inference time. We are convinced that such trade-offs

will become increasingly important for analysis on large phylogenomic datasets under computational

resource constraints, as a recent collaborative study (Hejnol et al., 2009) with biologists already required

2,000,000 CPU hours on an IBM BlueGene=L supercomputer. Therefore, we assess our approach em-

pirically, via a large number of computational experiments on diverse real datasets.

2.3. Bayesian convergence criteria and tools

There exists some work on convergence criteria and tools for Bayesian phylogenetic analyses, most

probably because the convergence of the actual search as opposed to a sufficient number of BS replicates in

ML represents a more serious methodological problem for Markov chain Monte Carlo (MCMC) in general

and phylogenetic MCMC searches in particular (Mossel and Vigoda, 2006; Soltis et al., 2007; Stamatakis

et al., 2004). Brooks and Gelman (1998) and Gelman and Rubin (1992) provide general frameworks to

determine convergence of iterative simulations, with a focus on MCMC methods. MrBayes implements

convergence diagnostics for multiple Metropolis-coupled MCMC chains that use the average standard

deviation in partition frequency values across independent analyses. One potential drawback is that these

statistics take into account all partition frequencies and not only the important, highly supported ones. In

addition, there exist tools for graphical exploration of convergence such as Are We There Yet? (AWTY)

(Nylander et al., 2007) to visualize convergence rates of posterior split probabilities and branch lengths or

Tracer (Rambaut and Drummond, 2004) that analyzes time-series plots of substitution model parameters.

AWTY also offers bivariate plots of split frequencies for trees obtained via independent chains. Note that

both AWTY and Tracer require the user to visually inspect the respective output and determine whether the

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0.7  0.75  0.8  0.85  0.9  0.95  1

N
um

be
r 

of
 R

ep
lic

at
es

Bootstrap p-values

± 1% accuracy
± 2% accuracy
± 5% accuracy

FIG. 1. Number of required replicates for various confidence intervals according to Hedges.

340 PATTENGALE ET AL.



MCMC chains have converged. We are not aware of any computational experiments to assess the per-

formance and accuracy of the above methods.

3 BOOTSTOPPING CRITERIA

In this section, we introduce stopping criteria for BS procedures, which we call ‘‘bootstopping’’ criteria.

These are measures that are computed and used at run time, during the replicate inference phase, to decide

when enough replicates have been computed. The FC is based upon Pearson’s correlation coefficient,

whereas the RF WC is based upon the (weighted) symmetric topological difference widely used in phy-

logenetics.

3.1. Terminology and definitions

A phylogenetic tree T is an unrooted binary tree; its leaves (also called tips) are labeled by the organism

names of the input alignment, while its internal nodes represent hypothetical extinct common ancestors.

Removing a branch between nodes a and b from a tree T disconnects the tree and creates two smaller trees,

Ta and Tb. The trees Ta and Tb induce a bipartition (or split) of the set S of taxa (organism names at the

leaves) of T into two disjoint taxon sets A and B (A[B¼ S). We denote such a bipartition as AjB. Thus,

there exists a one-to-one correspondence between the bipartitions of S and the branches of T, so that each

tree is uniquely characterized by the set of bipartitions it induces. If jSj ¼ n, then any (unrooted) multi-

furcating phylogenetic tree for S has at most 2n� 3. If the tree is fully bifurcating the number of bipartitions

is exactly 2n� 3, while the number of non-trivial bipartitions (i.e., splits at branches that do not lead to a

tip) is n� 3.

The RF metric (sometimes referred to as symmetric difference) is a dissimilarity metric between two

trees and counts the number of bipartitions that occur in one tree and not the other; i.e., the RF distance

count is incremented by one for bipartitions that are unique to one of the two trees. The Weighted

Robinson-Foulds (WRF) metric generalizes the RF metric by summing the weights of the bipartitions that

contribute to the RF metric (and also, optionally, includes the sum of differences between the weights of

shared bipartitions). Finally, consensus methods take a set of trees and return a single ‘‘summary’’ tree. The

majority rule (MR) consensus method returns a tree containing only bipartitions that exist in greater than

half the input trees. The extended majority rule (MRE) method (also known as greedy consensus) uses the

MR consensus tree as a starting point and greedily adds bipartitions that occur in less than half the input

trees by descending order of their frequency in the hopes (although not always possible) of obtaining a fully

bifurcating (binary) tree.

3.2. Stopping criteria

The two criteria we present in the following are both based on the same underlying mechanism. Initially,

the set of replicates to be tested for convergence is randomly split into two equal halves. Then, we compute

statistics between the bipartition support values induced by these halves. If the difference between the splits

of the replicates are small, this indicates that adding more replicates will not significantly change the

bipartition composition of the replicate set. In addition, we compute the statistics not only for one but for

100 random splits of the replicate sets; i.e., we draw a sample from all possible random splits of the

replicates by applying a permutation test.

3.2.1. Frequency criterion. The FC uses the bipartition frequencies of all replicates computed up to

the point at which the test is conducted, for example, every 50 replicates (i.e., at 50, 100, 150,

200, … replicates). One major design goal is to devise stand-alone criteria that do not rely on a previously

computed best-known ML tree for the original alignment. This is partially due to the rapid BS algorithm

(and future extensions thereof ) in RAxML that uses information gathered during the BS search to steer and

accelerate the search for the best-scoring ML tree on the original alignment. Another important goal is to

avoid a heavy dependency on the spacing (e.g., every 10, 20, or 50 replicates) of two successive steps of the

test; i.e., we do not want to compute statistics that compare 20 with 30 replicates. Therefore, we have

adopted a procedure that is in some sense similar to the aforementioned convergence tests for MCMC

chains implemented in MrBayes. There are two main differences though: (i) we do not use the test to

HOW MANY BOOTSTRAP REPLICATES ARE NECESSARY? 341



determine convergence of the tree search itself, and (ii) we do not apply the test to only one single random

or fixed split of the replicate tree set.

Our FC test works as follows: Assume that the test is conducted every 50 replicates (i.e., after the

computation of 50, 100, 150, … BS replicates). This spacing of 50 has been chosen empirically, in order to

achieve a reasonable computational trade-off between the cost of the test and the cost for computing

replicates (future work will cover the development of adaptive spacing strategies). The empirical setting

also fits the typical range of bootstopped tree topologies, which are 150–450 in our FC-based experiments,

depending on the strength of the signal in the respective alignment. For the sake of simplicity, assume that

we conduct the test for 50 replicates. At the top level of our procedure we perform a permutation test by

randomly splitting up those 50 tress p¼ 100 times ( p¼ 100 permutations) into disjoint sets s1, s2 of equal

size with 25 trees each. The advantage of 100 random splits over a single random split or a fixed split into,

for example, replicates with even and odd numbers, is that the curve is smoothed and depends to a far lesser

degree on a by-chance favorable or unfavorable single split of the data.

In Figure 2, we depict the impact of using p¼ 1, 10, and 100 permutations on the FC and WC criteria

(see Section 3.2.2) for a dataset with 500 sequences. As expected, the curve becomes smoother for larger

p settings; a setting of p¼ 10 appears to be sufficient to smooth the curve and reduce the cost of the test.

Though statistically more stable, the disadvantage of this approach is clearly the significantly increased

computational cost of the test. Nonetheless, an initial, highly optimized at a technical level, yet algorith-

mically naı̈ve implementation requires only 1 minute to conduct all 6 tests on 50, 100, … , 300 replicates on

a 1,481 taxon dataset (2 minutes, 40 seconds for p¼ 1000 random splits), compared to roughly 27 hours for

the computation of 300 rapid BS replicates.

For each of the aforementioned 100 random splits, we compute the support vectors v1 for s1 and v2 for s2

for all bipartitions bALL found in s1[ s2 (i.e., all bipartitions contained in the original 50 trees). Note that

both vectors v1,v2 have length bALL. Given those two vectors for each permutation (random split) i, where,

i¼ 0, … , 99 we simply compute Pearson’s correlation coefficient ri on the vectors. Our procedure stops if

there are at least 99 ri with ri� 0.99 (only one possible parameter setting). We henceforth denote the

Pearson’s threshold used as rFC. A potential drawback of this method is that the support frequencies on the

best-scoring tree or for all bipartitions found during the BS search might not follow a normal distribution.

Nonetheless, the FC method appears to work reasonably well in practice (see Section 5). Another potential

drawback is that the FC criterion is based on the bipartition frequencies of all bipartitions found. However,

from a biological point of view, one is only interested in the ‘‘important’’ bipartitions (i.e., the bipartitions

induced by the best-scoring ML tree or the bipartitions that form part of a strict, majority rule, or extended

majority rule consensus tree). We address the design of a criterion that only takes into account important

bipartitions in the next section. Nonetheless, the FC test can easily be extended in the future to take into
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account the important bipartitions by providing a user-defined best-scoring ML tree using either Pearson’s

correlation or, for example, the mean square error between corresponding bipartition support values.

3.2.2. Weighted Robinson-Foulds distance-based criterion. The WRF distance criterion is em-

ployed similarly to the FC criterion (i.e., every 50 trees and uses p¼ 100 permutations per test). Rather than

computing a vector correlation, we compute the majority rules consensus trees for s1 and s2, and then assess

the (dis)similarity between the two consensus trees. We then use the respective consensus trees, which only

contain support values for ‘‘important’’ biologically relevant partitions, to calculate the WRF distance

between the consensus tree c(s1) of tree set s1 and the consensus tree c(s2) of tree set s2.

As a distance measure and hence convergence criterion, we use the WRF. This weighted topological

distance measure between consensus trees takes into account the support values and penalizes incongruent

subtrees with low support to a lesser extent. When RF distances are significantly larger than their weighted

counterparts (i.e., WRF), this indicates that the differences in the consensus trees are induced by subtrees

with low support. When WRF�RF, this means that the differences in the tree topologies under comparison

are due to differently placed clades=subtrees with high support. From a biological perspective the WRF

distance represents a more reasonable measure since systematists are typically interested in the phyloge-

netic position of subtrees with high support. In real-world studies, the typical empirical threshold is set to

75%; i.e., clades with a BS support of� 75% are usually considered to be monophyletic (Soltis and Soltis,

2003). As for the FC criterion, the WC stopping rule can be invoked with varying numbers of permutations

and threshold settings. One might, for example, stop the BS procedure, if for p¼ 99 out of 100 permu-

tations, the relative WRF between c(s1) and c(s2) is �5%. For reasons of consistency, we also denote the

threshold parameter for WC as rWC; a rWC setting of 0.97 means that the BS search is stopped when p WRF

distances are � (1.0–0.97), or 3%.

4. IMPLEMENTATION CONSIDERATIONS

In the following, we address an important issue that had been completely omitted from the original

article—in other words, efficiently implementing our criteria, which also entails several interesting algo-

rithmic problems. In the following, we focus on implementation and performance of the WC criterion,

which we consider to be the biologically more meaningful criterion. The algorithmic problems associated

with the FC criterion are analogous.

4.1. Application of bipartition hashing

The efficient computation of our BS convergence criteria (see Section 3.2) is closely related to efficiently

computing the RF metric (Robinson and Foulds, 1981) and handling bipartitions induced by a large

collection of trees (as outlined in Section 3.1). The main computational challenge lies in the design of

efficient methods to extract, maintain, and operate on lists that contain all non-trivial bipartitions (splits)

induced by a collection of trees. Apart from computing the RF distances, such lists of bipartitions are also

required for computing consensus trees ( Jermiin et al., 1997) or implementing convergence assessment

mechanisms for Bayesian inference programs (Nylander et al., 2007). While the theoretically optimal RF

algorithm is well-described (Day, 1985), important technical details are often not considered and rarely

assessed experimentally such as, for example, the choice of the hash function.

A bipartition of a tree T, AjB can be represented by two presence=absence bit vectors vA,vB of length n,

where every bit denotes the presence=absence of a taxon in the subtree to the left (Ta) and to the right (Tb)

of the edge=branch that is being cut. Clearly, vA is the bit-wise complement of vB. Because of this property,

it suffices to either store vA or vB. In order to ensure consistency of this choice between vA and vB and avoid

computational overhead to check whether two bit-vectors are bit-wise complements of each other, one may

chose to always store the bit-vector that contains (or does not contain) a specific taxon, for example, the

first taxon in the input alignment. This is important, to ensure consistency among bipartitions extracted

from two distinct trees, T1,T2, because a bipartition that is shared between the trees may be stored as vA for

T1 and vB for T2.

Let us now consider how to efficiently extract bipartitions from an unrooted tree that is already stored in

memory; i.e., we do not consider how to efficiently read in trees in the standard NEWICK format (see
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http:==evolution.genetics.washington.edu=phylip=newicktree.html) from file. The algorithm for efficient

computation of the bipartitions at each inner branch is conceptually very similar to Felsenstein’s pruning

algorithm for computing the ML score on a tree (Felsenstein, 1981). It relies on a rooted view of the

otherwise unrooted tree by the bipartition bit vectors, as well as on a cyclic organization of inner node

pointers as used for ML computations (for details about this data structure organization, see Stamatakis and

Ott, 2008). Initially, we will assign bit vectors of length n to all 2n - 2 nodes of the tree and initialize the

bipartition vectors at the tips accordingly (i.e., just set the bit that corresponds to the respective taxon

number).

Thereafter, we place a virtual root into the branch that leads to the first taxon in the input alignment and

recursively compute all bipartition vectors bottom-up towards the virtual root via a depth-first traversal.

Keep in mind that all inner bipartition vectors will be oriented towards the virtual root of the tree. Every

time we compute the bipartition vector at an inner node that is connected to another inner node, we can

directly store the bipartition in a hash table. This means that we are always storing only those bipartitions

that do not contain the selected taxon and thereby ensure consistency. The complexity of this operation is

O(n2), since we need to compute n� 3 bipartition vectors, and the computation of each bipartition vector is

a for loop over n bits. However, in practice, 32, 64, or even 128 (if SSE-vectorized code is used) bit vector

entries can be computed in one CPU cycle, such that a more accurate approximation for the actual number

of instructions is, for example, (n � (n=32).

Given this efficient method for extracting bipartitions from trees, we can now consider the appropriate

data structure for storing these bipartitions. The usage of a hash table is straight-forward and represents an

efficient choice. However, the question arises how to select a hash function for the hash key, which in our

case is simply the bipartition vector. The usage of universal hash functions (Carter and Wegman, 1977) as

advocated in some more theoretical papers (Sul and Williams, 2007; Sul et al., 2008; Amenta et al., 2003)

is highly questionable: firstly, because the computation of a universal hash function given a bit vector of

length n is slow, and secondly, universal hash functions only work well when hash keys are equally

randomly distributed (Carter and Wegman, 1977), which is not very likely for hash keys that are induced by

a hierarchical data structure such as a tree. Those two practical performance considerations have not been

addressed in the aforementioned articles.

In contrast to this, we have experimentally assessed several highly tuned open-source hash functions that

are nicely summarized at http:==burtleburtle.net=bob=hash=doobs.html adopting an algorithmic engineer-

ing approach (Moret, 2002). In addition to this collection of hash functions, we also tested a phylogeny-

specific hash key proposed by Pattengale et al. (2007). This method takes advantage of the tree structure

and uses 32- or 64-bit integer values as hash keys instead of the entire bipartition vector. Initially, each

taxon is initialized by a random unsigned 64-bit integer number. Then, the hash numbers for the bipartitions

are also computed bottom up towards the virtual root by performing a bit-wise exclusive or on the

respective child numbers (hash-keys). This procedure can be conveniently integrated into the depth-first

traversal that is used to compute the bipartition vectors. Extensive tests on large collections of trees have

revealed that this method slightly outperforms all other tested hash functions in terms of speed and

generates the same amount of collisions that are resolved by chaining in the current RAxML im-

plementation. The procedure is outlined in Figure 3.

For performing the splits of our permutation tests for FC and WC (see Sections 3.2.1 and 3.2.2), we also

need to keep track of the trees that contain a bipartition that is stored in the hash table. For this, we deploy

an additional presence=absence bit vector of length r, where r is the number of trees=replicates. Hence, if

we add an entry to the hash table and the respective slot is already occupied, we initially need to compare

the bipartition vector (or list of bipartition vectors) in that slot with the bipartition vector to be added.

If it matches one of the stored bipartition vectors, we simply set the respective bit for the replicate number

to 1; otherwise, we resolve by chaining.

4.3. Running time improvement

The initial implementation of our bootstopping criteria (Pattengale et al., 2009) did not perform bi-

partition hashing (see Section 4.1). Instead, a list of bipartitions were accumulated, such that determining

whether a bipartition had been previously encountered required a (worst-case linear time) scan of the list.

To this end, we have integrated and thoroughly assessed two alternative implementations that deploy

bipartition hashing. The first implementation, which was written from scratch in RAxML, is based upon
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hashing with chaining as described above. The second implementation invokes an appropriately adapted

version of FastRF (Pattengale et al., 2007) that has been integrated into RAxML (currently unreleased). The

latter implementation ignores collisions and thus is an inexact technique, but within a tolerable error. While

operations on bipartitions of trees represent an interesting algorithmic problem, one must keep in mind that

the respective execution times of the bootstop test are insignificant, compared to the actual replicate

inference times under ML. Nonetheless, they may become a limiting factor for parallel scalability on

massively parallel machines because of Amdahl’s law. Within this context, speed as well as a potential

future parallelization are important issues.

In Table 1, we report the speedup achieved by RAxML for the optimized bootstopping functions. The

column DATA labels each data set and corresponds to its number of taxa (see Section 5.1). Column CON-

WC indicates how many trees were processed for a setting of rWC¼ 0.03. Finally, columns (Pattengale

et al., 2009) impl., RAxML 7.2.5, and RAxMLþFastRF correspond to running times (in seconds) of the WC

implementation for the preliminary version of this paper (Pattengale et al., 2009), the publicly available

open-source version of RAxML 7.2.5, and the integration of FastRF (Pattengale et al., 2007) with RAxML,

respectively.
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FIG. 3. Outline of the procedure to efficiently extract bipartitions and generate bipartition hash numbers on an

unrooted binary tree.

Table 1. Performance Improvements for the Bootstopping Function in RAxML

DATA CON-WC (Pattengale et al., 2009) impl. RAxML 7.2.5 RAxMLþFastRF

150 650 2.48 2.52 3.29

218 700 5.21 5.30 6.16b

500 400 3.70 3.42 4.28

994 300 4.84 4.25 3.97

1,481 450 38.71 34.56 37.58

2,000 600 90.20 76.78 85.69

2,554 500 64.80 52.42 52.51

4,114 100a 24.45 11.32 8.65

6,718 100a 122.18 26.92 17.00

7,764 100a 264.43 37.09 23.09

37,381 250a dnf 1,700.29 453.86

Columns 3–5 are reported in seconds of CPU time.
aBootstopping did not converge, and the indicated number of replicates reflects all that were available.
bBootstopping for this sample actually converged after 550 trees (when rWC¼ 0.03); however, we adjusted rWC to 0.0297 (thereby

requiring 700 replicates to stop) to enable a meaningfully comparable run time.
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We observe that the new bipartition hashing approach has yielded a dramatic speed-up over the pre-

liminary implementation, especially as the number of taxa grows. Further, if one is willing to sacrifice

exactness (FastRF has a failure probability and is thus inexact), the third implementation is particularly

desirable for datsets with huge number of taxa. For a discussion of the accuracy of the FastRF approach, see

Pattengale et al. (2007).

5. EXPERIMENTAL SETUP AND RESULTS

5.1. Experimental setup

To test the performance and accuracy of FC and WC, we used 17 real-world DNA alignments containing

125–2,554 sequences. The number of distinct alignment patterns was 348–19,436. For the sake of sim-

plicity, alignments will henceforth be referenced by the number of taxa as provided in Table 2. The

experimental data spans a broad range of mostly hand-aligned sequences, including rbcL genes (500,

2,554), mammalian sequences (125, 1,288, 2,308), bacterial and archaeal sequences (714, 994, 1,481,

1,512, 1,604, 2,000), ITS sequences (354), fungal sequences (628, 1,908), and grasses (404). The 10,000

reference BS replicates on each dataset were inferred on two AMD-based Linux clusters with 128 and 144

CPUs, respectively. All result files and datasets used are available for download at http:==lcbb.epfl

.ch=BS.tar.bz2 We make this data available in the hope that it will be useful as a basis for further

exploration of stopping criteria as well as general properties of BS.

Computational experiments were conducted as follows. For each dataset, we computed a minimum of

10,000 BS replicates using the Rapid Bootstrapping (RBS) (Stamatakis et al., 2008) algorithm implemented

in RAxML. We then applied stand-alone bootstopping tests (either FC or WC) that take the set of 10,000

BS reference replicates as input and only execute the tests described in Section 3 without performing the

actual BS search. Returned is a file containing the first k trees from the full set, where k is determined by the

stopping criterion (FC or WC, along with appropriate parameter values). We refer to these first k trees as

the ‘‘bootstopped’’ trees.

We then computed a number of (dis)similarity metrics between the reference replicates and the boot-

stopped replicates, including correlation coefficient, RF between MRE consensus trees of the two sets, and

Table 2. Performance Analysis of FC ( p¼ 99, rFC¼ 0.99) versus WC ( p¼ 99, rWC¼ 0.97)

for Three Metrics: Number of Trees to Converge, WRF between MRE Consensus Trees,

and Correlation Coefficient

DATA CON-FC CON-WC WRF-FC WRF-WC P-FC P-WC # Patterns

125 150 50 0 0 0.9997 0.9994 19,436

150 250 650 0.03 0.01 0.9984 0.9994 1,130

218 300 550 0.04 0.01 0.9977 0.9988 1,846

354 450 1200 0.03 0.01 0.9979 0.9992 348

404 250 700 0.04 0.01 0.9965 0.9988 7,429

500 200 400 0.03 0.01 0.9982 0.9991 1,193

628 250 450 0.03 0.01 0.9975 0.9987 1,033

714 200 400 0.03 0.02 0.9977 0.9989 1,231

994 150 300 0.04 0.02 0.9964 0.9974 3,363

1,288 200 400 0.03 0.02 0.9967 0.9985 1,132

1,481 300 450 0.04 0.02 0.9968 0.9979 1,241

1,512 250 350 0.03 0.02 0.9977 0.9983 1,576

1,604 250 600 0.04 0.02 0.9975 0.9990 1,275

1,908 200 400 0.03 0.02 0.9975 0.9987 1,209

2,000 300 600 0.03 0.01 0.9976 0.9989 1,251

2,308 150 200 0.03 0.02 0.9980 0.9985 1,184

2,554 200 500 0.03 0.01 0.9975 0.9991 1,232

1,102 238 482 0.03 0.01 0.9976 0.9987 2,771

Column # Patterns indicates the number of distinct column patterns in each alignment. The last line depicts the respective averages.
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WRF between the MRE consensus trees of the two sets. Additionally, support values from the bootstopped

and full replicate sets were drawn on the best-scoring ML tree and the resulting support values compared.

5.2. Results for FC and WC methods

In Table 2, we provide basic performance data for FC and WC. Column DATA lists the alignments,

CON-FC the FC bootstop convergence number, and column CON-WC the WC bootstop convergence

number. Columns WRF-FC and WRF-WC provide the WRF distance between the MRE consensus tree for

the bootstopped trees and the MRE consensus tree induced by the reference replicates for FC and WC,

respectively. Finally, columns P-FC and P-WC provide Pearson’s correlation coefficient between support

values from the bootstopped trees and the reference trees on the best-scoring ML tree for FC and WC,

respectively.

We observe that WC tends to be more conservative (i.e., stops the BS search after more replicates, except

for dataset 125). Dataset 125 is a particularly long phylogenomic alignment of mammals and exhibits a

surprisingly low variability for the bipartitions it induces. The 10,000 reference replicates only induce a

total of 195 distinct bipartitions, which is extremely low given that a single BS tree for this dataset induces

125� 3¼ 122 nontrivial bipartitions. The WC method appears to capture this inherent stability of the BS

trees sooner than FC, while the WRF to the MRE tree is 0 in both cases; i.e., the consensus trees for 50,

150, and 10,000 replicates are exactly identical. This also underlines our claim that our criteria help avoid

needless computation (and needless energy expenditures, as large clusters tend to be power-hungry), in

particular on such large and challenging phylogenomic datasets. Due to the general trend for WC to stop

later, both WC metrics (P=WRF) are higher than the respective values for FC. For WC, a setting of

rWC¼ 0.97 always returns a bootstopped set with a WRF of <2% to the MRE consensus of the reference

replicates. The results also clearly show that there is a significant alignment-dependent variability in the

stopping numbers, as these range between 150 and 450 replicates for FC and between 50 and 1,200 for WC.

In Table 3, we provide additional metrics for the bootstopped trees. Columns mx and r2
x provide the mean

error and the mean squared error between support values induced by the x¼ {FC,WC}-bootstopped trees

and by the reference trees on the best-scoring ML tree. Columns SUPPLOSS-FC and SUPPLOSS-WC

quantify the deviations of support values in the best scoring ML tree.

In Figure 4, we graphically depict, for one dataset (1481), the convergence of FC versus WC. We plot the

RF and WRF distances between the MRE consensus of the bootstopped trees and reference trees over

Table 3. Performance Analysis of FC ( p¼ 99, rFC¼ 0.99) versus. WC ( p¼ 99, rWC¼ 0.97)

for Three Metrics: Mean Error, Mean Squared Error, and Loss of Support

DATA m-FC s2-FC m-WC s2-WC SUPPLOSS-FC SUPPLOSS-WC

125 0.303279 0.637530 0.483607 1.807108 0.001066 0.004672

150 1.544218 2.941922 1.074830 1.402564 0.009252 0.003605

218 1.865116 3.205062 1.297674 1.836971 0.005070 0.004674

354 1.364672 1.912598 0.886040 0.864506 0.002009 0.002835

404 2.553616 6.626178 1.384040 2.386179 0.012357 0.007170

500 1.792757 3.532503 1.239437 1.936634 0.010020 0.006841

628 2.030400 4.531876 1.398400 2.175677 0.013400 0.008408

714 2.129395 4.973412 1.424754 2.396237 0.010858 0.008833

994 2.498486 11.178353 2.068618 9.014464 0.013895 0.010575

1,288 2.477821 8.308652 1.700389 3.752257 0.013899 0.009864

1,481 1.845061 5.082219 1.496617 3.243223 0.008562 0.007287

1,512 1.762094 3.958643 1.552684 3.176317 0.008403 0.006289

1,604 1.898813 3.891073 1.229232 1.746953 0.008120 0.005721

1,908 1.961680 4.209030 1.377528 2.298479 0.009711 0.007113

2,000 1.773160 3.323105 1.184276 1.504350 0.008488 0.005020

2,308 1.951410 6.626706 1.703254 4.919317 0.010330 0.009681

2,554 2.063897 4.639194 1.248530 1.793192 0.011319 0.006370

1,102 1.871522 4.681062 1.338230 2.720849 0.009221 0.006762

The last line depicts the respective averages.
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distinct settings (0.87, 0.88, … ,0.99) for rFC and rWC. For all but two datasets, we observed that WC

yielded a better convergence (while it required almost 50% more replicates on average) toward replicate

sets whose consensi are more congruent (i.e., have lower RF and WRF distances) with the full replicate

sets, as a function of r. This favorable property is due to the fact that WC is exclusively based on the

‘‘important’’ bipartitions. Therefore, WC allows us to more precisely specify the desired degree of accuracy

with respect to the biologically relevant information via an appropriate setting of r. As can be derived from

Table 2, a setting of r¼ 0.97 for WC induces a WRF toward the reference dataset consensus that is �2% in

all cases for all of our datasets. Hence, the usage of a WC threshold will also be more meaningful, because

it appears to be strongly correlated with the final WRF distance to the 10,000 reference replicates.

5.3. Robustness of criteria

To conclude that our criteria are robust, we investigated the sensitivity of our criteria to two factors: the

ordering of BS replicates and the method used to create the BS replicates. In Table 4 (for WC, rWC¼ 0.03)

and Table 5 (for FC, rFC¼ 0.99), we report on the results. For each full set of BS replicates, we generated

10 random permutations of the order of trees. We then applied our bootstop procedures again on each of the

copies (permutations).
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FIG. 4. Plot showing convergence of weight criterion (WC) over frequency criterion (FC) for various threshold

settings (rFC and rWC respectively) on dataset 1418.

Table 4. Data Supporting the Robustness of WC to Reordering Replicates

as well as the Method for Generating Bootstrap Replicates

DATA me se mm sm SBSe

125 7.9 2.39 3.86 1.63

150 3.2 1.08 1.04 0.23

218 2.9 0.54 0.90 0.14 3.0

404 3.7 0.64 1.03 0.18

500 4.9 0.70 1.62 0.22 4.0

628 4.7 0.78 1.38 0.16

354 3.0 0.63 0.88 0.16 5.0

714 5.5 0.92 1.96 0.23 6.0

994 7.2 0.75 2.71 0.56

1,481 4.6 0.92 1.39 0.19

2,000 4.9 0.70 1.23 0.13

1,288 6.1 0.70 1.94 0.20

1,604 5.0 0.77 1.30 0.08

1,908 6.4 0.92 1.90 0.11 7.0

2,554 5.8 0.87 1.58 0.09

2,308 9.0 1.61 3.12 0.33

1,512 6.5 0.92 2.04 0.14

The notable column is se, which indicates strong agreement across criterion applications while

shuffling replicates.

348 PATTENGALE ET AL.



In each table, me refers to the mean of the worst support value error (for bipartitions from the best ML

tree with support of >75%) across 10 permutations. While the selected threshold settings for the stopping

criteria yield certain accuracy errors, the standard deviation of the same quantity – se, is small, which

underlines the robustness of our stopping criteria under permutations of the input replicates that we

intended to demonstrate. We have also included (for completeness) the mean and standard deviation of the

average error in support (again, of bipartitions from the best ML tree with support of �75%) as mm and sm.

Regarding robustness to the method used to generate replicates, we generated standard BS replicates for

five of our datasets and subsequently ran them through our bootstopping criteria. The results are also listed

in Tables 4 and 5, under the column SBSe. Clearly, the error in bipartition support for the bootstopped set of

standard BS sets agrees nicely with the rapid BS case.

5.4. Convergence of data sets

In addition to assessing our stopping criteria, we have also comprehensively assessed the inherent

convergence properties of our replicate sets. Doing so has enabled us to understand a number of quantities

that tend to reflect BS support and may help in the design of improved stopping criteria. We have plotted a

number of (dis)similarity measures between a subset (i.e., the first m trees) and full replicate (�10, 000

trees) set. In Figure 5, we plot the RF and WRF (in the two lower plots) between the MRE consensus of

each tree set restricted to the first m trees versus its respective full set of replicates (�10, 000 trees). This

plot shows the differences in convergence speeds among datasets. In addition, it underlines that WRF

introduces less noise than RF as replicates are added, so that WRF is a more reliable measure for con-

vergence. An extreme example for this is dataset 354, a short (348 alignment columns) alignment of maple

tree sequences from the ITS gene that is known to be hard to analyze (Grimm et al., 2006). A comparison

between the development of RF and WRF over the number of trees for this alignment shows that there are

many sequences with low support that are placed in different parts of the tree and essentially reflect

unresolved nodes. The slight increase of distance metrics around 1,000 replicates and consecutive decrease

observed for dataset 125 might be minor artifacts of the RAxML RBS algorithm.

Also in the upper part of Figure 5, we plot the development of the mean error between support values of

m replicates and all replicates on the best-scoring tree. The three plots in Figure 5 clearly show that the

development of WRF distances over the number of replicates is highly congruent to the development of the

mean error on the best-scoring tree. Thus, WRF can be used as a criterion to determine convergence

without an external reference tree. Accordingly, Figure 6 shows the development of WC and FC over

Table 5. Data Supporting the Robustness of FC to Reordering Replicates

as well as the Method for Generating Bootstrap Replicates

DATA me se mm sm SBSe

125 5.8 1.78 1.74 0.70

150 5.5 1.75 2.98 0.49

218 5.5 1.36 2.47 0.43 4.0

404 6.1 0.94 2.44 0.32

500 7.4 1.36 3.45 0.42 5.0

628 6.8 1.33 2.95 0.27

354 4.3 0.90 1.60 0.14 5.0

714 7.3 1.10 3.54 0.31 7.0

994 9.5 1.63 4.20 0.57

1,481 6.1 1.22 2.21 0.21

2,000 6.8 1.08 2.26 0.11

1,288 8.4 1.43 3.41 0.19

1,604 7.9 1.58 2.78 0.20

1,908 9.2 1.33 3.32 0.17 7.0

2,554 9.1 1.87 3.44 0.32

2,308 10.0 1.18 3.99 0.19

1,512 7.3 1.10 2.90 0.20

The notable column is se, which indicates strong agreement across criterion applications while

shuffling replicates.
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number of replicates, which as desired tracks nicely with Figure 5. Designing such a criterion has been a

major goal of the phylogenetic community; WRF is the first good answer. Moreover, the plots can help to

determine an appropriate threshold setting for rWC, depending on the desired degree of accuracy.

Finally, in Figure 7, we plot the support values of FC=WC-bootstopped trees against the support values

from the reference replicates on the best-scoring ML tree for dataset 628. The comparison clearly shows a

decrease in deviations from the diagonal for the WC criterion.

5.5. Comparison to Hedges criterion

We also experimentally assess the accuracy of the formula proposed by Hedges, (1992), which is also

covered briefly in Section 1 on real datasets. As already mentioned, it can be used to compute an upper
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bound for the number of replicates that are required to achieve a certain accuracy. In our experiments, we

set the upper bound such that the theoretical error for support values of 75% (or greater) lies at �2%. This

upper bound is roughly 2000 replicates, as can be derived from Figure 1. We chose this threshold of

accuracy because biologists typically employ this threshold when deciding whether a bipartition is sup-

ported or not. This empirical setting is also suggested by an in-depth study on real and simulated datasets

(Hillis and Bull, 1993).

Therefore, we performed experiments in order to determine how many replicates were truly necessary

(for our data) to meet the desired accuracy of �2% on our datasets for all bipartitions supported by >75%

by 10,000 replicates on the best-scoring ML tree. The results of our experiments (i.e., the number of

replicates per datasets to achieve the desired accuracy) are as follows:

Dataset 125 1288 1481 150 1512 1604 1908 2000 218

# Replicates 950 dnf1 1400 1600 1500 1400 1650 1650 1200

Dataset 2308 2554 354 404 500 628 714 994

# Replicates 1550 1900 1550 1550 1700 1850 1200 1550

As such, we conclude that the estimate of Hedges (1992) provides a reasonable upper bound for

the accuracy, meaning that it is not a gross overestimate. To our knowledge, this data represents the

first empirical assessment of Hedges formula. Nonetheless, the number of replicates required is highly
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1Dataset 1288 had not beat the threshold by 2000 replicates, but had by 2500.
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dataset-dependent. Thus, given the above stopping numbers, there is a potential for computing far too many

replicates and wasting 30% or more CPU hours when deploying the formula. Interestingly, dataset 1288

requires more replicates than indicated by Hedges (1992) formula to achieve the desired accuracy level.

6. CONCLUSION

We have conducted the first large-scale empirical ML-based study of the convergence properties of BS,

using biological datasets that cover a wide range of input alignment sizes and a broad variety of organisms

and genes. In addition, we have developed and assessed two bootstopping criteria that can be computed at

run time and do not rely on externally provided reference trees to determine convergence. The criteria have

been designed so as to capture a stopping point that provides sufficient accuracy for an unambiguous

biological interpretation of the resulting consensus trees or best-known ML trees with support values. The

correlation between bootstopped support values and support values from 10,000 reference trees exceeds

99.5% in all cases, while the relative weighted tree distance (used with the WC criterion) is smaller than the

specified threshold value in all cases. We conclude that the WC criterion yields better performance and

higher accuracy than FC, while it correlates very well with the mean error of support values on the best-

scoring tree. We advocate the use of WC over FC because it only takes into account the BS support of

‘‘important’’ bipartitions which are subject to biological interpretation. We have also shown that the

number of replicates required to achieve a certain level of accuracy is highly dataset-dependent for real

data, so that, by using our criteria, an investigator need only compute as many replicates as necessary, thus

avoiding the waste of scarce computational resources, in particular for future large-scale phylogenomic

analyses. Finally, we have fully integrated the criteria into the current release of RAxML and provided a

detailed description and study of implementation issues associated to the stopping functions. Our pro-

duction level implementation yields speed-ups of the stopping function up to a factor of 7 on datasets with

thousands of taxa.

Since the preliminary version of this paper, we have completed the full integration of the advanced

hashing techniques into RAxML 7.2.5. We have parallelized (Aberer et al., submitted) the hash table

operations using Pthreads and vectorize operations on bit vectors by using SSE3 instructions. Finally, we

will devise ways to dynamically adapt the spacing of FC=WC criteria (which is currently fixed at 50) to the

convergence speed of the BS replicates (i.e., use a more sparse spacing for the initial phase and a denser

spacing for the later phase of the BS search).

ACKNOWLEDGMENTS

We would like to thank Derrick Zwickl and Bret Larget for useful discussions on this manuscript. We are

also thankful to Andrew Rambaut for discussions on Tracer and AWTY. We would also like to thank the

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50  60  70  80  90  100

A
ll

 R
ep

li
ca

te
 T

re
es

 (
10

,0
00

 r
ep

li
ca

te
s)

BootStopped Trees

FC (250 replicates)
WC (450 replicates)

FIG. 7. Support values drawn on the best maximum likelihood (ML) tree for frequency criterion (FC; blue) and

weight criterion (WC; red) versus full replicate set, for dataset 628.

352 PATTENGALE ET AL.



following colleagues for providing real-world datasets: N. Poulakakis, U. Roshan, M. Gottschling, M.
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