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Abstract

Wherteas previous studies have investigated cotrelates of extinction risk either at global
ot regional scales, our study explicitly models regional effects of anthropogenic threats
and biological traits across the globe. Using phylogenetic comparative methods with a
newly-updated supertree of 5020 extant mammals, we investigate the impact of species
traits on extinction risk within each WWEF ecoregion. Our analyses reveal strong
geographical variation in the influence of traits on risk: notably, larger species are at
higher risk only in tropical regions. We then relate these patterns to current and recent-
historical human impacts across ecoregions using spatial modelling. The body—mass
results apparently reflect historical declines of large species outside the tropics due to
large-scale land conversion. Narrow-ranged and rare species tend to be at high risk in
areas of high current human impacts. The interactions we describe between biological
traits and anthropogenic threats increase understanding of the processes determining
extinction risk.
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INTRODUCTION

The most comprehensive global assessment of species
extinction risk, the IUCN Red List, currently lists 12% of
bird species, 21% of mammals and 30% of amphibians as
threatened by extinction (IUCN 2008). To counter the
impending mass extinction with sparse conservation funds,
it is necessary to understand the nature of threat factors to
which species are exposed, and why species differ in their
susceptibility to a given threat. Mammals are an appropriate
study group for analyses of extinction risk because a fifth
of their species are threatened, risk status for all mamma-
lian species has been evaluated by the Red List IUCN
2008), and their populations are declining rapidly (Collen
et al. 2009). They are also of particular conservation
concern because they are charismatic and fulfil important
ecosystem functions. Additionally, mammals are currently
the only species-rich taxon for which a species-level
phylogeny, global distribution maps and extensive bio-
logical trait data are available (Bininda-Emonds ez a/ 2007;
Jones et al. 2009).
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Previous studies have shown that extinction risk is
phylogenetically non-random even at small spatial scales,
which implies that some biological traits shated by close
relatives shape species’ fates in the face of human impacts
(Russell e al. 1998; Davies ¢f al. 2008). The distribution of
threatened species varies in space, as do anthropogenic
threats such as habitat loss, overexploitation and invasive
species (Baillie e a/. 2004). Successful prediction of future
risk will rely on knowledge of threats in a particular place, of
traits that make species susceptible to those threats and of
the phylogenetic relationships of the clade in question. Our
study therefore aims to disentangle some of the complex
interactions between threats and traits that shape extinction
risk patterns both phylogenetically and spatially.

Due to the complexity of extinction risk processes, the
global focus of many previous studies may obscure regional
variation in both threats and species traits (Fisher & Owens
2004). Cotrelates of mammalian risk differ substantially
among taxonomic groups and biogeographical regions,
indicating that clade- or region-specific processes may drive
the divergent patterns (Cardillo ez /. 2008). The influence of
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certain traits on population decline or extinction risk in
mammals and birds are specific to particular threat
processes (Owens & Bennett 2000; Isaac & Cowlishaw
2004; Price & Gittleman 2007). Taxonomically focused
analyses can describe taxon-specific threat processes more
accurately (Fisher & Owens 2004), but global analyses of
wider taxonomic focus can show more general patterns and
are less affected by low sample sizes (Purvis 2008). We try to
combine advantages of both approaches in our regionally
focused study by building separate models for each WWF
terrestrial ecoregion (Olson ez /. 2001). Our aim is to map
effects of species traits on mammalian extinction risk across
taxonomic groups while accounting for both phylogenetic
relationships and regional differences in threat processes.

We focus on the main biological traits that global studies
have found to be related to high extinction risk: small
geographical range size, low abundance or species popula-
tion density, low fecundity or slow life history and large
body size (see Fisher & Owens 2004; Purvis 2008 for recent
reviews). Narrow distributions and/or low abundances
make species susceptible, an effect believed to be intensified
by habitat loss (Scharlemann ez a/. 2005). Low fecundities
and slow life histories reduce the ability of populations to
compensate for increased mortality and have been con-
nected to overexploitation in particular (Owens & Bennett
2000; Isaac & Cowlishaw 2004; Price & Gittleman 2007).
According to a recent global study, body size interacts with
ecological and life-history variables: low reproductive rates
and low abundance are associated with high risk, but only
among larger mammals (Cardillo e o/ 2005). Some taxo-
nomically and regionally focused studies also find direct
body size effects (Isaac & Cowlishaw 2004; Collen ef al.
2006; but see Price & Gittleman 2007). Additionally, human
impacts often interact with species traits to shape risk
patterns. For example, large species are thought to be
threatened disproportionately by overexploitation but not
by habitat loss, as shown in birds (Owens & Bennett 2000)
and primates (Isaac & Cowlishaw 2004) but not in
artiodactyls (Price & Gittleman 2007).

Here, we use a novel two-stage combination of
phylogenetic and spatial analyses to describe how anthro-
pogenic threats interact with species traits to shape
extinction risk. In contrast to other studies that have
tended to focus on cutrrent human population density, we
additionally use measures for human appropriation of
ecosystem  services, economic development and current
and historical habitat loss via land conversion, all of which
have been connected to extinction risk (Scharlemann ez al.
2005; Luck 2007). In the first stage, we map regional
patterns of the influence that selected species traits have
on extinction risk when controlling appropriately for
phylogenetic effects. Using spatially explicit analyses, the
second stage then models these trait effects as functions of

recent-historical and current human impacts across the
globe.

MATERIAL AND METHODS

Geographical range and life-history data for mammals
excluding marine and strictly freshwater species were
obtained from the PanTHERIA data set (Jones ef al.
2009). Following global studies (Cardillo ez a/ 2005, 2008),
we chose geographical range size, body mass, species
population density and two life-history traits as explanatory
variables in our models. To describe life-history variation
independently of body size, gestation length and weaning
age were chosen to represent reproductive output and
timing (Bielby e a/ 2007). Following Purvis ez al. (2000), we
converted the JIUCN Red List 2007 ratings (IUCN 2007)
into a numerical index from 0 to 5 as a measure of
extinction risk and excluded species classified as Data
Deficient and threatened species not listed under criterion A
(recent or ongoing population decline) to avoid the
circularity of including species listed due to small population
sizes or geographical ranges. Risk status for species in both
our phylogeny and distribution data set was: 2447 species in
Least Concern, 563 Near Threatened, 444 threatened under
criterion A, and one Extinct in the Wild. Data availability for
each predictor variable ranged between all 3455 species
(geographical range size) and 801 species (23%; species
population density) (see Table S1).

To investigate regional impacts of different biological
traits on global mammalian extinction risk, we modelled the
relationship of traits with risk for each WWT terrestrial
ecoregion in a phylogenetic framework. We chose ecore-
gions rather than gtid cells as spatial units because they are
at a relatively small scale for a study of global extent, but
yield sufficiently large sample sizes for modelling. Ecore-
gions also represent more natural units than a grid as they
delimit biogeographical units with distinct natural commu-
nities (Olson ez al 2001). Finally, the coarser scale of
ecoregions may avoid some of the errors arising from
converting imprecise species ranges to e.g. grid cell
occurrence (Jetz e al. 2008). We overlaid ecoregion
shapefiles  (http://worldwildlife.org/science/data/terreco.
cfm, accessed on August 2006) with mammal species ranges
from Jones ef al. (2009) and extracted the occurrence of
species per ecoregion. Of the 825 terrestrial ecoregions, 791
contained mammals.

For our phylogenetic analyses, we updated the species-
level supertree of Bininda-Emonds e# a/. (2007) to account
for the more recent mammalian taxonomy of Wilson &
Reeder (2005). Species identities were associated between
the respective taxonomies (Wilson & Reeder 1993/2005)
using information on taxonomic synonymy therein. Of the
4510 species in the original phylogeny, 3609 were
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unchanged between the taxonomies and 368 were simply
renamed. Taxonomic lumping resulted in the loss of 111
species, whereas 422 species were split to 1043 tips to
incorporate 675 new species names (retaining the original
species name when applicable). All of these taxonomic
changes to the original topology were performed using the
Perl script SYNONOTREE v2.2b (Bininda-Emonds ez a/ 2004).
The new topology of 5020 species was then redated using
exactly the procedures and data sets detailed in Bininda-
Emonds e al. (2007, corrigendum 2008). We also updated
the sequence data for this procedure to account for the new
taxonomy using the Perl script SEQCLEANER v1.0.3. To avoid
potential ambiguity, only one-to-one renamings were
applied here; sequence data affected by taxonomic lumping
or splitting were deleted from the data set. The new
phylogeny is available in Appendix S1 (nexus file format,
containing three phylogenies which are the best, upper and
lower date estimates).

Phylogenetic analyses

We used Pagel's 4 (Pagel 1999) to test for phylogenetic
signal in our variables. If there is no phylogenetic signal in
the variable in question, 4 is zero, and it approaches one
with increasing phylogenetic pattern. Estimates for 4 were
significantly non-zero for all our traits, including ITUCN
extinction risk rating (see Table S1). Therefore, we
accounted for phylogenetic effects by using phylogenetic
generalized linear models (PGLM) for within-ecoregion
models of extinction risk (Freckleton ez al 2002). In a
PGLM, Pagel’s Z is used to account approptiately for the
phylogenetic covariance between response and explanatory
variables. This method avoids the errors associated with
assuming complete phylogenetic independence (4 = 0,
equivalent to non-phylogenetic analyses) or the over-
correcting caused by assuming complete phylogenetic
covariance (A = 1, equivalent to phylogenetically indepen-
dent contrasts, Purvis 2008). We ran all models in R version
2.0.0 (R Development Cote Team 2007), using code
provided by Robert Freckleton for the pGLM (version 3.2;
updated version available as part of the caic package from
http://r-forge.r-project.org/projects/caic).

We log-transformed all explanatory variables for the
analyses. To avoid overfitting, we discarded models where
the number of fitted parameters was higher than one-third
of the number of nodes in the ecoregion phylogeny, a strict
measure of sample size for phylogenetic models (Crawley
2007). As models including all five explanatory variables
could be fitted in only 379 ecoregions, we instead built
separate models focusing on each of our selected traits in
turn, while controlling for independent effects of the most
confounding covariates. The only single-predictor model
fitted geographical range size as the focal variable; all other
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models controlled for range size because it was the single
most important predictor of species risk. Models for species
population density, weaning age and gestation length as
focal traits additionally controlled for body mass, which
correlates strongly with all three. We did not fit interaction
terms because of sample size restrictions within the
ecoregions. Each of our five models was fitted to each
ecoregion and also to the whole mammalian data set to
compare global and regional results. To facilitate subsequent
comparisons of coefficient estimates across the globe, we
did not simplify models.

Spatial analyses

In comparative studies, not only phylogenetic but also
spatial non-independence can inflate degrees of freedom in
statistical testing and violate the assumption of indepen-
dently distributed errors in ordinary least-squares (OLS)
regression (Dormann ef al. 2007). As each of our phylo-
genetic models was on the comparatively small scale of a
single ecoregion, spatial autocorrelation of species values
within these models should be negligible. We therefore only
account for the spatial non-independence in our models
across ecoregions, effectively using a two-step process to
incorporate  both  phylogenetic and spatial  effects.
Approaches that combine phylogeny and space in a single-
step analysis are being developed (Freckleton & Jetz 2009)
but do not yet support multiple regression models.

We used non-spatial and spatially-explicit multiple regres-
sion to relate the differences in susceptibility caused by
intrinsic traits (i.e. the coefficients from the phylogenetic
models) to environmental variables across ecoregions. Using
an ARCINFO macro, we calculated ecoregion values for
several variables describing available environmental energy,
topology, anthropogenic and biological factors. Definitions
of variables and data sources are listed in Table 1. Prior to
analysis, we transformed environmental variables based on
best approximation of a normal distribution: ecoregion area
and the number of threatened species were log-transformed,
and proportional variables were square-rooted (proportions
of small-ranged and large species).

To avoid collinearity and reduce the data set dimensions,
we ran a principal components analysis (PC) on seven proxy
measures of anthropogenic impact (see Table S2). We used
the first three PCs as explanatory variables, because they
cumulatively explained over 90% of the total variance. PC1
mostly represented measures of current human impact
(human population density, human appropriation of net
primary productivity, human influence index and gross
domestic product; Table S2). PC2 had a high negative
loading of historical agriculture, reflecting land-use intensity
throughout the past 300 years, and PC3 represented current
urban land cover (Table S2).
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Table 1 Description and sources for variables used in the non-spatial and spatial models across ecoregions

Variable group Acronym Variable description Source
Energy AET Mean annual actual UNEP (1994)
evapotranspiration (mm)
Topology ELEV Mean elevation (m) USGS EROS (1996)
HABH Habitat heterogeneity Olson (1994)
Area Ecoregion area (km?) Olson e# al. (2001) (available at:
http://worldwildlife.org/science/data/terreco.cfm,
accessed on August 2000)
Human PC1 Principal component 1, reflecting See Table S2
influence current human pressures
PC2 Principal component 2, reflecting See Table S2
historical agriculture
PC3 Principal component 3, reflecting See Table S2
current urban land cover
Biology THRSP Number of threatened species Jones ez al. (2009); TUCN (2007/2008)
SmallGR Proportion of small-ranged species Jones et al. (2009)
LargeBM Proportion of large species Jones et al. (2009)

We measured habitat heterogeneity as the number of ecosystems. The number of threatened species was the number of species listed above
Least Concern (excluding Data Deficient species and species in the three threat categories not listed under criterion A, TUCN 2007). We
defined species as small-ranged if their range was in the lowest quartile of all ranges in the data set, i.c. < 33 180 km?” (Jetz & Rahbek 2002).

Large species were those with a body mass > 3 kg (Cardillo ef a/ 2005).

We initially fitted all environmental variables in Table 1 to
each of our five response variables (the coefficient estimates
from the phylogenetic models). These starting models were
then simplified to minimum adequate models (MAMs) by
sequentially removing the most non-significant variable until
only significant ones remained in the MAM (Crawley 2007).
Between two and six data points were removed from the
MAMs because they were overly influential (absolute
studentized residuals > 4). We report results without these,
but indicate where results including them differed
qualitatively.

Following Lichstein e a/. (2002), we tested for the
presence of spatial non-independence in the regression
residuals of our MAMs using Moran’s / correlograms, and
accounted for it using spatial autoregression (SAR, simul-
taneous autoregressive model). This method assumes that
the response is a function of both the explanatory variables
and the values of the response at neighbouring locations
(Kissling & Carl 2008). The SAR..,, approach we used
models the autoregressive process in the error term, and has
been recommended as the most reliable spatial autoregres-
sive method (Kissling & Carl 2008). We report results of
both OLS and SAR models for three reasons. First, SAR
models have only recently been adopted in spatial ecology
and there is no standard approach to model selection yet
(Dormann ef al. 2007). Second, it is unclear whether OLS
coefficient estimation is biased by residual spatial autocor-
relation (Hawkins e# /. 2007). Third, OLS models poten-
tially show broad-scale trends, whereas SAR models
preferentially select for variables influencing the response

at finer spatial scales (Diniz-Filho e# /. 2003); both are of
interest here.

We generated Moran’s / correlograms and spatial models
using the R packages spdep (Bivand 2007) and ncf
(Bjornstad 2006). Standardized / values were tested for
significance using a one-tailed randomization test for
positive autocorrelation (999 permutations, Lichstein ez al.
2002). In the SAR models, we defined neighbours as data
points closer than a model-specific maximum distance and
used a row-standardized coding scheme for the spatial
weights matrix (Kissling & Carl 2008). The maximum
neighbour distance chosen for each model optimized its
Akaike’s information criterion value (AIC, Crawley 2007).
Following Lichstein ez al. (2002), we calculated R values for
the SAR models using Nagelkerke’s formula, and assessed
the contribution of each variable to OLS and SAR model
fits using likelihood ratio tests for nested models.

RESULTS

Figure 1a shows the total species number and number of
threatened species within each ecoregion, illustrating the
spatial coverage of our data. Globally, each species trait was
significantly associated with risk when analysed separately,
although gestation length and body mass were non-
significant in the global model that included all species
traits (Table 2). Models for each focal trait were fitted in
602—729 ecoregions (Table 3). No models could be fitted in
Antarctica or Oceania because of low species numbers
there, but every other biogeographical realm was

© 2009 Blackwell Publishing Ltd/CNRS
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Figure 1 Species numbers per ecoregion (a) and tesults of within-ecoregion models for mammalian species extinction risk (b—f). In (a),

a citcle is plotted on the centroid of each ecoregion with > 1 mammal species. Circle size is proportional to total species number, and the size

legend indicates the minimum, 1st and 3rd quartile and maximum circle size (species numbers were square-root transformed for plotting).

Circles are coloured to indicate the number of species ranked above Least Concern, as shown in the colour key (excluding Data Deficient

species and species in the three threat categories not listed under criterion A, IUCN 2007). In (b—f), a circle is plotted on the centroid of each
ecoregion where a model could be fitted. Circle colour indicates the coefficient estimate for the focal explanatory variable in a PGLM against
extinction risk, as given by the colour key, where a coefficient of zero is highlighted by a horizontal line. Circle size shows the significance of
this coefficient, illustrated by the size legend in (b) for plots (b—f). The size legend indicates the size of a circle if the coefficient estimate is just

not significantly different from zero (~test, P = 0.05), i.e. smaller circles designate non-significant coefficients. Focal explanatory variables
were: (b) geographical range size, (c) body mass, (d) species population density, (¢) weaning age and (f) gestation length. All models controlled

for geographical range size, and models (d), (¢) and (f) also controlled for body mass.

represented. We found high regional heterogeneity in
influences of some biological traits on extinction risk
(Table 3, Fig. 1b—f).

Mammalian species extinction risk was negatively corre-
lated with geographical range size in 62% of ecoregions
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throughout the wotld (Table 3, Fig. 1b). Controlling for
range size, large body mass was correlated with high
extinction risk in approximately half of the ecoregions
(Table 3); significant correlations were mostly restricted to
the Neotropical, Afrotropical and Indo-Malayan realms
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Table 2 Results of global extinction risk

models for the complete mammal data set " R A Slope Frror — d.f !
using PGLM Geographical range size 3455 017 072  —0.149 0006 3453  26.80%
Body mass 2944 020  0.064 0116 0.014 2941 8.50%F*
Population density 797 024 059 -0.051 0.016 793 3.7k
Weaning age 943 021 0.50 0.171  0.054 939 3.15%*
Gestation length 1097 023 048 0.170 ~ 0.074 1093 2.30*
Full model 468 024  0.64
Geographical range size -0.213  0.022 462 9.80##*
Body mass 0.060 0034 462  1.77%
Population density -0.070  0.022 462 3.25%*
Weaning age 0.203  0.082 462 2.49%
Gestation length 0.036  0.116 462 0.32

All models for focal traits controlled for geographic range size, and the models for species

population density, weaning age and gestation length also controlled for body mass. The

number of species for the model (), adjusted B, optimized A and the coefficient estimate

(slope) with its standard error, degrees of freedom (d.f.) and absolute ~value are given. All 4
values were significantly different both from zero and one (4 tests, all P < 0.001). Signifi-
cance levels for # WP = 0.077; *P < 0.05; *P < 0.01; **P < 0.001.

Table 3 Results of within-ecoregion models of extinction risk for each biogeographic realm

Geographical Population Gestation
range Body mass density Weaning age length
T M A M A M S M S M S

Australasia 83 65 43 64 8 22 4 48 4 49 1
Antarctic 4 0 0 0 0 0 0 0 0 0 0
Afrotropic 114 102 74 102 96 96 0 101 87 102 25
Indo-Malaysia 106 101 91 100 91 80 0 97 5 98 25
Nearctic 118 107 27 107 8 96 13 107 9 106 47
Neotropic 179 166 153 166 125 142 105 145 12 146 26
Oceania 24 0 0 0 0 0 0 0 0 0 0
Palearctic 197 188 62 188 79 166 51 181 11 185 26
Total 825 729 450 727 407 602 173 679 128 686 150

7; total number of ecoregions; M, number of ecoregions with fitted models; S, number of ecoregions for which the slope of the focal trait was

significantly different from zero in a PGLM (£ < 0.05).

All models for focal traits controlled for geographic range size, and the models for species population density, weaning age and gestation

length also controlled for body mass.

(Fig. 1c). Species population density and life-history vari-
ables displayed more heterogeneous spatial patterns of
influence on extinction risk after controlling for range size
and body mass, and were independently significant in only
19-29% of ecoregions (Table 3, Fig. 1d—f).

Spatial (SAR) models always had lower AIC values and
explained a higher amount of variance than non-spatial
(OLS) models (Table 4). They also successfully removed
nearly all significant residual spatial autocorrelation (see
Fig. S1). At least one anthropogenic variable was significant
in each non-spatial model (Table 4). In both spatial and
non-spatial models, current human impacts were strongly
correlated with impacts of geographical range size on risk

(Fig. 2a), whereas the effects of large body mass were
greatest where there had been least historical land conver-
sion (Fig. 2b). Effects of species population density and life-
history traits on risk correlated with different anthropogenic
measures, although associations were non-significant in
spatial models for gestation length and species population
density (Table 4, Fig. 2c—e).

At least one biological variable was significant in each
model across ecoregions, and biology explained most of the
vatiance especially in the spatially-explicit models (Table 4,
Fig. 2). Available energy predicted the effects of body mass
and life-history traits only (Fig. 2b,d,e). Topological vari-
ables (especially habitat heterogeneity) were significant in

© 2009 Blackwell Publishing Ltd/CNRS
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Figure 2 Results of likelihood ratio (LR) tests for non-spatial
(OLS) and spatial (SAR) models across ecoregions. LR illustrates
the contribution to model fit for explanatory variables that were
significant in the non-spatial minimum adequate model (see
Table 1 for variable acronyms). Stars above the bars indicate
significance levels for the variables as in Table 4. Responses were
the coefficient estimates from phylogenetic models of extinction
risk within ecoregions for the following explanatory variables: (a)
geographical range size, (b) body mass, (c) species population
density, (d) weaning age, (¢) gestation length.

each of the non-spatial models, although they were nearly all
non-significant in spatial models for population density and
life-history traits (Table 4, Fig. 2).

There were no qualitative differences in non-spatial
models when excluding overly influential points, but three
spatial models changed. In the geographical range model,
proportion of large species was significant when including
all data points (3= 2.98, d.f. =702, P <0.01). When
including all data points in the body mass model, the
proportion of large species was non-significant (3 = 1.45,
d.f. = 698, P > 0.05). In the gestation length model with all
data points, proportion of small-ranged species was non-
significant (z = 1.71, d.f. = 665, P > 0.05) and contributed
much less to model fit than proportion of large species
[likelihood ratio (LR) = 2.9 for small-ranged, LR = 20.3 for
large species].

DISCUSSION

Globally, small geographical range, large body mass, low
population density, high weaning age and high gestation
length were associated with high extinction risk, but
ecoregion models showed that the influence of each of
these species traits varied substantially across the world. The
strong spatial variation at the ecoregion scale demonstrates
that to understand extinction-risk processes, small-scale
analyses are needed. Our results also successfully relate
current and recent-past human impacts to the influence of
biological traits on species extinction risk, emphasizing the
role of species traits in increasing susceptibility to different
anthropogenic threats.

Similarly to previous studies, geographical range size was
the single most important predictor of mammalian extinc-
tion risk both in our global and ecoregion models (Fisher &
Owens 2004; Cardillo ez a/. 2008). Large size mattered in the
global model when controlling for range size, but became
non-significant when life-history traits and population
density were added. Also, global models focusing on life-
history traits and species population density did not explain
much additional variance compared with the global model
for body mass. These findings could be attributed to body—
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mass interactions with life-history traits (Cardillo ez a/. 2005),
but our ecoregion results reveal that the signal of body mass
itself varies in space. Global models mask these regional
differences, whereas our combination of phylogenetic and
spatial analyses adds further understanding of the processes
underlying extinction risk.

Body mass

The striking spatial pattern for body mass impacts, with
large species at higher risk only in the tropics, does not stem
from a latitudinal gradient in body mass because mammals
do not show such a simple pattern (Rodriguez es al 2008).
Statistical power of our methods may play a role, because
the observed relationship between large body mass and high
extinction risk is stronger in ecoregions with more
threatened species and a higher proportion of large species.
However, when controlling for these variables, body mass
additionally influences risk more strongly in areas with lower
overall impact of historical agriculture. This suggests the
presence of an extinction filter (Balmford 1996), whereby
regions with a high agricultural impact throughout the past
300 years have lost their large species already. The
implication is that proportion of species threatened due to
large body mass should be highest at intermediate levels of
land conversion (Davies e/ al. 2008). Accordingly, current
human impacts did not correlate with body mass effects on
risk in our study; presumably, most species susceptible due
to large size have already been removed in many areas with
highest current anthropogenic threat.

Data on historical extinctions and geographical distri-
butions are patchy before the 19th century, but since then
medium- and large-sized species in Europe, North America
and Australia have definitely suffered range contractions
and local extinctions (Ceballos & Ehrlich 2002). Many
large species still exist in these areas, but have expetienced
declines in recent history that are not reflected by current
Red List status, as these take only the last 10 years or three
generations into account. For example, the brown bear
(Ursus arctos) and the wolf (Canis lupus) are rated Least
Concern (IUCN 2008). According to the threshold model
of Barnosky (2008), both human and livestock biomass
levels have skyrocketed above normally supportable levels
since the industrial revolution, sustained by the mining of
fossil fuels. If these increases throughout the past
300 years and the related large-scale land conversion have
caused declines and local extinctions of large mammals in
developed countries, they would have left large species
only in the tropics. There, agticultural land conversion
and human population have sharply increased only
during the last few decades, so the recent and ongoing
declines of tropical large species are reflected in the current
Red List.

© 2009 Blackwell Publishing Ltd/CNRS

Our results provide evidence for a post-industrial
extinction filter that has already affected large mammals in
temperate regions and is now affecting those in the tropics.
These body—mass effects might derive from undetlying life-
history variation, with large size increasing extinction risk
only in areas where species have predominantly slow life
histories and low reproductive output (Cardillo ez a/. 2005).
On the other hand, body mass remained a significant
variable in nearly all tropical ecoregions in our models fitting
weaning age or gestation length, which may suggest a life-
history-independent effect of body mass in the tropics. As
we were not able to control for trait interactions on risk, our
results cannot distinguish whether the high tropical impact
of body mass on risk is truly independent of life-history
traits or whether it reflects an interaction between body
mass and life-history traits in the tropics.

Leaving life-history aside, there are two mechanisms by
which large body mass could directly affect risk, which we
could not account for due to a shortage of globally
consistent data. Firstly, large mammals tend to have large
home ranges, so they are more likely to encounter threats
(Woodroffe & Ginsberg 1998). Home range size is
positively correlated with extinction risk in global models,
but not in taxonomically or regionally restricted ones
(Cardillo e al. 2008). Secondly, human exploitation prefer-
entially targets large mammals, and hunting has been shown
previously to cause body mass selectivity in extinction risk
(Owens & Bennett 2000; Isaac & Cowlishaw 2004; Collen
et al. 20006). Subsistence hunting is largely confined to
tropical regions and extracts more biomass in the Afro-
tropics than in the Neotropics (Fa ef a/ 2002), which
coincides well with areas of strong body—mass effects on
risk identified in our study. Our results are therefore
consistent with the speculation that, in addition to habitat
loss via land conversion, subsistence hunting in the tropics
contributes to the higher risk faced by large species in the
tropics than elsewhere.

Geographical range size

In accordance with global studies (e.g. Cardillo ez a/. 2008),
we found a close relationship of high extinction risk and
small geographical range size. Our ecoregion results
additionally show that small range sizes are consistently
linked to high risk across most of the world. This
relationship appears not to be driven by narrow-ranged
endemics, because the proportion of narrow-ranged species
within ecoregions was not a significant predictor in our
spatial analyses. At high northern latitudes, low species
richness and predominantly large range sizes may explain
the non-significant relationships (Davies ez al. 2008).
Additionally, our composite measure of current human
impact (PC1) was significantly correlated with the influence
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of range size on risk, indicating that high human population
densities, high appropriation of net primary productivity
and/or high economic development increase the effect of
small geographical range size on extinction risk. The
overwhelming impact of range size on risk is thought to
stem from habitat loss, which affects species globally and
narrow-ranged species in particular (Baillie e al 2004
Schatlemann ez a/. 2005). Given that our human impact
measure incorporated land transformation as part of the
human influence index, our results may provide evidence for
this link of habitat loss and high threat in narrow-ranged
species. However, our results may also emphasize the role of
more subtle habitat changes through extraction of ecosys-
tem services, especially as historical agriculture (another
indicator for habitat loss in our models) was non-significant
here. We show that current human activities clearly play a
role in increasing risk for narrow-ranged mammals virtually
everywhere, but future studies should endeavour to separate
the effects of different aspects of human influence on the
relation between geographical range size and extinction risk
(Luck 2007).

We are aware of two possible biases which could lead to
consistently more threatened Red List status for narrow-
ranged species. First, if the distributions of small-ranged
species are mapped at a smaller grid resolution than larger-
ranged ones, estimates of range size for risk assessments are
exaggerated for all but the smallest ranges (Cowley e al.
1999), which could overestimate proportions of threatened
narrow-ranged species. This bias is unlikely to affect our
analyses because distribution maps usually overestimate
range sizes for narrow-ranged species (Jetz ef al. 2008), and
because we excluded species ranked as threatened due to
small range size only.

The second possible bias arises if most threatened
mammals have already had their ranges reduced, because
then small current geographical ranges would reflect
susceptibility to human impacts. We found comparatively
strong phylogenetic pattern in our geographical range size
data (4 = 0.63). This may indicate that either geographical
range size can be more phylogenetically conserved than
previously thought (Webb & Gaston 2003) or that present
range sizes include effects of phylogenetically selective
susceptibility to human threats. Our result stresses a need to
understand more about the factors that shape geographical
range size, both spatially and phylogenetically (e.g. Cooper
et al. 2008).

Abundance and life-history traits

Species population density, gestation length and weaning
age showed much more spatially varied effects on extinction
risk than body mass or geographical range size. Clearly, data
availability plays a larger role in these three models, with

data available for only about a quarter as many species as for
body mass and range size. However, over 75% of our
ecoregion models were still based on more than 40 species.

Our results show that low species population density is
more strongly linked with high extinction risk where current
human impacts are high, indicating that anthropogenic
threats preferentially affect rare species, at least in some
regions of the globe. We also provide some evidence that
human activities influence the effects of reproductive timing
and output on risk when controlling for body mass. High
spatial heterogeneity of trait effects may indicate that the
spatial scale of our study could be too large to separate
mixed signals if extinction drivers vary within ecoregions,
given that impacts of life-history variables on risk are likely
to be linked to particular threats (Isaac & Cowlishaw 2004,
Price & Gittleman 2007). The great importance of
threatened species richness and proportion of large species
in our species population density and life-history models
may be due to the power of our method, but may also
signify that low abundances and slow life histories affect the
extinction risk of large species more strongly (Cardillo e# al.
2005).

CONCLUSIONS

Our regional models of extinction risk revealed strong
global heterogeneity in both the impact of biological traits
and their interactions with the environment. Cleatly, species
extinction risk is determined by anthropogenic threats,
environmental factors, species traits and interactions
between these, but our analyses have highlighted some of
the most important ones. We found that large size
correlated strongly with high extinction risk only in tropical
regions which are characterized by overall low historical
agricultural impact, probably reflecting the effects of an
extinction filter acting over the past 300 years, and possibly
of current subsistence hunting. Our results also indicated
that small geographical range sizes predispose species to
extinction across much of the wotld, and that high current
human impact increases the effects of low species popula-
tion density and slow life history on risk.

Although our analyses are still on a larger scale than most
protected areas, their spatial resolution makes them more
useful for practical conservation science than global models.
Our results also emphasize the importance of including
several measures of both historical and current facets of
anthropogenic threats, rather than oversimplifying human
impact to just current human population density. The novel
regional approach we used here illustrates and explains
spatial heterogeneity in risk processes across the globe. Yet,
to improve our knowledge of extinction risk further and to
make predictions useful for conservation biologists on the
ground, we need to better separate the effects of different
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aspects of human exploitation, and to better understand the
reasons behind phylogenetic and spatial patterns of biolog-
ical traits that shape susceptibility.
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