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The accuracy of phylogenetic inference was examined in simulated data sets up to nearly
10,000

 
taxa, the size of the largest set of homologous genes in existing molecular sequence

databases. Even with a simple search algorithm (maximum parsimony without branch
swapping), the number of characters needed to estimate 80% of a tree correctly can scale
remarkably well at optimal substitution rates (on the order of log N, where N is the number
of taxa). In other words, the number of taxa in an analysis can be doubled and only an
arithmetic increase in the number of characters is required to maintain the same level of
accuracy. Even substitution rates that are much higher than normally used in phylogenetic
studies did not affect the scaling too adversely. However, scaling is usually worse than log N
for more stringent levels of accuracy. Moreover, errors are not distributed randomly
throughout the tree. Shallow nodes are remarkably easy to reconstruct and display
favourable log-linear scaling. The deepest nodes are extremely difficult to reconstruct
accurately, even with branch swapping, and the scaling is poor. Therefore, the strategy of
sequencing large numbers of homologous genes may not always provide global solutions to
extreme phylogenetic problems and alternative strategies may be required.

1. Introduction

The size and scope of phylogenetic analysis has changed dramatically in recent
years. Advances in DNA sequencing technology now permit the assembly of very
large sets of homologous character data, such as the Ribosomal Database Project
(RDP II), which contains over 10,000 sequences of aligned small subunit rDNAs [1]
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sampled across all of life. Phylogenetic studies of hundreds [2-6] to upwards of
several thousand organisms [7] have been undertaken, made feasible by new
algorithms such as parsimony jackknifing,[8] different search strategies such as
compartmentalization,[9] and faster computers. Typically, however, the number of
characters used in these studies (i.e., the length of the sequences) has been of the
same order as the number of sequences, N. Let CX be the number of characters
needed to reconstruct a percentage, X, of the bipartitions of a tree correctly. If CX

scales linearly with N, but the ultimate goal of systematics is to reconstruct the tree
of life with its 10,000,000 extant species or more, then whole-genome quantities of
sequence data would be needed for each of these species. Understanding of whether
CX scales “well”, meaning better than linearly, will therefore impinge on sequencing
strategies in the very large phylogenetic studies that are likely in the near future.

Linear scaling is intuitively reasonable based on the argument that, even in the
absence of homoplasy (seemingly the ideal condition for phylogenetic inference), at
least one character is needed to identify one clade in a tree using maximum
parsimony.[10, 11: 351] Linear scaling is also implied by the observation that, again
in the absence of homoplasy, a constant number of characters per clade is needed for
every clade to be supported at some fixed level in bootstrap tests of tree reliability
(e.g., three characters for 95% support [12]). Surprisingly, however, homoplasy can
actually add information,[13, 14] and information from theoretical arguments have
suggested that a theoretical lower bound on “complete accuracy”, C100, scales as log
N, which is better than linear, for a broad class of tree generation models and a
Markov model of substitution.[15, 16] However, no tree-building algorithm has been
shown to achieve this lower bound, and scaling of algorithms currently in wide use
with real data, such as maximum parsimony, has not been investigated. Nonetheless,
recent simulation studies have shown that some specific large trees are unexpectedly
easy to infer,[14] and that some taxon sampling schemes can improve accuracy even
with a fixed amount of sequence data by breaking up long, misleading branches.[17-
19] However, these results may be contingent on properties of the data or the
specific parameter values defining a class of simulated trees.[20] Theoretical
arguments on different classes of trees suggest that reconstructing phylogenies
should get increasingly difficult as the number of taxa is increased.[15, 16, 21-23]

Relatively little is known empirically about how the accuracy of tree-building
algorithms scales as the number of taxa is increased. Yet, the scaling properties of
accuracy are important because the solution to a large phylogenetic problem may
require the deployment of radically different strategies for sequencing, mapping, and
genomic analyses, depending on whether it is more desirable to add new taxa or new
sequences to a given data set.[18, 24] Here we use simulation to investigate how
phylogenetic accuracy in the broad sense scales over an extremely large range of
taxa up to about the size of the Ribosomal Database Project at ~10,000 taxa. We also
examine how accuracy and the scaling thereof varies according to the region of the
tree being examined.



2. Methods

To study the scaling properties of accuracy in phylogenetic inference, we generated
a class of model trees according to a stochastic Yule birth process, conditioned on a
fixed number of terminal taxa and a fixed time between the root of the tree and the
present.[25] This model guarantees that the age distribution of nodes (and hence the
fundamental “shape”) of trees was invariant to number of taxa, isolating possible
confounding factors that might influence scaling properties. Model trees were
constructed using the default parameters of the YULE_C procedure in the computer
program r8s (available from http://loco.ucdavis.edu/r8s/r8s.html). This model is
different from some others used to study accuracy in that it implements complete
sampling of a clade of designated size rather than random subsampling from a much
larger clade.[e.g., 19]

We investigated how accuracy scales over an extremely large range of taxa, N,
that varied on a log2 scale from 4 to 8,192. Nucleotide sequences were evolved down
the model trees according to a standard Markov process model, including site-to-site
variation and different transition-transversion rates using the computer program Seq-
Gen 1.1.[26] We modified Seq-Gen so that it could simulate more than 1,000
sequences (the default upper limit) and would accept a user-input random number
seed to allow us to exactly replicate any runs. Sequences were generated under a
Kimura 2-parameter model [27] with several different values for
transition/transversion ratio (ti:tv), site-to-site rate heterogeneity, and rates of
evolution. We initially used ti:tv ratios of 2.0 or 8.0, with rate heterogeneity being
either present (with shape parameter of 0.5) or not. However, the majority of our
results were obtained using ti:tv of 2.0 with rate heterogeneity.

Branch lengths were determined assuming a model of substitution that departs
from a molecular clock. Branch-specific rates of evolution were determined by
drawing random normal variates (mean of 1.0 and standard deviation of 0.5,
truncated outside of [0.1, 2.0]) and multiplying by an overall tree-wide rate of
substitution. Branch lengths were determined by multiplying branch-specific rates
by branch durations generated by the Yule process model (see above).

The number of characters was normally varied over a range from 200 to 6,000.
Overall average rates of evolution were varied from 0.01 to 0.50 substitutions/site,
measured along a path from the root to a tip of the tree. These parameters span the
range of values generally considered useful in phylogenetic work.[28, 29]
Phylogenetic trees were inferred with maximum parsimony, a method in widespread
use for real data,[27] using a fast heuristic algorithm (random addition sequence and
no branch swapping) in PAUP* v4.0b2.[30]

We obtained values of CX from the simulations by fitting a quadratic regression
to the data on accuracy versus number of characters and then determining the value
of C needed to achieve a pre-specified accuracy from the regression coefficients (see



Fig. 1). Each value is the mean over a number of replicate simulations (25 replicates
for N • 32; 10 for N = 64 or 128; 3 for N • 256; the lower number of replicates for
higher values of N did not affect confidence levels adversely). Accuracy was
examined at different depths in a tree by classifying nodes (bipartitions) into
“levels”. Classification was based on the size of the bipartitions (where size is min(j,
N–j), and j is the number of taxa in one of the two partitions). The kth level includes
all clusters of size 2k to 2k+1–1 (with the last level defined such that 2k+1 = N/2; those
rare bipartitions that divide the tree into two groups of exactly N/2 taxa are added to
the last level). We define “shallow” bipartitions as those from the first level (always
three or fewer taxa), “deep” as those from the second level and upwards (always
four or more taxa), and “deepest” as those from the last level, which varies in size
depending on the size of the tree. On a rooted version of these trees, the size of
groups is a reasonable surrogate for depth in the tree, because the expected clade
size is a monotonic function of the rate of diversification, λ, (assumed constant) and
the age of the clade, T, so that E(N) = eλT.

Most recent studies of accuracy have used measures based on the number of
common bipartitions (= proportion of correctly inferred clades), such as the partition
metric, dS,[31] or consensus-fork index, CFI.[32, 33] We used the CFI instead of dS

because it yielded greater discrimination given that our model trees are always
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Fig. 1. Quadratic curves used to interpolate the number of characters required to achieve 80%

accuracy (C80) for two different rates of evolution for trees of 32 and 4,096 taxa.



strictly bifurcating. Low values for dS can only occur if the estimated trees are
largely resolved but disagree strongly with the model tree. For poorly resolved
estimated trees, dS tends towards 50% (i.e., recognizes the clades from the model
tree). In contrast, both polytomies on the estimated trees and clades whose
membership differs between the model and estimated trees are counted as incorrect
using the CFI. More discussion regarding the importance of the metric used to
measure accuracy can be found elsewhere.[19]

3. Results and Discussion

The scaling of accuracy with taxa depends on the specified accuracy level and the
rate of evolution (Figs. 2 and 3). Scaling is quite favorable at an accuracy level of
70% (Fig. 2). Regardless of the rate of evolution, C70 scales log-linearly with N,
although the slope for the faster rate is slightly greater. Even for 8,192 taxa, no more
than 1,000 characters were needed to achieve 70% accuracy at either rate. Thus a
doubling in the number of taxa requires only an arithmetic increase in the number of
characters. This result directly contradicts the intuition about linear scaling of
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Fig. 2. Number of characters needed to achieve different levels of accuracy, as a function of

numbers of taxa for two different rates of substitution. Accuracy is measured by the consensus fork

index (CFI), which is the proportion of bipartitions in common between the estimated and true

(model) trees. Rates of substitution are per site along the path from root to tip of the model trees.



accuracy, and shows that at least over the range examined in these simulations, it is
possible for a simple heuristic maximum parsimony algorithm to achieve the
theoretical lower bound on accuracy as long as 100% accuracy is not demanded.
However, as the desired accuracy level becomes more stringent, the scaling becomes
less favorable, particularly at the faster rate (Fig. 2). At higher specified accuracies,
the scaling is worse than log-linear (at C80 for the faster rate and C90 for the slower
rate), and it was often not possible to reach the desired accuracy level even with
6,000 characters. Better accuracy given the same number of characters was
generally obtained with models that incorporated a reduced transition-transversion
ratio, no rate variation across sites, or an assumption of a molecular clock, especially
at higher rates. However, the fundamental scaling trends were robust to all these
modifications.

The form of the scaling function depends on the rate of substitution (Fig. 3). An
“optimal rate” of ~0.05 – 0.10 substitutions per site produces log-linear scaling of
C80 with a shallow slope. These rates are comparable to rates observed, for example,
for nonsynonymous substitutions in many chloroplast genes sampled at the level of
seed plants. For an 8,192 taxon tree, C80 was fewer than 2,000 characters. Rates that
were either slower or faster than optimal displayed poorer performance. This is
particularly true of the fastest rate of 0.50, which scaled worse than log-linearly, and
the slowest rate of 0.01, which, although scaling “better” than log-linearly, generally
required more than three times as many characters to achieve C80 as did the optimal
rates. Although the optimal rate will depart somewhat from theoretical values in real
data, a good strategy for selecting potential genes for phylogenetic analysis may be
to err in the direction of genes that evolve slightly faster than optimal (except in the
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very largest trees). The decrease in performance using faster genes is much more
gradual than that for slower genes.[34; also Fig. 5 below]

It may seem counterintuitive that rates that are slightly faster than optimal
demonstrate better scaling than those that are slightly slower. However, limited
amounts of additional homoplasy may sometimes be beneficial because homoplasies
(i.e., convergences or reversals) can act as homologies at less inclusive levels.
Consider the case presented in Fig. 4. Without any homoplasy (A), it requires a
minimum of 14 binary characters, one for each informative node on the tree, to

reconstruct this tree accurately. Now consider two homoplastic characters marked
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Fig. 4. How homoplasy can improve character scaling. In matrix A, which contains no homoplasy,

14 characters are required (one for each informative node). Matrix B does contain homoplasy in the

form of convergence (characters 1 and 2; hatched bars), but it is outweighed by characters 3–12
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with hatched bars with a distribution as given in B. Although they are homoplastic
with respect to the entire tree, each character supports four clades if there is
sufficient evidence to outweigh them (here, the remaining characters, marked with
solid bars). Thus, even with the two homoplastic characters, only 12 binary
characters are required altogether, a savings of two characters. The reduction in the
number of characters required could be even greater for DNA sequence data given
that it is a four-state character and can thus accommodate more homoplasy per
character than the binary character used in our example. The effect should also be
more pronounced in larger trees because of the potential for a single homoplastic
character to support that many more clades.

Scaling of accuracy varies dramatically across the tree (Fig. 5). Shallow nodes
were by far the easiest to reconstruct, requiring fewer than 500 characters regardless
of the size of the tree. Deeper nodes were more difficult. Although the scaling was
still log-linear, the slope for “deep” nodes was fairly steep—nearly 6,000 characters
were required for trees with 8,192 taxa. The “deepest” nodes on a tree were even
more difficult to reconstruct. Even with 30,000 characters, 80% accuracy could not
be obtained in the deepest nodes of a 64 taxon tree. These nodes were difficult
regardless of the rate of evolution (Fig. 6). For all parts of the tree, the optimum rate
was about 0.05 – 0.10, with accuracy being substantially lower at slower rates. In
most cases, accuracy decreased only marginally as the rate was increased from the
optimum (cf. preceding paragraph and Fig. 3); only the deepest nodes displayed a
large decrease. There was virtually no effect of tree size on the accuracy of shallow
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nodes and only marginal decreases in accuracy for the larger tree for overall and
deep nodes. However, tree size greatly affected the accuracy of reconstructing the
deepest nodes. For 1,024 taxon trees virtually none of the deepest nodes were
inferred correctly, regardless of the rate of evolution. Note that shallow nodes
comprise the largest proportion of a tree’s nodes (e.g., in a perfectly symmetrical
tree, 75% of all nodes will possess four or fewer terminal taxa). Thus, earlier
findings that measure accuracy based on overall fraction of bipartitions correct [14,
19] should be interpreted with a degree of caution: the high overall levels of
accuracy may be accounted for mainly by shallow groups that are relatively easy to
reconstruct.

One factor that contributes to the extreme difficulty of inferring the deepest
nodes in a tree is the “greediness” of the simple search algorithm used, which is fast
but crude. Once a cluster is constructed in the sequential addition process, taxa are
not removed. Any errors made during earlier addition events will accumulate
progressively and be reflected in high probabilities of errors at the deepest nodes. At
substantial cost in running times, rearrangements in topologies (“branch swapping”)
can be made, which often improves accuracy. Because of the computational burden
imposed by branch swapping, this was examined only in trees of 128 taxa. The
improvement is slight for shallow nodes but significant for the deepest nodes (Fig.
7).

Unfortunately, search strategies involving branch swapping quickly become
impractical in large data sets. Our basic search strategy, which involves the
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sequential addition of randomly chosen taxa (optimized at each step) has a running
time that scales as O(N2), which is probably about as good as any nontrivial tree-
building algorithm can be. Heuristic search strategies involving branch swapping
often scale as a higher order polynomial, or, in the worst case, require a search (in
exponential time) of the entire space of trees. Reported experiments with large data
sets confirm this behavior. Branch swapping in a parsimony search using 500
nucleotide sequences of the chloroplast gene rbcL lasted about four weeks [2] before
being terminated prior to completion. When Rice et al. [35] re-analyzed the data, it
required 11.6 months of CPU time, mainly continued branch swapping (again, not to
completion), to derive a solution that was slightly shorter (five steps or 0.03%). In
extremely large data sets, the necessity to branch swap on the one hand, coupled
with its computational burden on the other hand, argues against a strategy of
obtaining large numbers of sequences from many taxa and combining them in a
single phylogenetic analysis. Instead, to achieve accurate inferences across the entire
tree, a compartmentalization strategy [9] may be necessary in which well supported
subtrees are identified by quick heuristic searches (e.g., parsimony jackknifing [8])
and their topologies determined through detailed analysis to form synthetic
representative taxa which are then used as higher taxa in a final, more exhaustive,
phylogenetic analysis.

These results were derived using a model in which trees scale in size in a way
that preserves the age distribution of node times and relative branch lengths. Other
models can introduce scaling that is better or worse for accuracy. A (backward Yule
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process) model in which node times are normalized to the age of the root generates
trees that are progressively easier to estimate as they grow—leading to better scaling
properties—because they tend to be progressively more top-heavy with a
preponderance of recent divergence events. Alternatively, a model in which a very
large clade is sampled randomly can produce topologies that are unusually difficult
when the number of taxa in the final sample is small, because internodes are very
short deep in the tree leading to many long branches.[e.g., 19] Patterns of mass
extinction or differential background extinction are likely to affect tree topologies in
interesting ways that have not yet been examined. For example, non-homogeneous
extinction could render some early nodes easier to estimate than expected if
extinction were constant because it may leave some branches with enough
information to signal the monophyly of those groups. It is unlikely that one pattern
of scaling of accuracy will hold true across all models of scaling of tree size.
Overall, however, shallow nodes will be surprisingly easy to infer, whereas deep
ones will be exceedingly hard, which will pose important methodological challenges
to the use of burgeoning comparative sequence databases for large-scale phylogeny
reconstruction.
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