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ABSTRACT

Species are defined using a variety of different operational techniques. While discussion of the
various methodologies has previously been restricted mostly to taxonomists, the demarcation of species
is also crucial for conservation biology. Unfortunately, different methods of diagnosing species can
arnive at different entities. Most prominently, it is widely thought that use of a phylogenetic species
concept may lead to recognition of a far greater number of much less inclusive units. As a result,
studies of the same group of organisms can produce not only different species identities but also different
species range and number of individuals. To assess the impact of different definitions on conservation
issues, we collected instances from the literature where a group of organisms was categorized both under
phylogenetic and nonphylogenetic concepts. Our results show a marked difference, with surveys based
on a phylogenetic species concept showing more species (48 %) and an associated decrease in population
size and range. We discuss the serious consequences of this trend for conservation, including an
apparent change in the number of endangered species, potential political fallout, and the difficulty of
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deciding what should be conserved.

S PECIES ARE THE currency of biology. In
particular, reactions to the ongoing bio-
diversity crisis are ubiquitously phrased in
terms of species. Areas of importance (e.g.,
biodiversity hotspots) are selected on the
basis of the species they possess, conservation
schemes are assessed on how many species
are preserved, lists are compiled of endan-
gered species and the factors that threaten
them, and conservation legislation and poli-
tics are focused on species preservation
(Mann and Plummer 1992; Collar et al. 1994;
Baillie and Groombridge 1996; Karl and
Bowen 1999; Soltis and Gitzendanner 1999).

Despite this importance, the very term
“species” is deeply ambiguous. While biolo-
gists customarily treat species as tangible enti-
ties—at least more so than any other sub- or
supraspecific group (Hendey 1964; Ereshef-
sky 1999)—there is nonetheless a vast spec-
trum of meanings attached to the word. The
argument over how species should be defined
is endless, with over twenty species concepts
in circulation at present (Mayden 1997).
These concepts encompass many operational
and empirical definitions, often resulting in
a given group of organisms being viewed in
drastically different ways by different workers
(Mallet and Willmott 2003).

The potential taxonomic conflicts posed by
the use of different definitions for the term
“species” are not just questions of semantics
or miscommunication. Consensus on issues

of species richness or biodiversity hotspots is
difficult if no agreement can be reached on
the actual identity of the species involved
(Kartesz 1994). It is therefore necessary to
survey the use of opposing concepts in the
literature and, without promoting or depre-
cating any particular concept, determine the
extent to which different methodologies will
arrive at different boundaries and discuss the
implications for the practice of biodiversity
studies.

NONPHYLOGENETIC SPECIES CONCEPTS

The concept of species has been well dis-
cussed in the literature; for recent reviews,
see Claridge et al. 1997, Wheeler and Meier
2000, Hey 2001, and Mallet 2001. The main
problem for biodiversity studies has been the
gap between theory and practice. Driven by a
desire for a universal and objective definition
of species, a large number of ideal-centered
concepts have been formulated and compete
for acceptance (e.g., Van Valen 1976; Wiley
1978). The overwhelmingly dominant of
these is the biological species concept (BSC)
(Mayr 1942), in which species are defined as
populations that cannot interbreed success-
fully. Species therefore are necessarily repro-
ductively isolated, representing separate evo-
lutionary lineages. A large part of the BSC’s
appeal is that proposed species boundaries
are falsifiable by the natural (and substantial)
production of fertile hybrids across them.
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The BSC is simple, obvious, and ultimately
flawed.

Outside of ideals of the BSC, discerning
potential reproductive barriers can be diffi-
cult, time consuming, expensive, and fraught
with error. For example, the populations in
question may be allopatric, the organisms
may be both difficult to observe in the wild
and difficult to raise in the laboratory (Taylor
et al. 1999), or the genetic component
unclear (Kullander 1999). The creatures may
also be extinct or only characterized from
preserved material (Claridge etal. 1997). For
asexual organisms, the biological concept is
simply inapplicable (Ghiselin 1987). Also, the
BSC encounters difficulties where hybridiza-
tion is taking place (e.g., in many plants)
(Donoghue 1985). It is possible to stand by a
strict interpretation of the BSC and argue
that the above “exceptional” populations are,
by definition, not species (Ghiselin 1987), but
this leaves a vast number of organisms with a
nebulous status. The BSC can illuminate only
a small fragment of the Tree of Life.

Such problems are typical among the ideal-
based definitions. In a conservation context,
more operational methods (concerned with
how a species may be delimited rather than
what it represents) are a necessity (Sites and
Crandall 1997). These have often employed
the proxy of a phenotypic definition, where
species are delineated by overall, usually mor-
phological, similarity (“morpho-species”). Yet
even this most basic of approaches has prob-
lems. There is a large element of subjectivity
involved (e.g., what constitutes a reasonable
character, what degree of difference equates
to the species level). Morphological classifi-
cation can be confounded by convergent evo-
lution, morphological simplicity (Klautau et
al. 1999), ring species (Mayr 1963), natural
intraspecies variation (e.g., sexual dimor-
phism or polymorphism), morphologically
cryptic species (Ameziane and Roux 1997),
and phenotypic plasticity (Mishler 1985).

Such confusion would seem to render the
word “species” meaningless. In reality, most
biologists hold a similar, intuitive idea of what
a species represents: a population on an
autonomous historical trajectory. The differ-
ent methods of defining species will some-
times arrive at different answers, but if they
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are all measurements of essentially the same
underlying entity, then comparison between
studies is not unreasonable. Also, taxonomic
arguments are usually concerned not with the
number of species but whether organisms in
a sample are or are not members of the same
species (Mayden 1997). The preeminence in
the field of the biological and morphological
concepts makes comparison even easier, and
within major groups there is often a com-
monality among working taxonomists about
the degree of morphological difference that
corresponds to a biological species boundary
(Erwin and Anstey 1995; O’Keefe and Sander
1999).

THE PHYLOGENETIC SPECIES CONCEPT

With the advance of molecular phyloge-
netics and the increasing popularity of the
phylogenetic species concept (PSC), the spe-
cies debate has rekindled. Although the PSC
has a spectrum of definitions (e.g., Mishler
and Budd 1990; Nixon and Wheeler 1990;
Davis and Nixon 1992), it is commonly taken
to define a species as a group of organisms
that share at least one uniquely derived char-
acter (Nixon and Wheeler 1990; for reviews
see Wheeler and Meier 2000), perhaps with a
shared pattern of ancestry and descent (Cra-
craft 1983) or monophyly (Donoghue 1985;
de Quieroz and Donoghue 1988, 1990). The
PSC is more widely applicable in practice
than previous species concepts because it can
be applied to asexual organisms and allopat-
ric populations. Furthermore, it has been
argued that the PSC is more objective, may
reveal morphologically unremarkable but
important populations, and is a better indi-
cator of biodiversity and conservation worth
of a population than other measures (Soltis
and Gitzendanner 1999).

Thus, for the biodiversity researcher, the
PSC is potentially useful. A more debatable
point is to what extent species assessments
under the PSC will concur with those made
under other criteria. Species boundaries pre-
viously established from fossils are unlikely to
change, as most fossil taxa are sampled too
poorly for geographic variation to cause the
inference of new species, and may be slightly
inflated anyway due to the uncertainty of
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how much intraspecific variation (e.g., sexual
dimorphism) exists. In the case of contem-
poraneous taxa, it could be reasoned that the
various definitions of species might be
expected to more-or-less agree on actual spe-
cies boundaries. The character-based inter-
pretation of the PSC has some congruence
with morpho-species and the history-based
version with biological and evolutionary con-
cepts. Indeed, it has been argued that the spe-
cies boundaries defined by PSC should be
similar to those found by other methods, on
the basis that isolated populations should dif-
fer in at least the character responsible for
sympatric isolation (Knowlton and Weigt
1997; Geiser et al. 1998; Avise and Walker
1999).

Conversely, there are reasons why different
species concepts will arrive at different spe-
cies. It has been argued that the BSC and PSC
are detecting fundamentally different entities
at different stages along the speciation trajec-
tory (Harrison 1998). Furthermore, within
the PSC there is no privileged phylogenetic
level that corresponds to a species other than
“the smallest aggregate” (Horvath 1997).
This makes the degree of taxonomic resolu-
tion sensitive to sampling effort (Sites and
Crandall 1997; Walsh 2000) and could cast
subspecies or, in the extreme, even individual
organisms as species (Amadon and Short
1992). In contrast to this “splitting,” it could
be argued that the BSC overemphasizes
potential gene flow between populations
(Templeton 1989; Harrison 1998) and will
“lump” species together. Finally, many phy-
logenies of species are in reality phylogenies
of genes. The evolutionary history of a spe-
cies and its genes may not match due to gene
duplication or loss, horizontal transfer, or
incomplete gene sorting (Slowinski and Page
1999; Mindell and Meyer 2001). Thus, it is
widely recognized that the PSC will often split
a species determined under nonphylogenetic
criteria with two or more “new” species (Cor-
bet 1997; Cracraft 1997; Knowlton and Weigt
1997). The increasing use of the PSC could
thus lead to an apparent increase in extant
species numbers, producing “new” groups
with more restricted geographic ranges and
decreased abundance. To what extent this
will occur, and its potential impact on conser-
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vation biology and management decisions, is
examined below.

COMPARING PHYLOGENETIC AND
NONPHYLOGENETIC SPECIES

We surveyed the primary literature, search-
ing for instances of sets of organisms that had
been classified by both the PSC and other
means. Typically, these examples involved
studies where researchers reevaluated the tax-
onomy of a group using a phylogenetic
approach with either molecular and/or mor-
phological data, whose species were formerly
defined using either a biological species con-
cept or a morphological surrogate of that
concept. In total we reviewed 89 studies,
examining changes both in the number of
species and in the identity of groups; i.e.,
whether the “new” species nested within the
boundaries of the old, fell across the old
boundaries, or merged several “old” groups
(Figure 1). The results are summarized in
Table 1. A wide variety of taxa from many dif-
ferent environments were included in our
survey, but it should be emphasized that the
selection is limited by the availability of data
that compare the status of the taxa under the
competing concepts. Thus, despite their prev-
alence and conservation importance, there is
arelative paucity of suitable studies on insects
and amphibians.

In total, the studies covered between 1245
and 1282 non-PSC-based species, which on
reanalysis gave rise to between 1912 and 2112
PSC-based species, an increase of 48.7%. (In
this and all further analyses, if a span of spe-
cies numbers is recorded, any change or dif-
ference is reported as the smallest possible
within that range.) Across studies, the average
number of species in a group increased by
121.0%. The increase in group size was
assessed with a sign test to be significant, with
p <.0001 (zvalue of 6.20). Given that a num-
ber of studies overlap in the taxa studied,
notably the vertebrate-wide survey (Avise and
Walker 1999) and the birds of paradise stud-
ies (Cracraft 1992; Collar 1997), these num-
bers might be distorted by a small number of
atypical taxa. However, even if all such studies
are excluded, the increase in species numbers
is 60.3%, and the average increase per study
is 118.3%. The increase was significant with
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Three types of changes in taxonomic identities are possible. In nested reclassifications, a single species is split
into two or more. In non-nested reclassifications, a new species is formed containing members of previously
distinct species. In reverse-nesting reclassification, species are “lumped” into a new larger species. In this figure

phylogenetic species are represented as least inclusive monophyletic groups (i.e., history-based PSC).
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TABLE 1
Comparing nonphylogenetic and phylogenetic species
Species Species
Organisms Region (non-PSC) (PSC) Nested? Reference
Plants
Three-seeded mercury North America 1 2 Yes 1
(Acalypha rhomboidea)
Grass(Leptochloa) Global 45 32 No 2
Grass (Puccinellia nuttalliana) United States 1 6 Yes 3
Grass (Puccinellia nuttalliana) United States 1 2-12 Yes 4
Tliamna (Malvaceae) North America 8 4 Yes 5
Kelp (Alaria) Global 1 4-5 Yes 6
Orchids (Corallorhiza maculata) Central and North America 1 3 Yes 7
Pacific Coast irises Pacific Coast USA 1 5 Yes 8
Fungus
Ascomycete fungi (Aspergillus Australia 2 2 No 9
Slavus)
Asexual fungi (Fusarium / Global 9 45 Yes 10
Giberella fujikuroi complex)
Asexual fungus (Fusarium Global 1 5-6 Yes 11
oxysporum group)
Fungus Global 22-45 45 Unknown 12
Fungi (Aspergillus fumigatus) Global 1 2 Yes 13
Fungi (Fusarium graminearum) Global 1 7 Yes 14
Fungi (Fusarium oxysporum ) Global 1 5 Yes 15
Fungi (Histoplasma) Western Hemisphere 1 6 Yes 16
Fungi (Histoplasma capsulatum) Western Hemisphere 1 6 No 17
Mushrooms Asia 1 4 Yes 18
Pathogenetic fungi Western USA 1 2 Yes 19
Pathogenic fungus Global 3 8 Unknown 20
Lichen
Lichen (Niebla) Western USA 18 71 Unknown 21
Lichenized alga Global 1 6-7 Yes 22
Lichenized fungi Global 2 6 Unknown 23
Lichenized fungi Global 2 6 No 24
Lichenized fungus (Ramilina Appalachian mountains, USA 1 2 Yes 25
americana)
Birds
Australasian teals Australasia 5 5 Equal 26
Birds New Zealand 235 245 Unknown 27
Birds Netherlands 39 52 Unknown 28
Birds of Paradise New Guinea 40-42 80-120 Unknown 29
Birds of Paradise New Guinea 40-42 90 No 30
Cape Verde birds Cape Verde 26 40 Yes 31
Endemic birds Mexico 101 249 Unknown 32
Forest robins Africa 3 4 Yes 33
Fox sparrow North America 1-4 4 Yes 34
Huet-huets and turcas Chile 3 3 Equal 35
Kiwi New Zealand 1-2 2 No 36
Northern oriole North America 1 2 Yes 37
Parakeets Neotropics 2 8-11 Yes 38
Ravens Global 2 3 No 39
Scaled woodcreepers Brazil 2 3 Yes 40
Sharp-beaked ground finch Galapagos 1 2 Yes 41
Sharp-tailed sparrow North America 1 2 Yes 42
Spotted owl West Coast USA 1 3 Yes 43
Swamp hens New Zealand 2 8 No 44
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TABLE 1
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Australian bats
Bottlenose dolphin
Brown lemur

Deer mouse

Marten

Right whales (Eubalena)
Spiny rats

Tiger

Titi monkies ( Callicebus)

Wooly mouse oppossums

Bee family (Halictidae)

Brown planthoppers

Cantharid beetles

Cotton stainer bugs (Dysdercus)

Copepod

Copepod

Copepod

Pomace flies (Drosophila
willistoni)

Flightless chafer beetles

Harpacticoid copepod

Shield shrimps

Snapping shrimps

Tasmanian mountain shrimps

Gopher snake
Green salamander
Pacific skinks
Pitvipers
Short-necked turtles
Spiny lizard
Spitting cobras

European freshwater fishes
Troglobitic catfish

Deep-sea snails
Hawaiian tree snails

Intertidal snails

Linckia starfish
Sea urchins

Six-rayed starfish

Hard-rayed coral (Montastraea
annularis)
Reef-building corals

Oligochaete worm (Tubifex
tubifex)

Polychaete worm

Frogs
Malaria parasites
Vertebrates

Mammals
Australia
Global
Madagascar
Mexico
North America
Global
Amazonia
Asia
Neotropics
Amazonia

Arthropods
Canada
Asia and Australia
North America
New World

Eastern North Pacific
Eastern North Pacific
Eastern North Pacific

Global

New Zealand
Northern Gulf coast & Atlantic
North America
Isthmus of Panama
Tasmania
Reptiles
North America
North America
Southeast Asia & Pacific
Brazil
Australia
Mexico
Indochina
Fish
Europe (exclusive of former USSR)
Brazil
Molluscs
Global
Hawaii
Ireland
Echinoderms
Indian and Pacific ocean
Global
Eastern North Pacific

Corals
Caribbean

Caribbean

Annelids
Global

North America and Europe
Miscellaneous
Sub-Saharan Africa
Caribbean Islands
Global
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p <.0001, zvalue of 5.82. It is true these pop-
ulations may, by their very nature, be a biased
sample. Taxonomic reassessment will often
focus on groups where there is dissatisfaction
with current understanding. The wide variety
of taxa studied, however, the consistent
increase in species numbers, and its agree-
ment with previous estimates (e.g., Zink and
McKitrick 1995) imply that the trend is
approximate but correct. This trend of
increasing species counts appears to contra-
dict a previous study based on fossil data
(Alroy 2002) that postulated synonymous or
otherwise invalid taxa were inflating the
global species count by up to 30%. However,
we feel that optimistic estimation of fossil cov-
erage and ignoring the vastly different tech-
niques used to delineate species in living and
fossil taxa render such an extrapolation
meaningless.

It is difficult to detect any trend across
groups, and given the small sample size and
how it was obtained, any putative trends
should be treated with suspicion. With this in
mind, the greatest increase in species num-
bers was seen in fungus, a 300% increase.
This may in part reflect the confused taxon-
omy in the field (Hawksworth 1993). Similar
comments could be made about lichens
(259% increase) and plants (146% increase).
Among animals, reptiles showed the greatest
increase (137%). It is startling that taxonom-
ically well-studied groups like mammals,
arthropods, and birds showed large and
roughly similar increases (87%, 77%, and
88%, respectively). The relatively small

increase in echinoderm species (8%) can
perhaps be explained by this group being
conspicuous, species poor, and thoroughly
investigated. The marked decrease in mollusc
species (50%) is perplexing. Perhaps it is due
to the past activities of amateur mollusc tax-
onomists, who may have been overenthusias-
tic in identifying new species.

Another important consideration for con-
servation is how changes in the classification
and number of species under the PSC map
onto the previous species distributions. With
conflicting species identifications, the newly
defined species may either nest within the
previously recognized species (“nested redef-
inition”), cross the boundaries of two or more
of the former species (“non-nested redefini-
tion”), or represent the fusion of several spe-
cies (“reverse nesting”) (Figure 1). Only fif-
teen of the studies examined (17.0%) showed
a definite non-nesting of the PSC-defined spe-
cies. However, this fact should be tempered
with the knowledge that another six showed
reverse nesting (i.e., merging of two or more
non-PSC-based species into a single entity)
and boundaries changes were not available
for eleven studies. Again, it is difficult to draw
trends across groups, but non-nested redefin-
itions may be more prevalent in the birds,
possibly because of increased taxonomic
attention.

CONSEQUENCES

From the above analysis it can be seen that
reclassification via use of the PSC leads to an



June 2004

apparent increase in the number of species
and a more modest remapping of species
across previous taxonomic boundaries. As far
as biodiversity studies are concerned, the con-
sequences of this fall into a number of cate-
gories: the change in the number of endan-
gered species, the economic and political
fallout, and conservation practice.

Reclassification under the PSC will lead to
an apparent rise in the number of endan-
gered species. This is due not only to the
detection of “new” species but also to an
increase in the proportion that are endan-
gered due to a reduction in the distributional
area of the inferred species range. Because
the new species tend to arise through the
splitting of previous entities, the abundance
of and area occupied by each can at best be
a subset of the previous values. Both measures
can therefore be expected to decline on aver-
age. Formal classifications of endangered spe-
cies like the TUCN Red List (Baillie and
Groombridge 1996) use both number of indi-
viduals and geographic range as diagnostics.
We can therefore expect at least a propor-
tionate or greater increase in the number of
threatened species.

Itis possible to estimate the impact of these
decreases on formal threat classifications. For
example, the IUCN category “Vulnerable”
identifies species that are at a high risk of
extinction based on (among other criteria)
the species having fewer than 1000 mature
individuals. The threat category above,
“Endangered,” defines those species at a very
high risk of extinction by having fewer than
250 mature individuals. The 48.7% increase
in species number that we observed infers an
average decrease in mature individuals per
species of 32.8%. If we assume the number of
mature individuals in “Vulnerable” species
are distributed evenly throughout the band of
possible values (250 to 1000), a 32.8% drop
will cause 10.9% of these species to have less
than 250 mature individuals and so be reclas-
sified as “Endangered.” This is a conservative
estimate as it assumes that the new species are
of equal size, whereas unequal splitting will
produce more small groups in the “Vulnera-
ble” category.

The impact on species range is more diffi-
cult to formalize. For example, a 50% drop
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in the number of adult individuals does not
necessarily imply a 50% drop in range. None-
theless, as use of the PSC splits and therefore
shrinks species, the new entities will tend to
have reduced ranges. By virtue of this, the
proportion of species formally classified as
endangered will increase.

Any increase in the number of endangered
species requires a corresponding increase in
resources and money devoted toward con-
serving those species. For example, it has
been estimated that the complete recovery of
any of the species listed by the U.S. Endan-
gered Species Act will require about $2.76
million (USFWS 1994). Thus, recovering all
species listed currently would cost around
$4.6 billion. With widespread adoption of the
PSC, this already formidable amount could
increase to $7.6 billion, or the entire annual
budget for the administering agency (U.S.
Fisheries and Wildlife Services) for the next
120 years. The per-species cost is admittedly
high—being based on the costs to save what
are sometimes subspecies or already critical
populations—but given that species size and
range will fall on average, and that cost of res-
cue rises with the degree of threat, total costs
might actually reach far beyond this point.
Resurveying taxa of importance for consis-
tent species recognition would involve less
money, but still requires amounts that are
nontrivial considering the disagreement over
species concepts. An evaluation of the threat
status of 120,000 potentially threatened trop-
ical taxa has been proposed, conservatively
valued at $100 per species, summing to a rela-
tively modest $12.1 million (Pitman and Jor-
genson 2002). A higher figure of $135 million
can be calculated by assuming Platnick’s fig-
ures for a dedicated taxonomic team (Plat-
nick 1999). If this resurvey were to reveal only
10% of these taxa as endangered, the rescue
bill could amount to $33.1 trillion. Even just
formally listing these taxa as endangered
would, by USFWS figures, cost $816 million.
These figures are arguably acceptable to
industrial nations, but frankly impossible for
many impoverished and biodiverse countries.
It has been said that the economic cost of cur-
rent conservation strategies are already unac-
ceptable (Mann and Plummer 1995). The
impact of the PSC serves only to reinforce this
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point, and may require a rethinking of poli-
cies that seek to preserve every species (Moul-
ton and Sanderson 1999).

If more resources are needed, then there
is also a need for more education and mobi-
lization of opinion. Unfortunately, disagree-
ment between species concepts may present
problems. Public concern has a great influ-
ence over the allocation of conservation
resources, it being easier to find money for
the preservation of charismatic, easily recog-
nized organisms than for more obscure and
less appealing ones, independent of their evo-
lutionary or ecological significance or con-
servation status (Ando 1999; Gittleman et al.
2001). Changing species identities and a
flood of threatened species may create con-
fusion and apathy in the public’s mind. Fur-
thermore, consistent application of the PSC
may make this task more difficult by identi-
fying morphologically disparate entities as
members of the same species and superfi-
cially similar entities as members of different
species (Wayne and Gittleman 1995; Bruna et
al. 1996). This is not to say that only easily
“marketable” species should be saved, but
conservation biologists should prepare for
the difficulties caused by a change in species
identity and numbers. Taxonomy may be
seen as the enemy of conservation due to
these unpalatable implications (for example,
see Collar 1997). Complex ideas of species
identity under the PSC may also thwart the
use of parataxonomists, who have proven so
useful in covering remote biodiverse areas.
Conversely, application of the BSC in the field
can also be difficult. If the application of the
PSC reveals more species and increases the
threat status of those groups, more taxo-
nomic and conservation attention may be
drawn to groups neglected under previous
regimes.

Changing species boundaries may also cast
doubt on the efficacy of current conservation
schemes, leading to arguments about
whether conservation efforts are being cor-
rectly allocated and prioritized. This is exac-
erbated by the tendency of conservation
schemes to focus on reserves and protected
regions. The endemic birds of Mexico pro-
vide an excellent illustration of this point
(Peterson and Navarro-Sigienza 1999).
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Under the BSC there are 101 species, concen-
trated in the mountains of southern and west-
ern Mexico. Under the PSC, however, the
number of species increases to 249, with a
general concentration in the west of Mexico.
Any effort directed at widespread preserva-
tion of Mexico’s avian biodiversity based on
either classification would, from the point of
view of the other, be preserving many of the
“wrong” regions (Figure 2); for further exam-
ples, see Daugherty et al. 1990, O’Brien and
Mayr 1991, Soltis and Gitzendanner 1999,
and Bates and Demos 2001. Shifts in species
concept effectively change the importance of
different taxonomic groups for identifying
regions of biodiversity. The question changes
from one of where the biodiversity is to one
of which species concept is more appropriate.

The redefinition of species, where new
entities cross the boundaries of the old, also
casts doubt on the efficacy of conservation
schemes. Even with a consistent species con-
cept this may happen, but changing concepts
may exacerbate this problem. Where redefi-
nition of species is reverse nested, we should
expect few problems. Schemes directed at sav-
ing the old species should be suitable, and
perhaps even excessive, for saving the new
species. Nested and non-nested redefinitions
pose a greater problem, as anything less than
total preservation of the old species may leave
some of the new species uncovered. Given the
sample size of this survey and the relatively
small number of clades that demonstrate
non-nested rearrangements, it is not clear if
this problem will be widespread. Nonetheless,
the examples unearthed should serve as
grounds for caution. If a mix of concepts is
used to define species in a survey of species
abundance, disagreement over critical areas
of biodiversity could result.

REMEDIES

What, then, are we to do? Rejecting the
PSC solely because of (apparently) unpleas-
ant biodiversity implications smacks of expe-
dience. Reverting to the BSC ignores its oper-
ational problems. Indeed, it is perhaps not a
question of which species concept is best.
There may be no one solution to the species
concept issue, with particular concepts being
more apt in different circumstances (Hey
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2001; Mace et al. 2003). A plurality of species
definitions is likely to remain part of biology
and the conservation landscape. Conserva-
tion biologists will remain trading in a variety
of “currencies,” and concern for what is lost
will be conflated by confusion over how much
is lost (Rojas 1992).

A few broad remedies can be suggested.
Where species lists are being used in conser-
vation, it is necessary to be clear about how
the species involved were defined. In this way,
one can move toward consistency and repl-
icability of any conclusions, or at least clarity
about how the conclusions can be flawed.
The BSC should be used only where it can be
robustly diagnosed and the grounds for this
inference made clear. Species inferred from
morphology should always be treated as ten-
tative. Where the PSC is used, sufficient indi-
viduals and characters should be sampled to
ensure an adequate and even resolution of
the species status across clades (Walsh 2000).
However, even consistent use of a single con-
cept does not guarantee consistent species
boundaries. As stated above, ring and hybrid
populations present an intractable problem
for the BSC. A strict interpretation of the
concept in these cases is uninformative,
while more relaxed interpretations are sub-
jective and possibly inconsistent. The PSC
has been implemented under a wide variety
of methodologies—e.g., population aggre-
gation analysis (Davis and Nixon 1992), clad-
istic haplotype aggregation (Brower 1999),
genealogical concordance (Baum and Shaw
1995), and gene trees with geographical con-
cordance (Wiens and Penkrot 2002)—and it
has been shown that these need not agree
(Wiens and Penkrot 2002). It may be possible
that different species concepts and methods
can be used to reinforce each other, so as to
reach consistent if conservative conclusions
on species boundaries (e.g., Jarman and Elli-
ott 2000). Any move toward greater consis-
tency in classifying species will also require an
increase in the resources devoted toward uni-
fying taxonomy and making it more accessi-
ble (Godfray 2002).

Much of the problem may rest in the
implicit assumption that species are distinct
entities. In reality, species are probably not
groups with rigid borders but “fuzzy sets”
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(Hey 2001; Mallet 2001b; Hendry et al. 2002),
their boundaries blurred by horizontal gene
transfer, hybridization, and recent isolation.
Furthermore, species can arise by a variety of
mechanisms, and different concepts consider
different characteristics of a population. It is
thus little wonder that each concept diagno-
ses a different sort of “species.” Obviously, a
single morpho-species can contain multiple
species (sensu BSC or PSC) where morphol-
ogy is cryptic or a limited number of charac-
ters are studied (Kasuga et al. 1999; Taylor et
al. 2000). More subtly, the diagnostic form of
the BSC emphasizes potential gene flow, con-
flating it with the actual lack of gene flow that
may be both the cause and result of a species
boundary (Templeton 1989). Species recog-
nized as separate by the PSC may be lumped
into a single species by the BSC, even if they
are genetically and geographically separated
(Vilgalys and Sun 1994). Given that inter-
breeding is still possible, at some point in the
future the separate species (sensu PSC) may
reticulate back into a single entity. Con-
versely, as genetic isolation precedes the loss
of shared polymorphisms, shortly after the
separation of two biological species the PSC
may only recognize a single species (Doyle
1997). Thus we do not even have the certainty
that PSC-based species will fall within biologi-
cal species and biological species within mor-
pho-species. The problem is not in any par-
ticular species concept, but in the nature of
species.

Even if species could somehow be unam-
biguously defined, there are problems. If bio-
logical species are used, it is unclear how
hybrid populations should be treated (see
below). Also, while it has been argued that
under the PSC species come closer to being
ESUs (evolutionary significant units) (Ryder
1986) than any other defined entity (Cracraft
1997), this advantage is lost in the apparent
lack of applicability of ESUs in the real world
(Crandall et al. 2000; Hendry et al. 2002).
Finally, while current conservation measures
are often biased toward charismatic taxa
(Metrick and Weitzman 1998; Gittleman et al.
2001), diagnosing biodiversity by counting
species errs in the other direction by insisting
that all species are equally important (May
1990). A large number of species does cor-
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respond to general ecosystem stability
(Naeem 1998), but the identification of a spe-
cies as such does not say anything about its
evolutionary distinctiveness or ecological
importance. Species-centered conservation
necessarily neglects the conservation-worthy
diversity found within and between species,
i.e., subspecies and hybrids (Balharry et al.
1994; Rieseberg and Gerber 1995; Garcia-
Moreno et al. 1996). Thus, species counts,
however derived, are only the first step of
diagnosing biodiversity.

Would it therefore be best to avoid the use
of species? If so, the conservation worth of a
population must be appraised in another cur-
rency, such as economic value, aesthetic
appeal, or unique genetic and evolutionary
information. Examples of this last type
include phylogenetic diversity (Faith 1994),
genetic diversity (Crozier 1997), phenotypic
diversity (Owens and Bennett 2000), or tax-
onomic units based solely on evolutionary
time (Avise and Johns 1999). In this way, bio-
diversity value can be measured in informa-
tion: diversity measured as millions of years,
allelic distance, or character richness. Con-
servation schemes can be designed so as to
maximize the amount of information pre-
served. Highly diverse but putative species
could be given the benefit of the doubt. In
some cases, it might be proper for a divergent
subspecific entity to be valued over a more
conserved species. Such measures do not
entirely obviate the need for identifying spe-
cies, however. Comparing the biodiversity
value of, for example, species of cetaceans
and woodchucks is at least plausible if not
always meaningful. Doing the same via infor-
mation measures of cetacean and woodchuck
populations introduces more possibilities for
ambiguity and argument. Information mea-
sures can be sensitive to sampling effects,
monotonically increasing with every organ-
ism examined. The use of measures other
than species counts also forces us to ask what
it is that we are trying to preserve. Phyloge-
netic and genetic diversity may be easy to
measure, but it is far from clear that they are
precisely what needs saving. Also, any attempt
to abolish the use of species sacrifices the use-
fulness of discrete, identifiable units of con-
servation important for raising public sym-
pathies.
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At the opposite end of the scale, the species
problem could be avoided by working to con-
serve higher taxa, supraspecific groups.
These at least can usually be identified with-
out controversy, and the broad outline of bio-
diversity preserved (Williams and Gaston
1994). This preservation is bought, however,
at the possible expense of the fine detail of
diversity and ecosystem stability. Further-
more, even if higher taxa are the focus of con-
servation, management plans must still con-
sider species boundaries and whether groups
of individuals are genetically and ecologically
distinct (Crandall et al. 2000). Given that
many species identities may remain ambigu-
ous, or even undiscovered, for a long time,
perhaps planning should concentrate on pre-
serving areas where new species are likely to
be uncovered. For example, the preservation
of “Endemic Bird Areas” have been proposed
(ICBP 1992; Jepson and Whittaker 2002),
based on the idea that areas known to be
endemic for some species are likely to be
endemic for unknown species as well (Balm-
ford and Long 1995). This is a more palatable
solution than waiting for a perfect under-
standing of species boundaries that may
never arrive.

While there is much to be said for de-
emphasizing the importance of species in
conservation decisions, they are far from dis-
pensable. Indeed, the species problem is
emblematic of conservation and the gulfs
between science policy and practice. We
would do the right thing, if only we knew what
the right thing was. The best response to the
terrible ambiguity of species may be for sci-
entists not to work to reduce it nor to fear
making conservation mistakes, but to learn
how to work with it. “One size fits all” solu-
tions based on identifying the “right” species
may have to be abandoned for a flexible spec-
trum of methodologies that either employ a
range of species concepts or dispense with
species altogether. Most difficult of all may be
the task of translating ambiguous species
boundaries into workable guidelines for leg-
islators, decision makers, and the layperson.
Without action, we risk losing much time,
much money, and much biodiversity.
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