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Abstract

Comparative studies require information on phylogenetic relationships, but complete species-level phylogenetic
trees of large clades are difficult to produce. One solution is to combine algorithmically many small trees into a
single, larger supertree. Here we present a virtually complete, species-level phylogeny of the marsupials (Mammalia:
Metatheria), built by combining 158 phylogenetic estimates published since 1980, using matrix representation with
parsimony. The supertree is well resolved overall (73.7%), although resolution varies across the tree, indicating
variation both in the amount of phylogenetic information available for different taxa, and the degree of conflict
among phylogenetic estimates. In particular, the supertree shows poor resolution within the American marsupial
taxa, reflecting a relative lack of systematic effort compared to the Australasian taxa. There are also important
differences in supertrees based on source phylogenies published before 1995 and those published more recently. The
supertree can be viewed as a meta-analysis of marsupial phylogenetic studies, and should be useful as a framework
for phylogenetically explicit comparative studies of marsupial evolution and ecology.
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INTRODUCTION

Large, species-level phylogenetic trees are extremely
valuable to researchers in evolution and ecology, both
as a framework for comparative analyses (Felsenstein,
1985; Harvey & Pagel, 1991), and as tools for studying
patterns of macroevolution (Nee, Mooers & Harvey, 1992;
Purvis, Nee & Harvey, 1995; Sanderson & Donoghue,
1996; Gittleman, Jones & Price, in press). However,
producing complete phylogenies of large clades from
primary character data still presents a major challenge,
both because of the difficulty in obtaining sufficient
homologous data for many different species (Sanderson
et al., 2003), and because of analytical limitations in
reconstructing large phylogenies (Sanderson & Shaffer,
2002). For this reason, researchers using comparative
methods are frequently compelled to build composite
phylogenies by combining multiple smaller trees. This
has often been done in an informal fashion by choosing
one estimate of higher-level relationships for the clade of
interest, then grafting selected species-level trees on to
the terminal branches (e.g. Kennedy, Spencer & Gray,
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1996; Badyaev, 1997; Johnson, 1998; Ortolani, 1999;
Cardillo & Bromham, 2001; Fisher, Owens & Johnson,
2001). A problem with this approach is that the basis
for choosing trees from which to build the composite
phylogeny can be quite arbitrary; for example, the trees
chosen may simply be the most comprehensive or the most
recent that are available (e.g. Cardillo & Bromham, 2001).
Where alternative, conflicting phylogenetic estimates for
the same group of taxa exist, this approach unavoidably
ignores most of the available information about the
phylogeny of that group in favour of a single hypothesis
only. Furthermore, because of differences in opinion about
how phylogenies are best constructed, disagreements
about the choice of trees are inevitable. One solution
to this is to construct supertrees. Supertrees use formal,
algorithmic methods such as matrix representation with
parsimony (MRP; Baum, 1992; Ragan, 1992) to combine
multiple trees with non-identical taxon sets. In supertree
construction, the topologies of original phylogenies
(“source trees’), as opposed to the data underlying those
phylogenies, are combined. As such, a supertree can be
thought of as a summary or meta-analysis of original
phylogenetic studies. Supertrees are becoming widely
used in comparative studies, with complete species-level
supertrees already published for primates (Purvis, 1995),
carnivores (Bininda-Emonds, Gittleman & Purvis, 1999),
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bats (Jones et al., 2002), insectivores (Grenyer & Purvis,
2003), lagomorphs (Stoner, Bininda-Emonds & Caro,
2003) and tubenose seabirds (Kennedy & Page, 2002), and
higher level supertrees published for mammals (Liu et al.,
2001), platyhelminths (Wilkinson et al., 2001), grasses
(Salamin, Hodkinson & Savolainen, 2002) and dinosaurs
(Pisani et al., 2002).

A recent critique of the supertree approach (Springer
& de Jong, 2001) pointed out the potential for non-
independence of source trees through pseudoreplication
in the data matrices from which supertrees are built.
Such problems can be minimized by critical selection of
the source trees before constructing the supertree matrix
(Bininda-Emonds, Jones, Price, Grenyer et al., 2003;
Bininda-Emonds, Jones, Price, Cardillo et al., in press).
Such selection was done in a recent supertree of seabirds,
in which the authors aimed to maximize the extent to
which each source tree represented an independent piece
of evidence for the phylogeny of the clade (Kennedy &
Page, 2002). A newly devised protocol for the selection
of source trees (Bininda-Emonds, Jones, Price, Cardillo et
al., in press) emphasizes the principle of independence of
data even more explicitly by defining a set of sequential
rules for the inclusion or rejection of source trees, or
for the combination of several non-independent source
trees before inclusion in the supertree matrix. This is an
important advance in supertree methodology because it
allows the source tree selection criteria to be presented
in a transparent manner, thereby promoting repeatability
of selection, reducing author bias in source tree selection,
and minimizing non-independence among source trees.

Here the first application of this selection protocol
to yield a virtually complete species-level supertree of
the marsupials (Mammalia: Metatheria) is presented.
Marsupials include 272 extant species under the
classification of Wilson & Reeder (1993), distributed in
Australasia and the Americas. Marsupials have been the
focus of phylogenetic comparative studies in a range of
fields, including conservation biology (e.g. Cardillo &
Bromham, 2001), macroecology (e.g. Johnson, 1998)
and life-history evolution (e.g. Fisher et al., 2001). The
results of all such studies are contingent on the use
of an accurate marsupial phylogeny as a framework
for analyses. However, marsupial systematics has been
subject to several pervasive controversies over recent
decades, and debate continues even over relationships
among the seven marsupial orders and other higher-
level groupings. For example, the position of the root
of the marsupial tree is still not settled. Division of
marsupials into the two suborders Australidelphia and
Ameridelphia was first proposed by Szalay (1982), and
although Australidelphia (all Australasian taxa plus the
South American microbiotheriid Dromiciops gliroides)
is well supported (e.g. Phillips et al., 2001), support
for the monophyly of Ameridelphia has always been
poor (e.g. Amrine-Madsen et al., 2003). The position
of Dromiciops within the Australidelphia, either as a
sister taxon to the Australasian marsupials (e.g. Amrine-
Madsen et al., 2003) or nested within the Australasian
taxa (e.g. Kirsch et al., 1997; Springer, Westerman et al.,

1998), remains a subject of debate. Likewise, the positions
of the marsupial moles (Notoryctes) and the bandicoots
(Peramelimorphia) also remain uncertain. Much of this
uncertainty stems from the different phylogenetic signals
given by different types of data, or by the incomplete
taxonomic representation of phylogenetic studies (Kirsch,
Lapointe & Springer, 1997; Lapointe & Kirsch, 2001).

There have been several phylogenetic syntheses of
the marsupials in recent years. Aplin & Archer (1987)
combined estimates of marsupial relationships available
at that time into what they referred to as ‘a syncretic
consensus of current phylogenetic understanding’. Their
combination of phylogenies was carried out in an
informal, non-algorithmic fashion, though guided by what
they called ‘cladistic principles’. Springer, Kirsch &
Case (1997) presented a family-level consensus using
moderately well-supported nodes from trees from various
molecular datasets (DNA hybridization, P1 and 12S).
Other syntheses have combined smaller datasets into
supermatrices that were analysed using conventional
methods: Luckett (1994) simultaneously analysed a
variety of morphological and molecular characters, while
Kirsch, Lapointe et al. (1997) produced the largest
marsupial phylogeny to date from a single data type (101
species from almost all genera) by combining separate
matrices of DNA hybridization distances (verified by
Lapointe & Kirsch, 2001). But, to date, no complete
species-level phylogeny of the marsupials has been
produced. Here we present the first attempt to do so,
combining systematically the majority of estimates of
marsupial phylogeny published in recent decades. This
is similar in principle to Aplin & Archer’s (1987)
‘syncretic consensus’, but using modern, algorithmic
supertree methods. Our aims in producing a virtually
complete, species-level supertree of extant marsupials
are threefold. First, to provide a framework for robust
comparative analyses of marsupial evolution and ecology.
Second, to examine how estimates of marsupial phylogeny
have changed in recent years with the rapid increase
in availability of molecular data and better computing
power, which together have enabled the routine use of
large datasets and complex tree reconstruction algorithms.
Finally, supertrees can be a useful means of taking a broad
view of a group’s systematics and identifying areas in
which systematic study is sparse or conflict among studies
is greatest.

METHODS
Source tree collection

Published estimates of marsupial phylogeny were
collected from the literature by searching Zoological
Record and Web of Science, using the following search
terms: phylog*, system*, classif*, taxonom®*, relationships
and cladistic*, together with marsupial*, metatheria* and
the truncated name of each marsupial order and family.
Additional relevant studies were obtained by examining
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the reference lists of studies collected. Because we wished
to build a supertree that summarized recent thinking in
marsupial systematics, yet incorporated a large number
of source trees, the search for source trees was restricted
to studies published since January 1980. The protocol for
inclusion or rejection of source trees is described fully
elsewhere (Bininda-Emonds, Jones, Price, Cardillo et al.,
in press), but the general principle was to minimize data
redundancy to ensure as far as possible that each source
tree chosen represented an independent ‘datapoint’ in
the supertree analysis. The following 3 examples from
the protocol illustrate this principle: (1) trees were not
accepted that had been superseded by more recent, more
taxonomically inclusive trees using the same dataset;
(2) where 2 or more trees with identical taxon sets, built
using the same dataset but with different methods (e.g.
parsimony and maximum likelihood), were presented in
a study, these trees were first combined using MRP into
a ‘mini-supertree’, which was coded as the single source
tree for that study; (3) trees were not accepted that were
simply reproductions of phylogenies published elsewhere,
or composite phylogenies built by grafting together several
smaller, previously published trees. The topology implied
by the marsupial classification of Wilson & Reeder
(1993) was included as a source tree. The inclusion of
a classification as a ‘seed’ tree in MRP analyses was
recommended by Bininda-Emonds & Sanderson (2001)
to ensure sufficient overlap among the set of source trees,
thereby improving resolution. Wilson & Reeder (1993)
was chosen as the taxonomy for the seed tree because
it is currently widely accepted as a taxonomic reference
for mammals, and because its low resolution means it
can easily be overruled by more resolved phylogenies,
minimizing its influence on the final supertree. Each
source tree topology was reconstructed in TreeView (Page,
1996), taxa defined as outgroups by the authors were
collapsed to a single tip, and the tree saved in Nexus file
format for use in analyses. Because the source trees were
collected from literature spanning 3 decades, synonymies
and differences in species designations were inevitable.
All synonymies were therefore converted to a common
nomenclature (that of Wilson & Reeder, 1993) before
analysis. Where a species could not be synonymized to
the Wilson & Reeder nomenclature, it was excluded.

Construction of supertrees

To construct supertrees using MRP, the nodes in each
source tree were first represented as a series of partial
binary ‘pseudocharacters’ indicating the inclusion of each
terminal taxon below that node. For each pseudocharacter,
descendants of that node were scored as ‘1°, non-
descendants as ‘0’, and taxa missing from that source
tree as ‘?° (Baum, 1992; Ragan, 1992). Matrices of
MRP pseudocharacters were constructed using RadCon
(Thorley & Page, 2000) and analysed with parsimony
using PAUP* v.4b10 (Swofford, 2002) to reconstruct the
supertree. In most large supertrees published to date,
assumed monophyletic subclades have been analysed

separately, then grafted together based on a higher-level
supertree, to reduce computational times. We avoided
any assumptions of monophyly by performing a single
analysis of all marsupial species. To speed the search
for most parsimonious trees the Parsimony Ratchet, a
heuristic search method that searches treespace more
broadly than conventional heuristic algorithms (Nixon,
1999), was applied. Our implementation of the ratchet
consisted of 10 separate runs, each with 500 iterations.
Within each iteration, 25% of the characters were selected
randomly and upweighted by a factor of 2. The trees
from all runs were used as the starting trees for a final
‘brute force’ search using TBR branch swapping. We
saved 10 000 of the most parsimonious trees and combined
them as a strict consensus, to give a conservative estimate
of phylogeny showing only nodes that appeared among all
the most parsimonious trees.

In MRP supertrees, as in other parsimony analyses,
loss of resolution can occur due to the presence of
‘floating” species (Wilkinson, 1995), species for which
so little information on their phylogenetic associations
exists that they can be grouped equally parsimoniously
with numerous other species. Such species were identified
using the program PerlEq (Jeffery & Wilkinson,
2003) to apply safe taxonomic reduction (Wilkinson,
1995), a strategy for reducing the number of most
parsimonious trees by eliminating species with non-
unique combinations of character states. These species
were removed from the matrix, which was then re-analysed
to reveal the hidden resolution.

Support measures

To assess the level of support for supertree clades and for
entire supertrees, we used the QS measures of Bininda-
Emonds (2003). These measures categorize the support
for supertree clades into: (1) hard support, where the clade
is specified exactly by at least 1 source tree; (2) hard
conflict, where the clade is contradicted by every source
tree; (3) soft support, where the clade is uncontradicted
among the set of source trees; (4) soft conflict, where the
clade is contradicted by some, but not all the source trees.
The QS index for a supertree clade varies between — 1
(where all source trees conflict with the clade) and 1
(where all source trees support the clade directly), and
the QS index for an entire supertree is the average of
all clades in the tree. Because QS samples at the level
of source trees, the measures are not affected by the
inherent non-independence of the MRP coding method,
as are other support measures such as the bootstrap and
Bremer support (Bininda-Emonds, 2003). The QS indices
correlate broadly with bootstrap values, although they are
more informative (Bininda-Emonds, 2003).

Weighting schemes

The decision about whether or not to apply differential
weighting to pseudocharacters before constructing a
supertree has been much debated and discussed in
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previous supertree papers (Purvis, 1995; Bininda-
Emonds, Gittleman et al., 1999; Jones et al., 2002; Pisani
et al., 2002; Grenyer & Purvis, 2003; Stoner ef al., 2003).
Source trees vary widely in the data used and the methods
employed to estimate phylogeny, and some types of data
and analysis are considered more reliable indicators of
phylogeny than others. Comparisons of supertrees based
on weighted and unweighted characters, however, have
found that weighting has only minor effects on topology
(Bininda-Emonds, Gittleman et al., 1999; Jones et al.,
2002; Grenyer & Purvis, 2003). Therefore, the supertree
presented here is based on unweighted characters.
Nevertheless, we were interested in investigating the
influence of different types of source trees. To investigate
the influence of the increasing use of larger datasets,
faster computers and more efficient search algorithms
in recent years, the supertree analysis was repeated for
trees published before the median source tree date of 1995
(‘old’ trees) and for trees published from 1995 to February
2003 (‘new’ trees). The analysis was also repeated under
2 differential weighting schemes. First, pseudocharacters
were weighted according to method: trees built using
algorithmic methods of tree reconstruction (distance
methods, parsimony, maximum likelihood and Bayesian
methods) were given 4 times the weight of trees
constructed by informal, non-algorithmic procedures,
following Purvis (1995). Second, pseudocharacters were
weighted according to data quantity: trees based on
1-10, 11-50, and > 50 morphological characters, or
on 1-100, 101-500, and > 500 base pairs, were given
weights of 1, 2 and 4, respectively. Trees based on DNA
hybridization and other distance-based molecular methods
were given a weight of 4. No attempt was made to weight
pseudocharacters by the level of node support because
many trees, particularly those > 10 years old or based
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on morphological characters, did not include support
measures. We emphasize that our weighting factors are
arbitrary — we were interested in comparisons of weighted
vs non-weighted analyses, rather than effects of the
weighting factors themselves.

RESULTS AND DISCUSSION
Source trees

A total of 158 source trees from 107 published studies
was suitable for use in the supertree analysis under
the protocol of Bininda-Emonds, Jones, Price, Cardillo
et al. (in press). The source trees were based on a
wide range of data types, including molecular sequences,
DNA hybridization, karyotypes, and immunological,
morphological and behavioural data. There has been
a rapid increase in work on marsupial systematics in
recent years: > 80% of the studies from which source
trees were taken were published in 1990 or later, and
the median publication date of studies was 1995. In
particular, the number of studies using molecular data
increased sharply after 1990, while the number of
studies using morphological data has remained low since
1980 (Fig. 1).

Supertrees: resolution and support

Five supertrees were produced:

(1) unweighted tree: pseudocharacters weighted equally;

(2) method tree: pseudocharacters weighted by phylogen-
etic construction method;
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Fig. 1. Number of studies per year since 1980 contributing source trees included in the marsupial supertree.
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Fig. 2. Unweighted supertree relationships among the families and orders of marsupials recognized by Wilson & Reeder (1993). Note

that Potoroidae and Peramelidae are paraphyletic. Branch lengths are arbitrary. Nodes are numbered sequentially.

(3) data tree: pseudocharacters weighted by data quantity;
(4) old tree: studies published before 1995;
(5) new tree: studies published in 1995 or later.

Using PerlEq to implement safe taxonomic reduction,
five floating species which contributed to substantial loss
of resolution were identified and removed: Pseudocheirus
schlegeli, Sminthopsis fuliginosus, Phalanger rothschildi,
Thylamys velutinus and Perameles eremiana. Removal
of these species improved the resolution of the trees
considerably. A strict consensus of the 10000 most
parsimonious trees found with all pseudocharacters
weighted equally is presented in Figs 2 & 4-10. Family-
level topologies of the four variant supertrees are shown
in Fig. 3. All supertrees in Nexus file format, the MRP
data matrices, and an EndNote file of the source trees
used are available from the first author. The unweighted
supertree and its MRP data matrix have been deposited on
TreeBASE (www.treebase.org).

Summary statistics for each of the five supertrees are
given in Table 1. None of the supertrees contain any
unsupported ‘novel clades’ (clades which are contradicted
by all source trees; Bininda-Emonds & Bryant 1998).
Resolution of the unweighted tree (73.7%) compares
well with other published species-level mammalian
supertrees: 78.1% for carnivores, 79.2% for primates,

Table 1. Summary statistics for the five marsupial supertrees

No. of No. of

source pseudo- No. of % os
Tree trees characters clades resolution index
Unweighted 158 1775 196 73.7 —0.09
Method 158 1775 190 71.2 —0.088
Data 158 1775 204 76.4 —0.089
old 76 691 127 47.6 —0.098
New 83 1151 132 49.4 —0.093

46.4% for bats, and 69.9% for insectivores. Resolution
is slightly lower for the method tree (71.2%), but
higher for the data tree (76.4%), implying greater
agreement among trees produced from larger datasets.
On the other hand, both old and new trees are con-
siderably less well-resolved (47.6% and 49.4%, respec-
tively), most probably reflecting the smaller number
of source trees (or more accurately, the smaller number of
nodes) contributing to each.

Resolution also varies among taxa. Although this
is partly the result of variation in the degree of
conflict among source trees (e.g. relationships within the
wombat + koala clade (Vombatidae + Phascolarctidae)
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Fig. 3. Family-level topologies for the marsupial supertrees weighted by method and data quantity, and for ‘old’ (source trees pre-1995)

and ‘new’ (source trees 1995-2003) supertrees.

are uncontroversial), it is also the result of variation in
the amount of phylogenetic information available. This is
made clear in Table 2, which shows the per cent resolution
in the unweighted tree, together with the mean number
of pseudocharacters in the matrix, the number of source
trees and the OS index, for each of the marsupial families.
The most poorly-resolved of the families (47.5%) is the
Didelphidae. This reflects a relative lack of systematic
effort: there are an average of 133.9 pseudocharacters
per species for the didelphids, compared to an average of
243 across all marsupial species. Although relationships

among the didelphid genera are fully resolved, there is a
near-complete lack of resolution within each of the three
largest genera (Monodelphis, Marmosa and Marmosops):
mean numbers of pseudocharacters per species for these
genera are 117.2, 102.1 and 105.1, respectively. In
Monodelphis, for example, only one source tree (Kirsch
et al., 1997) resolves relationships among more than
two species, and because this tree does not include
all Monodelphis species, these relationships are not
recovered by the supertree. In contrast, the Dasyuridae,
with the same number of species as the didelphids,
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Fig. 4. Unweighted supertree relationships for the possum families Pseudocheiridae, Petauridae, Acrobatidae, Tarsipedidae, Phalangeridae
and Burramyidae. Two species (Pseudocheirus schlegeli and Phalanger rothschildi) have been omitted from this part of the supertree

under safe taxonomic reduction.

have 428.3 pseudocharacters per species, and are 85.7%
resolved.

Values for the support measure QS varied little among
the five supertrees (Table 1). Support was slightly higher
for the two weighted trees, and slightly lower for both
old and new trees, although there is not yet a method
available for significance testing of differences in OS
values. The negative OS values indicate that, overall, there

were more mismatches than matches between source trees
and supertree clades, with 67.9% of clades showing a
hard mismatch (i.e. contradicted by at least one source
tree), and 99.5% showing either a soft or hard mismatch.
This should not be interpreted as poor overall support
for the supertrees, as a large number of non-overlapping
source trees will increase the probability of conflict
(Bininda-Emonds & Sanderson, 2001; Bininda-Emonds,
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Fig. 5. Unweighted supertree relationships for the families Macropodidae and Potoroidae.

2003). Simulated supertrees had QS values between zero
and — 0.1 where source trees were highly overlapping,
and around — 0.3 where there was little overlap (Bininda-
Emonds, 2003). In this context, values of around — 0.09
for the marsupial supertrees, for which there were a large
number of source trees with relatively little overlap, seem
to indicate a good overall level of support. This is not very
different from the carnivore supertree (Bininda-Emonds,
Gittleman et al., 1999), for which QS was — 0.029, and
74.7% of clades showed a hard mismatch, while 95.5%
showed either a soft or hard mismatch. All except the
smallest of the separate supertrees making up the overall
carnivore supertree had negative QS values (Bininda-
Emonds, 2003).

Effects of differential weighting

Differences in the family-level topology of the five
supertrees are shown in Fig. 3. Table 3 shows topological
distances among all pairs of trees using the partition
metric (Robinson & Foulds, 1981), which reveals the
number of clades present in either tree in a pair, but not
both. Weighting pseudocharacters, either by method or by
data quantity, had only minor effects on the higher-level
topology of the supertrees: distances from the unweighted
tree are 14.3% and 7.9%, respectively (Table 3). In the
unweighted tree, the possum family Pseudocheiridae is
the sister to a clade formed by the families Petauridae,
Acrobatidae and Tarsipedidae, but in both the methods
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Phascolarctos cinereus

Vombatus ursinus

96

Lasiorhinus krefftii

97

Lasiorhinus latifrons

Fig. 6. Unweighted supertree relationships for the families
Phascolarctidae and Vombatidae.

and data trees, the Petauridae and Pseudocheiridae are
grouped as sister clades, supporting Aplin & Archer’s
(1987) superfamily Petauroidea. Additionally, the data
tree groups Thylacinus (Thylacinidae) with Dasyuridae to
the exclusion of Myrmecobius (Myrmecobiidae), whereas
unweighted and methods trees group Myrmecobius with
Dasyuridae.

There were, however, important differences in topology
between the old and new trees, including the placement
of the marsupial root and the position of Notoryctes
(discussed in more detail below). In general, the topology
of the new tree more closely resembled that of the
unweighted tree than did the old tree (28.3% and 40.6%
difference, respectively). This can be explained by the
fact that newer trees tend to be larger: although the

number of source trees contributing to the old and new
supertrees was similar (76 and 83, respectively), the old
source trees contributed only about half the number of
pseudocharacters as the new source trees (691 and 1151,
respectively). Hence, the newer source trees had a greater
influence in the overall MRP analysis. However, any
temptation to present the new tree as a more representative
and up-to-date summary of marsupial systematic
understanding is countered by the low resolution. The
older source trees are needed to improve taxonomic
representation and supertree resolution, although they
clearly do not overwhelm the topology of the supertree.

Marsupial systematics

Although the taxonomic rank of major marsupial clades
has been re-assessed periodically over the past few
decades, there is little debate over the monophyly of the
seven orders first proposed by Aplin & Archer (1987),
and which are currently widely accepted. The monophyly
of the families recognized by Wilson & Reeder (1993),
the classification followed in this study, is also accepted
widely, although there remains some controversy. The
unweighted supertree supports monophyly of all Wilson &
Reeder families with the exceptions of Peramelidae
(Fig. 8) and Potoroidae (Fig. 5). The division of bandicoots
(order Peramelemorphia) into two families, Peramelidae
and Peroryctidae, was suggested by Groves & Flannery
(1990) and is followed by Wilson & Reeder (1993),
but other authors (e.g. Springer, Kirsch ef al., 1997)
have continued to support the division of bandicoots
into Peramelidae and Thylacomyidae, as suggested by
Kirsch (1977). The supertree reflects this uncertainty,
indicating that Peramelidae is paraphyletic with respect

Table 2. Summary statistics for each of the families of marsupials within the unweighted supertree

Pseudocharacters
Family Species per species Source trees % resolution os
Microbiotheriidae 1 437
Pseudocheiridae 13 221.46 39 100 —0.13
Petauridae 10 192.2 28 50 —0.095
Tarsipedidae 1 281
Acrobatidae 2 264 24 —0.05
Phalangeridae 18 222.83 56 100 —0.187
Burramyidae 5 199.8 22 80 —0.073
Potoroidae 9 153.44 a a
Macropodidae 54 177.59 53 83.3 —0.18
Phascolarctidae 1 594
Vombatidae 3 258 21 100 —0.066
Notoryctidae 2 332 22 —0.063
Thylacinidae 1 364
Myrmecobiidae 1 425
Dasyuridae 63 428.32 79 85.7 —0.266
Peramelidae 10 232.7 2 &
Peroryctidae 11 157.45 19 30 —0.07
Caenolestidae 5 187.2 19 50 —0.06
Didelphidae 63 133.92 35 47.5 —0.127

#Paraphyletic families.
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Fig. 7. Unweighted supertree relationships for the families Thylacinidae, Myrmecobiidae, Dasyuridaec and Notoryctidae. One species

(Sminthopsis fuliginosus) has been omitted from this part of the supertree under safe taxonomic reduction.

to both a monophyletic Peroryctidae and a monophyletic
Thylacomyidae. The uncertainty is also reflected in the
low QS value of — 0.158 (compared to the average value

Table 3. Percentage differences in topology between all pairwise
combinations of the five marsupial supertrees, based on the partition
metric

Unweighted Data Method New
Unweighted
Data 7.9
Method 14.3 18.9
New 283 32.8 27.2
Old 40.6 42.1 425 394

of —0.09 of all clades in the unweighted supertree)
for the clade containing the Peroryctidaec and several
of the Peramelidae species (Appendix 2). The supertree
also indicates a paraphyletic Potoroidae with respect
to a monophyletic Macropodidae. Again, the OS value
of the clade containing Macropodidae and several of
the Potoroidae is relatively low (—0.177), indicating
disagreement among source trees.

All supertrees support the monophyly of Austral-
idelphia, the clade formed by the grouping of the South
American microbiotheriid Dromiciops gliroides with the
Australasian marsupial taxa. This grouping was first
proposed by Szalay (1982) based on shared possession
of a continuous lower ankle joint pattern, and has
subsequently been supported by molecular data, including
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Chaeropus ecaudatus

Microperoryctes longicauda

Microperoryctes murina
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Microperoryctes papuensis
Echymipera clara

Echymipera davidi
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Echymipera echinista
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156 161

162 | [— Isoodon auratus
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— Perameles gunnii

164— peorameles nasuta

— Macrotis lagotis

165 — Macrotis leucura

Fig. 8. Unweighted supertree relationships for the families Peramelidae and Peroryctidae. One species (Perameles eremiana) has been

omitted from this part of the supertree under safe taxonomic reduction.

Lestoros inca

Rhyncholestes raphanurus

Caenolestes caniventer

Caenolestes convelatus
167

Caenolestes fuliginosus

Fig. 9. Unweighted supertree relationships for the family
Caenolestidae.

DNA hybridization (e.g. Kirsch, Dickerman et al., 1991;
Kirsch, Lapointe et al., 1997), and both mitochondrial
(e.g. Phillips et al., 2001; Springer, Westerman & Kirsch,
1994) and nuclear (e.g. Retief et al., 1995; Amrine-
Madsen et al., 2003) genes. Although Australidelphian
monophyly has been disputed by several studies (e.g. Reig,
Kirsch & Marshall, 1987; Hershkovitz, 1992) and was
equivocal in others (e.g. Westerman & Edwards, 1991;
Springer, Kirsch et al., 1997), the majority of recent
studies support it. The general support for the Austral-
idelphia since Szalay (1982) is reflected in all five super-
trees, regardless of weighting or age.

Monophyly of Ameridelphia (the clade formed by the
American orders Didelphimorphia and Paucituberculata),
however, is supported only by the old supertree (Fig. 3).
All other supertrees indicate that the marsupial root lies
between the Didelphimorphia and other marsupials, with
the Paucituberculata as the sister clade to Australidelphia.
Although the old supertree indicates a monophyletic
Ameridelphia, this finding derives from only six studies
published before 1995 that contain information relevant
to the grouping of the two American orders. In general,
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Fig. 10. Unweighted supertree relationships for the family Didelphidae. One species (Thylamys velutinus) has been omitted from this part

of the supertree under safe taxonomic reduction.

the grouping of Didelphimorphia and Paucituberculata
is not supported strongly by morphological studies
as most of their shared characters are considered to
be retained ancestral traits (Luckett, 1994). However,
two of the pre-1995 studies support Ameridelphian
monophyly (Marshall, Case & Woodburne, 1990;
Luckett, 1994) based on analysis of a wide range of
morphological characters. Most other pre-1995 studies
fail to resolve the monophyly of Ameridelphia and only
one (Sharman, 1982) does not support it. Since our
supertree was completed, the placement of the marsupial
root between Didelphimorphia and other marsupials has
been corroborated by a new study based on maximum

likelihood and Bayesian analyses of a concatenation of
five nuclear genes (Amrine-Madsen et al., 2003).

Since Szalay (1982) first proposed grouping Dromi-
ciops gliroides with the Australasian taxa, the position
of Dromiciops within the Australidelphia has been a
source of debate, and one with important implications
for the biogeographic history of marsupials (Clemens,
Richardson & Baverstock, 1989). The supertrees indicate
Dromiciops as the sister clade to the Diprotodontia, with
the exception of the old tree which indicates Dromiciops
as the sister to the clade formed by Diprotodontia
and Notoryctemorphia. Again, however, only a small
number of source trees published before 1995 have
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information relevant to this issue, and all of them either
place the Notoryctemorphia between Dromiciops and
Diprotodontia (e.g. Archer, 1984; Marshall ez al., 1990;
Sharman, 1982; Szalay, 1982) or fail to resolve the
grouping (e.g. Luckett, 1994). Since 1995, however, the
grouping of Dromiciops with Diprotodontia has been the
most commonly supported, mostly by DNA hybridization
studies (e.g. Kirsch, Lapointe et al., 1997; Lapointe &
Kirsch, 2001), although there is also some morphological
evidence (Springer, Kirsch et al., 1997). However, a
variety of other positions for Dromiciops are suggested
by other data types. For example, Amrine-Madsen
et al. (2003), using a concatenation of nuclear genes,
place Dromiciops at the base of Australidelphia;
Springer, Westerman et al. (1998), using mitochondrial
and nuclear genes, place Dromiciops as sister to a
clade formed of Diprotodontia, Dasyuromorphia and
Notoryctemorphia; and Palma & Spotorno (1999), using
12S rDNA sequences, place Dromiciops in a clade with
Notoryctemorphia and Dasyuromorphia.

All supertrees place the bandicoots (Peramelemorphia)
at the base of the Australidelphia. The position of
bandicoots has been another of the major uncertainties in
the higher-level relationships of marsupials. The hitherto
largest phylogenies of marsupials, the DNA hybridization
study of Kirsch, Lapointe et al. (1997) and the supertree
of Lapointe & Kirsch (2001), placed bandicoots between
the Paucituberculata and all other marsupials, but such
a grouping has rarely been supported by other studies.
Some studies, notably those based on mitochondrial
genes, have placed bandicoots with American taxa (e.g.
Springer et al., 1994; Palma & Spotorno 1999) although
Phillips et al. (2001) put them in Australidelphia using
mitochondrial sequences. Studies based on nuclear genes
usually include the bandicoots within the Australidelphia,
but in varying positions: for example, Retief ef al. (1995)
placed bandicoots at the base of the Australidelphia, while
Amrine-Madsen et al. (2003) placed them as sister to a
clade formed of Dasyuromorphia and Notoryctemorphia.

CONCLUSIONS

The marsupial supertree presented here continues in the
tradition of such studies as Aplin & Archer (1987),
Kirsch, Lapointe et al. (1997) and Springer, Kirsch
et al. (1997) in combining and synthesizing the results
of many smaller studies into a broader phylogeny.
It represents the first virtually complete species-level
phylogeny of extant marsupials built using modern,
algorithmic supertree methods. We hope that it will
encourage comparative studies of marsupial evolution and
ecology by providing a framework for phylogenetically
explicit analyses across the whole marsupial clade,
as well as stimulating further debate about marsupial
relationships. The supertree also highlights the great
discrepancy in systematic effort between the Australasian
and American marsupial taxa: the American genera
Monodelphis, Marmosa and Marmosops are particularly
lacking in systematic knowledge. We hope that the

supertree will inspire further systematic work on these
clades.
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Appendix 1. Nodal support values for the unweighted supertree. Node numbers refer to Figs 2-9. Derivation of the QS index is described
fully in Bininda-Emonds, Jones, Price, Cardillo ef al. (in press)

No. of source trees

Number of
Node Species Status OS index Hard match Hard mismatch Equivocal Soft match Soft mismatch
1 267 equivocal —-0.5 0 0 0 0 158
2 205 softConflict —0.503 0 16 15 0 127
3 200 softConflict —0.5 0 14 14 0 130
4 180 softConflict —0.494 0 18 20 0 120
5 116 softConflict —-0.37 0 17 58 0 83
6 115 softConflict —0.335 0 8 60 0 90
7 111 softConflict —0.345 0 11 60 0 87
8 48 softConflict —0.278 0 10 80 0 68
9 26 softConflict —0.165 0 6 112 0 40
10 13 softConflict —0.13 0 13 130 0 15
11 3 softConflict —0.089 0 6 134 1 17
12 2 softSupport —0.051 0 0 134 4 20
13 10 softConflict —0.095 0 2 130 0 26
14 5 softConflict —0.079 0 4 137 0 17
15 4 softSupport —0.051 0 0 140 1 17
16 5 softSupport —0.082 0 0 130 1 27
17 13 softConflict —0.13 0 2 119 0 37
18 7 softConflict —-0.117 0 8 129 0 21
19 2 softSupport 0.022 0 0 137 14 7
20 5 softConflict —0.063 0 1 139 0 18
21 4 softConflict —0.063 0 2 138 1 17
22 3 softConflict —0.073 0 4 137 1 16
23 2 softConflict —0.019 0 4 134 11 9
24 6 softConflict —0.111 0 5 126 1 26
25 5 softConflict —0.035 0 1 144 2 11
26 3 softConflict —0.032 0 2 146 2 8
27 2 softConflict —0.022 0 1 146 3 8
28 22 softConflict —0.222 0 12 100 0 46
29 17 softConflict —0.187 0 3 102 0 53
30 11 softConflict —0.133 0 7 123 0 28
31 10 softConflict —0.133 0 7 123 0 28
32 8 softConflict —0.133 0 7 123 0 28
33 6 softConflict —0.127 0 7 123 1 27
34 5 softConflict —0.114 0 5 125 1 27
35 4 softConflict —0.114 0 6 126 1 25
36 3 softConflict —0.092 0 5 130 2 21
37 2 softConflict —0.016 0 4 143 7 4
38 2 softConflict —0.051 0 2 142 1 13
39 2 softSupport 0.041 0 0 143 14 1
40 6 softConflict —0.142 0 2 115 0 41
41 2 softSupport —0.016 0 0 151 1 6
42 4 equivocal —0.111 0 0 123 0 35
43 3 softSupport —0.108 0 0 122 1 35
44 2 softSupport —0.101 0 0 116 5 37
45 5 softConflict —0.073 0 1 136 0 21
46 4 softSupport —0.044 0 0 142 1 15
47 3 softSupport —0.009 0 0 149 3 6
48 63 equivocal —0.168 0 0 105 0 53
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No. of source trees

Number of
Node Species Status 0OS index Hard match Hard mismatch Equivocal Soft match Soft mismatch
49 62 softConflict —0.177 0 3 105 0 50
50 3 softSupport —0.022 0 0 149 1 8
51 54 softConflict —0.18 0 4 105 0 49
52 53 softConflict —0.184 0 5 105 0 48
53 47 softConflict —0.19 0 7 105 0 46
54 9 softSupport —0.06 0 0 137 1 20
55 8 softConflict —0.063 0 1 137 1 19
56 7 softConflict —0.06 0 1 138 1 18
57 6 softConflict —0.054 0 1 140 1 16
58 5 softConflict —0.041 0 1 144 1 12
59 2 softSupport —0.016 0 0 147 3 8
60 3 softSupport —0.022 0 0 149 1 8
61 2 softSupport —0.006 0 0 150 3 5
62 38 softConflict —0.177 0 9 111 0 38
63 23 softConflict —0.171 0 11 115 0 32
64 4 softConflict —0.022 0 1 148 2 7
65 19 softConflict —0.165 0 9 115 0 34
66 18 softConflict —0.158 0 8 116 0 34
67 15 softConflict —0.146 0 4 116 0 38
68 14 softConflict —0.155 0 8 115 1 34
69 8 softConflict —0.079 0 4 133 2 19
70 2 softConflict —0.022 0 1 136 8 13
71 2 softSupport 0.009 0 0 153 4 1
72 2 softSupport 0 0 0 152 3 3
73 2 softSupport 0.013 0 0 146 8 4
74 6 softConflict —0.123 0 5 122 1 30
75 4 softSupport —0.082 0 0 130 1 27
76 3 softSupport —0.073 0 0 131 2 25
77 2 softSupport —0.054 0 0 133 4 21
78 2 softSupport —0.038 0 0 136 5 17
79 3 softSupport —0.022 0 0 149 1 8
80 2 softSupport 0 0 0 154 2 2
81 15 softConflict —0.066 0 5 142 0 11
82 11 softConflict —0.047 0 1 142 1 14
83 8 softSupport —0.041 0 0 143 1 14
84 4 softSupport —0.013 0 0 152 1 5
85 2 softSupport 0.003 0 0 153 3 2
86 3 softSupport —0.006 0 0 154 1 3
87 2 softSupport —0.003 0 0 153 2 3
88 4 softSupport —0.028 0 0 147 1 10
89 3 softSupport —0.028 0 0 147 1 10
90 2 softSupport —0.009 0 0 147 4 7
91 6 softConflict —0.038 0 1 147 0 10
92 4 softSupport —0.003 0 0 153 2 3
93 2 softSupport —0.028 0 0 145 2 11
94 3 softSupport —0.038 0 0 144 1 13
95 4 softConflict —0.089 0 1 131 0 26
96 3 equivocal —0.066 0 0 137 0 21
97 2 softSupport —0.022 0 0 149 1 8
98 64 softConflict —0.291 0 12 78 0 68
99 62 softConflict —0.259 0 3 79 0 76
100 61 softConflict —0.272 0 7 79 0 72
101 60 softConflict —0.266 0 5 79 0 74
102 33 softConflict —0.209 0 6 98 0 54
103 14 softConflict —0.142 0 3 116 0 39
104 12 softConflict —0.146 0 9 121 0 28
105 7 softConflict —0.073 0 2 135 1 20
106 5 softConflict —0.082 0 5 135 1 17
107 4 softConflict —0.095 0 7 133 1 17
108 3 softConflict —0.044 0 3 143 2 10
109 2 softConflict —0.019 0 2 140 7 9
110 2 softSupport —0.019 0 0 134 9 15
111 5 softConflict —0.114 0 3 125 0 30
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No. of source trees

Number of
Node Species Status OS index Hard match Hard mismatch Equivocal Soft match Soft mismatch
112 3 softConflict —0.07 0 4 134 3 17
113 2 softConflict —0.073 0 6 129 6 17
114 2 softSupport —0.066 0 0 119 9 30
115 19 softConflict —-0.19 0 5 103 0 50
116 15 softConflict —0.225 0 17 104 0 37
117 2 softConflict —0.06 0 10 141 4 3
118 11 softConflict —0.206 0 12 105 0 41
119 10 softConflict —0.193 0 10 107 0 41
120 7 softConflict —0.155 0 5 114 0 39
121 6 softConflict —0.161 0 7 112 1 38
122 5 softConflict —0.13 0 6 121 1 30
123 4 softConflict —0.076 0 2 134 1 21
124 3 softConflict —0.025 0 2 150 1 5
125 2 softConflict 0.006 0 1 147 7 3
126 3 softConflict —0.066 0 3 140 0 15
127 2 softSupport —0.054 0 0 139 1 18
128 2 softConflict —0.038 0 5 141 5 7
129 2 softConflict —0.032 0 7 133 11 7
130 2 softConflict —0.025 0 2 146 3 7
131 27 softConflict —0.139 0 4 118 0 36
132 22 softConflict —0.142 0 6 119 0 33
133 21 softConflict —0.165 0 11 117 0 30
134 3 softConflict —0.022 0 1 146 3 8
135 2 softConflict 0.038 0 1 135 18 4
136 18 softConflict —0.171 0 14 116 1 27
137 13 softConflict —0.07 0 5 139 1 13
138 2 softSupport 0.038 0 0 146 12 0
139 11 softConflict —0.07 0 5 139 1 13
140 10 softConflict —0.076 0 6 138 1 13
141 9 softConflict —0.057 0 3 141 1 13
142 5 softConflict —0.038 0 1 143 2 12
143 4 softConflict —0.051 0 3 141 2 12
144 4 softConflict —0.044 0 6 148 1 3
145 3 softConflict —0.038 0 5 149 1 3
146 2 softConflict —0.009 0 4 143 8 3
147 5 softConflict —0.136 0 5 118 1 34
148 4 softConflict —0.063 0 1 137 1 19
149 3 softConflict —0.057 0 4 142 1 11
150 2 softSupport —0.028 0 0 145 2 11
151 5 softConflict —0.104 0 3 126 1 28
152 4 softConflict —0.076 0 1 133 1 23
153 3 softConflict —0.082 0 1 131 1 25
154 2 softSupport —0.063 0 0 136 1 21
155 20 softConflict —0.149 0 2 113 0 43
156 19 softConflict —0.155 0 3 112 0 43
157 17 softConflict —0.158 0 4 112 0 42
158 11 softConflict —0.07 0 3 139 0 16
159 5 softConflict —0.057 0 2 140 1 15
160 2 softSupport —0.025 0 0 148 1 9
161 6 equivocal —-0.117 0 0 121 0 37
162 3 softSupport —0.073 0 0 131 2 25
163 2 softConflict —0.006 0 1 147 5 5
164 2 softSupport —0.032 0 0 136 6 16
165 2 softSupport —0.016 0 0 151 1 6
166 5 equivocal —0.06 0 0 139 0 19
167 3 softSupport —0.06 0 0 137 1 20
168 62 softConflict —0.127 0 5 123 0 30
169 5 softConflict —0.032 0 2 150 0 6
170 4 equivocal —0.025 0 0 150 0 8
171 3 softSupport —0.022 0 0 149 1 8
172 57 softConflict —0.13 0 6 123 0 29
173 29 softConflict —0.136 0 7 122 0 29
174 9 softConflict —0.092 0 2 131 0 25
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Appendix 1. Continued

No. of source trees

Number of
Node Species Status 0S index Hard match Hard mismatch Equivocal Soft match Soft mismatch
175 8 softConflict —0.089 0 1 131 0 26
176 7 softConflict —0.089 0 1 131 0 26
177 6 softConflict —0.089 0 1 131 0 26
178 4 softConflict —0.082 0 1 131 1 25
179 3 softConflict —0.028 0 1 148 1 8
180 2 softSupport —0.016 0 0 147 3 8
181 2 softSupport —0.019 0 0 150 1 7
182 20 softConflict —0.054 0 3 144 0 11
183 15 softConflict —0.051 0 4 146 0 8
184 6 softSupport —0.013 0 0 148 3 7
185 5 softSupport —0.013 0 0 148 3 7
186 2 softSupport —0.006 0 0 148 4 6
187 9 softConflict —0.025 0 1 147 2 8
188 2 softSupport 0 0 0 152 3 3
189 5 softConflict —0.035 0 2 149 0 7
190 4 softConflict —0.016 0 2 149 3 4
191 2 softConflict 0.003 0 1 148 6 3
192 2 softConflict —0.003 0 3 148 6 1
193 28 softConflict —0.057 0 3 143 0 12
194 13 softConflict —0.032 0 1 149 0 8
195 4 softSupport —0.016 0 0 149 2 7
196 15 softSupport —0.038 0 0 142 2 14
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