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Abstract

Question: How do multivariate methods perform in relating species- and

community-level trait responses to the environment?

Location: (1) Field data from grazed semi-natural grasslands, NE Germany; (2)

artificial data.

Methods: Research questions associated with trait–environment relationships

were briefly reviewed and seven available methods evaluated. The main distinc-

tion between research questions is whether trait–environment relationships

should be addressed at community or species level. A redundancy analysis

(RDA) of mean trait values of species in a plot weighted by their abundances

(CWM-RDA) is exclusively suitable for the community level. The other six

methods address the species level. A double inertia analysis of two arrays (RLQ)

and double canonical correspondence analysis (double CCA) use combinations

of ordinations to simultaneously analyse species and trait responses to the envi-

ronment. A combination of the outlying mean index with generalized additive

models (OMI-GAM) predicts the response of species to environmental variables

on trait gradients. RDA-RegTree first analyses species responses to the environ-

ment with RDA and then uses a regression tree to classify trait expressions

according to scores of species responses on the ordination axes. Cluster regres-

sion uses cluster analyses and logistic regression to search for trait combinations

with the best response to the environmental variables. This method models the

distribution of functional groups on environmental gradients. All methods and

data are available as R scripts.

Results: All methods consistently revealed the main trait responses to environ-

ment in the field data set, namely that life history was associated with available

phosphorus while grazing intensity was related to leaf C:N ratio and canopy

height. At community level, CWM-RDA gave a good overview of trait–

environment relationships, as also provided by the species-based methods RLQ

and double CCA. OMI-GAM revealed non-linear relationships in the field data

set. Field and artificial data gave that the number and stability of functional

groups produced by Cluster regression and RDA-RegTree varied more strongly

than RLQ, double CCA and OMI-GAM.

Conclusions: Each method addresses particular ecological concepts and

research questions. If a user asks for the response of average trait expressions of

communities to environmental gradients, CWM-RDA may be the first choice.

However, species-based methods should be applied to address questions regard-

ing co-existence of different life histories or to assess how groups of species

respond to environmental changes. The artificial data set revealed that the

methods differed in sensitivity to gradient lengths and random data.
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Introduction

Over the last decade, the use of functional traits of

organisms, rather than taxonomic specification, as a

method to produce generic rules on community dynamics

in response to environmental change, has gained increas-

ing momentum (McGill et al. 2006; Suding et al. 2008).

Trait–environment relationships are of interest for several

important purposes in ecology and environmental man-

agement. This is particularly evident in vegetation studies.

First, for example, the overwhelming majority of dynamic

vegetation models use (explicitly or not) plant func-

tional types, i.e. groups of plants with similar suites of co-

occurring functional traits. However, there is a consensus

that futuremodels will need to usemore sophisticated, and

less subjective, functional classification approaches (Lavo-

rel et al. 2007). Second, the analysis of responses of traits

associated with persistence, regeneration and dispersal to

environmental gradients should assist in a more mechanis-

tic understanding of community ecology and species

niches (McGill et al. 2006). Third, functional groups can be

used to aggregate the overwhelmingly large diversity of

organisms into groups of species that share similar trait

expressions. This approach has been prevalent acrossmany

disciplines (e.g. guilds, Fox & Brown 1993; Wilson 1999;

biogeochemical functional groups, Hood et al. 2006).

Fourth, environmental management can strongly benefit

from a functional approach that identifies key plant or ani-

mal functional groups with specific environmental sensi-

tivities or ecosystem effects (Bonada et al. 2007).

With increasing availability of trait data, the methodo-

logical challenge of linking species and community trait

responses to the environment has gained prominence

(Legendre et al. 1997), and in spite of many years of

debate, it remains an open question (Pakeman 2004; Dray

& Legendre 2008). The methods should directly link candi-

date traits to environmental data via the performance of

the species bearing expressions of these traits, thereby sep-

arating responsive from non-responsive traits. Ultimately,

techniques for functional group identification should

group organisms with similar responses to environmental

gradients, and with similar expressions of multiple traits

underlying such response (response groups characterized

by their ‘response traits’ sensu Lavorel & Garnier 2002).

How does a user, such as a field ecologist with basic

expertise in the intricacies of multivariate methods, choose

which method to apply for a given objective and data set?

To our knowledge, no study has presented different meth-

ods to relate species- and community-level trait response

to the environment and evaluated their advantages and

drawbacks. To guide users in choosing the most appropri-

ate methods, we briefly review the range of research ques-

tions that require the identification of response traits or

functional response groups. Second, using field and artifi-

cial data, we present seven different statistical procedures

to address some of these research questions and examine

their advantages and constraints. We compare species- and

community-based functional classifications for plants, but

the methods are also applicable to other organisms (e.g.

Dolédec et al. 2007; Moretti et al. 2009). R scripts and

functions are provided in the Appendix that contains a full

analysis of the field data set organized as a tutorial that can

be readily applied to any other similar data set.

Which ecological questions andwhichmethodological

issues do they imply?

In most situations, considering species traits in an ecologi-

cal study implies the need to analyse three tables: a table

containing the abundances (or presence/absence) of spe-

cies in plots, a second table with the measurements of

environmental variables (e.g. climate, disturbance, land

use) for the plots, and a third table describing traits for the

species (e.g. plant height, animal body mass). Several

methods have been developed to study the relationships

between traits and environmental variables using the

information contained in these three tables. We identified

a set of key generic questions that can be addressed with

these different methods, and classified them according to

the level of analysis and related statistical properties

(Table 1).

Themain distinction between the questions in Table 1 is

whether trait–environment relationships should be

addressed at the community level (question 1) or the

species level (question 2; Ackerly et al. 2002). In the com-

munity-level approach the community is considered as the

observation unit. In this case, a plot by trait matrix is con-

structed by combining the abundance and trait tables and a

value for each trait is computed for each plot. Numerical

traits can be averaged over all species present in the plot,

weighted (or not)with their abundance or frequency. Cate-

gorical traits can be expressed as proportions or frequencies.
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The trait table is then analysed against the environment

table by, for example, constrained ordinationmethods.

The ecological concept behind the community-based

approach is that the environment exerts strong selective

pressure on a trait and sieves only a small subset of the

total range of trait expressions in the geographical species

pool (‘habitat filtering’; Woodward & Diament 1991;

Grime 2006). Thus, the distribution of numerical trait val-

ues in a community should converge around a mean

describing this subset (Grime 2006).

Overall, analyses at the community level address ques-

tions on which trait expressions will becomemore likely in

a community under a given environmental change, e.g.

whether vegetation stature will be shorter under intensive

grazing or mowing (Nygaard & Ejrnaes 2004; Table 1,

question 1a). Communities can be split into different eco-

logical groups (e.g. dominants vs subordinates, Cingolani

et al. 2007; invaders vs resident species, Thuiller et al.

2006; frequent vs rare species, de Bello et al. 2007) and the

average trait composition of these groups can be compared

with respect to their position on environmental gradients

(question 1b). An open research question concerns the

extent to which trait variation along a gradient is mostly

due to intra-species trait variability (phenotypic plasticity

and/or genetic variability; Crutsinger et al. 2007; Whitlock

et al. 2007; question 1c).

In the species-level approach the statistical units are the

species (except when phylogenetic independent contrasts

are applied, see below). The first set of species-level ques-

tions relates to the traits that determine individualistic

species distributions (Table 1, question 2a, 2b). Much

effort has been devoted to assess which combinations of

traits determine species adaptations to different environ-

mental conditions. For example, which traits are needed

for plant species to adapt to cold alpine conditions? The

answer is that plants in these conditions need a low stat-

ure, often with a cushion shape, a perennial life cycle and

a set of ecophysiological adaptations to copewith high light

intensity (Körner 2003).

Although the community-level approach assumes that

the mean trait expression of a community is predictable,

functionally different species and groups of species can co-

occur in the same community. Such a pattern points to dif-

ferent survival strategies or different ways of resource

exploitation in a community. A trivial example is the co-

occurrence of trees, shrubs and herbs in a forest. Question

2c asks whether these functionally different groups show a

different or similar response to the environment. Likewise,

differences in ecological specialization may or may not

depend on different responsive traits (e.g. generalist vs spe-

cialist strategies; question 2d). The species-level approach

can also be used to assess several more specific questions,

which will not be dealt with in our review of methods.

These include the question, to what extent the adaptations

to a given habitat are phylogenetically-driven or indepen-

dent of phylogeny (Westoby et al. 1995).

Methods

Field and artificial data

We used two complementary data sets; first original field

data as would have been collected by a typical user of the

methods analysed here, and second artificial data in order

to support the robustness of our analysis. Data collected in

the field introduce real-life variation by plot selection,

fuzzy ecological patterns or legacies of past histories in trait

–environment relationships. The performance of each

method can thus be assessed under realistic conditions.

Field data were collected in a marginal grassland, grazed

year-round by free-ranging cattle, horses and sheep in

northeast Germany. The data set comprised plant species

abundances, grazing intensity, soil water-holding capacity,

extractable phosphorus and the following traits: canopy

height, specific leaf area (SLA), seed mass (log trans-

formed), leaf C:N ratio, onset of flowering date, flowering

mode (polycarpic/monocarpic). See Appendix S1 and Gar-

nier et al. (2007) for a detailed description of the study site

and the samplingmethods.

In artificial data, criteria for assessing methods can

explicitly be incorporated. Our criteria were that (1) each

method separated traits responding to environmental con-

ditions from non-responsive traits, (2) classification of

functional groups was stable, (3) strong environmental

gradients produced stronger responses than absent gradi-

ents, and (4) random species distributions produced no

responses. We generated an artificial data set consisting of

two orthogonal environmental gradients, named distur-

bance and soil resources. Niches for 50 species were con-

structed on the two gradients with Gaussian response

curve formulas, including a random component. These

niches were built according to three scenarios: (1) at the

corners and the centre of the disturbance–resource tem-

plate, producing two strong orthogonal gradients, (2) at

the intermediate position between centre and corner as

well as centre, i.e. two intermediate gradients, (3) at the

centre only, i.e. no gradient (Fig. S3.1, Appendix S3). A

fourth scenario consisted of random distributions of species

occurrences and abundances. Finally, trait values were

generated for canopy height, SLA, leaf N, seed mass, leaf N

content, onset of flowering date, based on linear and

non-linear functions simulating trait–environment rela-

tionships (e.g. disturbance decreased canopy height) or

trait–trait correlations, including a random component. To

separate responsive from non-responsive traits, a trait with

a completely random distribution was introduced [termi-

nal velocity (TV)]. The artificial data set was organized in
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three tables, comprising species abundances, environmen-

tal data and traits, as described above. We ran 200 repeti-

tions for each scenario, applied all methods to each

repetition and compared the results. Appendix S3 gives a

more detailed description of the artificial data set and asso-

ciated results, including tables and figures. Here, we pres-

ent the results of the field data with illustrations, and

summarize the results of the artificial data set.

Statistical methods

All methods combine the trait table with the environment

table via the abundance table. To achieve this task, the

methods combine ordination, regression or classification

(cluster analysis, regression tree) in different order. We

labelled the methods so that acronyms indicate the main

components. Here we briefly present general features of

the seven methods (see Table 2). They are described in

detail in a tutorial (Appendix S2), comprising an introduc-

tion to each method, R code, results and graphical outputs

of the field data set. All methods are available as Rscripts

(R Foundation for Statistical Computing, Vienna, Austria)

in Appendix S4, which also provides the field data set.

Several other methods are available which we will not

address in this paper. A well-known method is the fourth-

corner method of Legendre et al. (Legendre et al. 1997,

see also Dray & Legendre 2008; Lehsten et al. 2009). Other

authors have developed comparable methods that use sim-

ilar components as those mentioned above (see e.g. Pillar

& Sosinski 2003; Pakeman 2004). Pillar et al. (2009)

have recently proposed a method using partial Mantel cor-

relations and a null model to evaluate correlations

between trait-based described communities and ecological

gradients and to sort out trait convergence and trait

divergence.

CWM-RDA: a community-based approach (Method A)

Method A (CWM-RDA) is a community-based analysis to

assess the response of functional traits to environmental

variables (Nygaard & Ejrnaes 2004), which can be applied

to type 1 questions (Table 1). From the trait and abun-

dance tables, a plot by trait matrix was built by averaging

the trait expressions of all species weighted by their abun-

dance in each plot (CWMs = community weighted means

of traits; Garnier et al. 2007). Then, a redundancy analysis

(RDA; Rao 1964) of the plot by trait matrix constrained by

the environment table was performed.

The species-based approaches (Methods B–G)

The six other approaches all involved three components

(Table 2): (1) the responses of the species to the environ-

mental variables, (2) identification of responsive traits, (3)

grouping of the species based on similarity in the trait table.

Methods B–F investigate species responses with multivari-

ate ordination methods constrained by environmental

variables. Species responses were expressed as species

scores on the ordination axes. Method G started by con-

structing clusters of species with similar trait expressions;

then the distributions of these groups were linked to the

environmental gradients (McIntyre & Lavorel 2001; Küh-

ner & Kleyer 2008). All methods took into account species

abundances.

RDA-RegTree: combination of RDA and regression trees

(Methods B and C)

To determine species responses to environmental gradients

(component 1), RDA-RegTree used RDA, because the gra-

dients were short. Traits that predict the RDA scores were

identified with a regression tree analysis (RegTree; Brei-

man et al. 1984; component 2). In the case of RDA-sReg-

Tree (Method B), the functional groups (component 3)

resulted from two single, univariate regression trees (sReg-

Tree), where the response variables were the species scores

on the first axes of two separate RDA analyses of the

environment and abundance tables, the first with soil

phosphorus as themainenvironmental gradient anddistur-

bance as co-variable and the second vice versa. The traits

were used as explanatory variables, which provided a sepa-

rate classification for eachenvironmental gradient. InRDA-

mRegTree (Method C), the functional groups resulted from

a multivariate regression tree (mRegTree; De’Ath 2002,)

which used the axes 1 and 2 of a RDA. This time, the RDA

included both phosphorus and disturbance as environ-

mental gradients and the traits were used as explanatory

variables again. In the following, RDA-RegTree refers to

methods B and C pooled.

OMI-GAM: outlyingmean index followed by

generalized additive modelling (Method D)

OMI-GAM first determined species responses to environ-

mental conditions, using the outlying mean index ordina-

tion procedure (OMI; Dolédec et al. 2000; Dray et al.

2003), and then explained these responses using general-

ized additive models (GAM) with the traits as explanatory

variables. OMI determines species niche positions and

niche breadths by measuring the distance between the

mean environmental conditions used by each species and

the mean environmental conditions of the study area

(Dolédec et al. 2000; see Appendix S2). It makes no

hypothesis on the length of the gradients and gives equal

weight to species-poor and species-rich sites, unlike canon-

ical correspondence analysis (CCA; ter Braak 1986).
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Species scores on OMI axes 1 and 2 were used as response

variables in the GAMs in an information theory frame-

work (model averaging; Burnham & Anderson 2002). To

group species according to their traits into functional

groups, OMI-GAM applied Euclidean distance and Ward’s

hierarchical clustering (Everitt et al. 2011) to produce clus-

ters with similar numbers of species (see Appendix S2).

Other forms of clustering may also be appropriate. The

optimal number of clusters was determined via the Calin-

ski and Harabasz index (Gordon 1999).

RLQ and double CCA: double ordinationmethods

(Methods E and F)

A double inertia analysis of two arrays (R and Q) with

a link expressed by a contingency table (L) (RQ) and

double CCA analyse the three tables simultaneously

and thus consider components 1 and 2 in a single step

(Table 2). RLQ (Method E; Dolédec et al. 1996) is an

extension of co-inertia analysis that searches for a com-

bination of traits and environmental variables of maxi-

mal co-variance, which is weighted by the abundances

of species in plots. Double CCA (Method F; Lavorel

et al. 1999) performs an ordination of the abundance

table that is constrained by both traits and environmen-

tal descriptors. In both analyses (E and F), species

responses to environmental gradients are based on cor-

respondence analysis (CA) of the abundance table,

which treats the species and plots in a symmetric

manner. To determine functional groups, both methods

used the same procedure as OMI-GAM.

Cluster regression: combination of iterative cluster

analyses and logistic regressionmodelling (MethodG)

In contrast to the previous methods, Cluster regression

started by clustering the traits table to obtain species

groups with similar trait values. For each group, the

number of species occurring in each plot was counted,

weighted by species abundances. These counts were

then used as a dependent variable to calculate the

response of the clusters to environmental variables with

logistic regression and model averaging (Burnham &

Anderson 2002).

To separate responsive from non-responsive trait combi-

nations, clusterings were conducted based both on single

traits and based on all possible combinations of single traits

(63 clusterings in total). To reduce this data set, only trait

combinations with stable clusters were considered for fur-

ther analyses. Cluster stability was assessed by bootstrap-

ping the clusters and the co-phenetic correlation

(Legendre & Legendre 1998; see Appendix S2). The

response of each cluster of each trait combination to the

environment was determined by the procedure described

above. The most responsive trait combination was identi-

fied as the one with the best response to the environmen-

tal variables, expressed as average goodness of fit of the

models of all clusters of a certain trait combination (Küh-

ner & Kleyer 2008).

The order of the components

While the components are quite similar in the different

methods, their order is different. The order also determines

the questions that can be addressed with these methods

(Table 1). RDA-RegTree and OMI-GAM start with compo-

nent 1, the response of species to environmental variables,

then identify the predictive traits (component 2) and

finally group the species according their similarity in traits

(component 3, Fig. 1). This order reflects the assumption

that the environmental conditions act as a filter on species

co-existence and that traits are an expression of the adap-

tive selection made by this filter. It also applies to CWM-

RDA (Method A).

In contrast, Cluster regression starts to build species

groups from their traits (component 3), then finds themost

responsive trait combination in components 1 and 2. This

method assumes that the landscape species pool can be

classified based on correlations between traits that indicate

underlying trade-offs or allometries, and that these emer-

gent groups (sensu Lavorel et al. 1997) can have consistent

responses to the environment (Hérault & Honnay 2005;

Kühner & Kleyer 2008).

Thus, in RDA-RegTree and OMI-GAM, the functional

groups are built post hoc, i.e. after exploring the relation-

ships between traits and environment, whereas Cluster

regression begins with groupings from all possible trait

combinations and separates responsive trait combinations

from neutral combinations in subsequent steps. As a con-

sequence, Cluster regression produces only response

groups, but no single response traits. RLQ and double CCA

perform components 1 and 2 in a single step and therefore

provide a more general co-variation pattern between traits

and environment without any a priori assumption regard-

ing dependent and explanatory variables. The identifica-

tion of functional groups is a major result of methods B, C

and G, but not necessarily the aim of methods D–F. For the

latter, it is an additional step that can be performed post hoc

and was carried out here to help assess consistency

betweenmethods.

Results

Because it was not feasible to address all the questions

listed in Table 1 to illustrate the use of the different

methods presented here, we decided to focus on three
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main questions (1a, 2a and 2c in Table 1). These are,

to the best of our knowledge, the most frequently

investigated in the ecological literature. Question 1a

focuses on determining how the aggregated mean traits

of selected communities respond to environmental gra-

dients. Question 2a focuses on species instead of com-

munities. The idea is to investigate which candidate

traits are mostly accounting for by differences in species

distribution along environmental gradients, the form

and direction of the relationship being of interest.

Question 2c has been the focus of 20 yrs of investiga-

tion in functional ecology, i.e. how groups of species

with similar trait expressions respond to environmental

gradients, a necessary understanding for any modelling

at a global scale (Woodward & Cramer 1996).

Species responses to the environmental gradients of

the semi-natural grassland are presented in Appendix

S1 as a baseline against which to assess the trait–

environment relationships. Here we examine the appli-

cability of methods A–G (Table 2) to determine these

relationships with regard to questions 1a, 2a and 2c

from Table 1 (see Appendix S2 for more detailed results

of the individual methods).

Question 1a: how do average trait expressions of

communities change along environmental gradients?

Three methods addressed question 1a of Table 1, i.e.

change of trait expressions of communities along envi-

ronmental gradients. Although CWM-RDA uses trait

averages per plot whereas RLQ and double CCA are

species-based, the results of the three methods were

similar. Only the rotation of the axes was different

(Fig. 2). In the field data set, grazing intensity and

phosphorus explained a high degree of variation in all

three methods, whereas soil water-holding capacity was

relatively unimportant (Table 3). SLA increased signifi-

cantly with increasing disturbance intensity, whereas

Fig. 1. The order of components 1, 2 and 3 (in circles) in the different methods when dealing with the abundance table (L), the environment table (R) and

the traits table (Q) (see Table 2 for further explanations). Arrows denote the sequence of the components.

Journal of Vegetation Science
812 Doi: 10.1111/j.1654-1103.2012.01402.x© 2012 International Association for Vegetation Science

Methods for assessing trait–environment relationships M. Kleyer et al.



onset of flowering and C:N ratio decreased. Phosphorus

was positively related to SLA and onset of flowering

and negatively related to C:N ratio, log seed mass and

polycarpic life history.

Question 2a: which traits predict species response to

environmental gradients?

In general, all species-based methods provided similar

results regarding the traits that predict species responses

to environmental gradients. OMI-GAM showed this

directly by the weight of evidence of the traits in

explaining species responses (Fig. 3a), whereas RLQ

and double CCA used the correlation of traits to

environmental gradients. In Cluster regression and

RDA-RegTree, the most relevant traits were those

selected for grouping. In the field data set, life history

(polycarpic/monocarpic) was the most segregating trait

in all methods (Table 3), followed by C:N ratio. Onset

of flowering, SLA, seed mass and canopy height dif-

fered in importance among the methods. In general,

results produced by the ordination-based methods

(RDA-RegTree, RLQ, double CCA) were very similar to

the pattern produced by CWM-RDA (Fig. 2, Table 3).

OMI-GAM revealed that the relationship between con-

tinuous traits and species responses to environmental

gradients was sigmoidal or slightly unimodal (Fig. 3b).

In the artificial data set, the built-in trait–environment

relationships were generally identified by all methods (see

Appendix S3 for details). The explained variation

decreased strongly from the ‘strong’ and ‘intermediate’ to

the ‘absent gradients’ scenario. Regarding Cluster regres-

sion and RDA-mRegTree, the degree of explained variation

varied across repetitions in the ‘absent gradients’ scenario.

Finally, in the ‘random’ scenario all methods failed to

explain any variation, as expected.

For the ‘strong’, ‘intermediate’ and ‘absent gradients’

scenarios, trait–environment relationships incorporated in

the artificial data set were well reproduced by CWM-RDA

and RLQ. Regarding OMI-GAM and double CCA, associa-

tions of the ordination axes to the two environmental gra-

dients shifted strongly between the repetitions, resulting in

high variation of trait responses to the two gradients.

RDA-mRegTree gave more weight to the traits related to

RLQ 

d = 0.5 

Polycarpic

C:N ratio 

 Log(SM)  SLA 

Height 

Onset 

Grazing

Soil P

Water

d = 0.5 

double CCA

Polycarpic 

C:N ratio 

Log(SM) 

 SLA 

 Height 

 Onset 

Grazing 

Soil P Water

d = 0.5 

Polycarpic 

 C:N ratio

Log(SM) 

SLA

Height 

Onset 

CWM-RDA 

 Soil P

Water

Grazing 

Species position on RDA axis (grazing)

|

Polycarpic

C:N ratio 

–0.12 0.032

>= 18.19< 18.19

Log (SM)
>= 0.843 < 0.843 >=0.5 <0.5

0.038 0.23

(a) (b)

(c) (d)

RDA-sRegTree 

Fig. 2. Projections of traits and environmental variables in (a) redundancy analysis (RDA), (b) RLQ, (c) double canonical correspondence analysis (CCA), (d)

RDA-RegTree. The percentage variance explained by each axis and the correlations of the environmental variables in each of the analyses are given in

Table 3. Abbrviations: polycarpic, species monocarpic (0) or polycarpic (1); log (SM), log seed mass; C:N ratio, C:N ratio in leaves; height, canopy height;

SLA, specific leaf area; onset, onset of flowering; grazing, grazing intensity; soil P, available phosphorus; water, soil water content.
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gradients associated with the first RDA axis. In contrast,

Cluster regression favoured traits that depended on both

gradients. All methods correctly neglected the random trait

TV in the three scenarios.

As for the random scenario, all methods except RLQ

produced either no or minor responses that did not

differ between traits, including TV. In contrast, RLQ

produced responses with high variance between the

repetitions. However, the sum of eigenvalues (i.e. a

global measure of the environment–trait relationships)

for the random scenario was almost zero, as mentioned

above.

Question 2c: how do groups of species with similar trait

expressions respond to environmental gradients?

Apart from CWM-RDA, all methods can be used to pro-

duce functional groups and to link them to environmental

gradients (Table 4). One important difference was that

RDA-RegTree and Cluster regression formed groups from

Table 3. Trait responses to the environmental gradients and composition of functional groups. The degree of association (canonical correlation) of each

of the environmental variables to the two main axes (with their percentage contribution to the explained variance) is presented for each method. In CWM-

RDA, the three environmental variables explained 32.1% of the total variation and the values presented are percentages of this explained variability. In case

of Cluster regression, the average weight of evidence across all groups is given. Functional groups are described by their trait combinations.

Method Groups Response to gradients

Grazing P Water

A. CWM – RDA Axis 1 (63%) 0.27 0.36 NS

Axis 2 (35%) �0.27 0.20 NS

B. RDA-singleRegTree response

to phosphorus

Axis constrained by P (5.5%)

1 poly (�) +

2 poly (+) �
B. RDA-singleRegTree response

to grazing

Axis constrained by Grazing (5.6%)

1 C:N (+) poly (�) �
2 C:N (+) poly (+) +/�
3 C:N (�) SM (�) +

4 C:N (�) SM (+) +/�
C. RDA-multiRegTree Axis 1 (72%)

Axis 2 (28%)

1 poly (�) � +

2 poly (+) + �
D. OMI�GAM Axis 1 (61%) 0.81 �0.41 0.70

Axis 2 (28%) 0.55 0.79 0.35

1 poly (�) C:N (�) height (�) SM (�) SLA (+) onset (�) +/� + �
2 poly (+) C:N (�) height (�) SM (+) SLA (+/�) onset (+/�) + � +

3 poly (+) C:N (+) height (+) SM (+/�) SLA (�) onset (+) � � +/�
E. RLQ Axis 1 (57%) 0.09 �0.99 0.17

Axis 2 (42%) 0.96 �0.11 0.76

1 poly (�) C:N (�) height (�) SM (+) SLA (+) onset (�) + +

2 poly (+) C:N (�) height (�) SM (+) SLA (+) onset (+) + �
3 poly (+) C:N (+) height (+) SM (+) SLA (�) onset (+) +/� �
4 poly (�) C:N (�) height (�) SM (�) SLA (�) onset (+) � +

F. double CCA Axis 1 (58%) �0.42 0.94 �0.31

Axis 2 (38%) �0.90 �0.32 �0.36

1 poly (�) C:N (�) height (�) SM (+) SLA (+) onset (�) + + +

2 poly (+) C:N (�) height (�) SM (+) SLA (+/�) onset (+) + � +

3 poly (+) C:N (+) height (+) SM (+) SLA (�) onset (+) +/� � +

4 poly (�) C:N (�) height (+/�) SM (�) SLA (�) onset (+) � + �
G. Cluster regression Average weight of evidence [%] 39 28 33

1 poly (�) C:N (�) height (�);R² = 0.23 + �
2 poly (+) C:N (�) height (�);R² = 0.27 + +/�
3 poly (+) C:N (+) height (�);R² = 0.49 � �
4 poly (+) C:N (�) height (+);R² = 0.32 +/� +/� +

Trait expressions are denoted as (+) indicating a high level, or as (�) indicating a low level. For example, ‘poly (�) C:N (�) height (�)’ indicates a group con-

sisting of small monocarpic species with low C:N ratio in leaves. The response to the gradients is indicated with a (+) in case that a functional group

increases on the gradient, with a (�) when the group decreases, and (+/�) in case of a unimodal response. Poly (�), monocarpic; poly (+), polycarpic; SM,

seed mass; C:N, C:N ratio in leaves; height, canopy height; SLA, specific leaf area; onset, onset of flowering. For abbreviation of methods see text.
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the most responsive traits, whereas OMI-GAM, RLQ and

double CCA used all traits for clustering.

Regarding the field data set, all methods primarily

divided the total species set into polycarpic andmonocarpic

species.Monocarps always had a low C:N ratio, while poly-

carpic species were further split into those with high or low

C:N ratio. For further division, onset of flowering and seed

mass were relevant for RLQ and double CCA, whereas in

Cluster regression height was important, specifically to

split polycarpic species with low C:N ratio further into

those with short vs tall canopies.

Of the two groups resulting from RDA-mRegTree, the

monocarpic plants responded positively to phosphorus and

negatively to disturbance (Table 3). Across the other

methods, small monocarps with low C:N ratio (Group1)

responded positively to phosphorus, while small polycarpic

species with low C:N ratio (Group 2) increased with graz-

ing (disturbance) intensity. Conversely, polycarpic species

with high C:N ratio decreased with increasing grazing

intensity and displayed a unimodal or decreasing distribu-

tion with respect to phosphorus (Group 3 in Cluster regres-

sion, RLQ, double CCA, OMI-GAM). Group 4 was

dissimilar among the methods, either being a mixture of

many monocarps and some polycarpic species with low C:

N ratio (in RLQ and double CCA), or larger polycarpic spe-

cies with low C:N ratio in Cluster regression. OMI-GAM

produced no fourth group.

The artificial data set showed that the number and stabil-

ity of groups produced byCluster regression andRDA-mReg-

Tree varied more strongly than those of RLQ, double CCA

Poly-
carpic

CN
ratio

Log
(SM)

Height Onset
Flowering

SLA
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Fig. 3. (a) Weight of evidence of the six selected traits to explain the position of species on OMI axis 1 as estimated by the generalized additive models; (b)

variation of the six selected traits along the OMI axis 1 as estimated by the generalized additive models; (c) position of derived functional groups onto the

trait–environment space. The percentage variance explained by axis 1 and the correlations of the environmental variables with this axis are given in

Table 3. Abbreviations see Fig. 2.

Journal of Vegetation Science
Doi: 10.1111/j.1654-1103.2012.01402.x© 2012 International Association for Vegetation Science 815

M. Kleyer et al. Methods for assessing trait–environment relationships



and OMI-GAM, as already detected for the field data. The

reason for this was that the latter always used all six traits for

building functional groups, whereas the former used only

responsive traits that could change over the repetitions.

Discussion

We developed a comparative study motivated by the need

to produce guidelines for choosing statistical methods suit-

able to address research questions concerning functional

responses of organisms to environmental gradients.

Overall, the results produced by the seven methods are

concordant regarding the key trait–environment relation-

ships and the species groups they determined. When

examined in more detail, however, results differ in the

finer detail of selected traits and functional classification.

We discuss the main ecological implications of using these

different methods in various contexts. A detailed discus-

sion of the statistical features of each procedure is beyond

the scope of this paper.

How do traits modulate species response to

environmental gradients?

In case of strong habitat filtering of single responsive traits,

all methods, whether at the community or species level,

should provide similar results. In the field study, all meth-

ods consistently revealed that life history was associated

with available phosphorus while grazing intensity was

related to leaf C:N ratio and canopy height. Other studies

have suggested opposite relationships, i.e. changes in plant

life span are linked to disturbance intensity whereas

changes in traits associated with C gain and nutrient econ-

omy (e.g. leaf C:N ratio, height) are linked to soil nutrients

(e.g. Westoby et al. 2002; Grime et al. 1997). Interactions

between soil properties and the effects of free-ranging her-

bivores were responsible for the obvious discrepancy

between the results reported here and elsewhere. During

the night, animals usually rested on a dry, sandy hilltop

and defecated here, leading to phosphorus enrichment.

The hilltop was also strongly grazed, which, together with

dryness and phosphorus enrichment, favoured monocar-

pic species. Perennial species occurred in other grazed pas-

tures located on former lake sediments in lower parts of

the study area. These sites were very rich in calcium,

whichmeant that available phosphorus was almost absent,

probably due to immobilization. These site peculiarities

explain why the abundance of monocarpic species was

more related to phosphorus than to grazing intensity.

Increasing canopy height and leaf C:N ratio with decreas-

ing grazing intensity corresponds to results found in many

other studies (Quetier et al. 2007; Louault et al. 2005;

Nygaard & Ejrnaes 2004; McIntyre et al. 1999).

The broad trait–environment relationships discussed

above were revealed in a similar way by the community-

based CWM-RDA, the species-based RLQ and double CCA,

and were found by the other methods as well. CWM-RDA

is a relatively easy method; its ordination techniques are

well rooted in the ecological community. It allows assess-

ment of the response of multiple traits and deals with either

frequency/abundance or presence/absence data (e.g. Nyg-

aard & Ejrnaes 2004; Table 1). Moreover, community-

based methods can easily take into account intraspecific

variation in trait expression across populations (Garnier

et al. 2007). In this case, CWM-RDA simply uses popula-

tion- rather than species-level trait values for calculations of

community weighted mean trait values. Species-based

methods, however, will suffer from inflated trait and abun-

dance tables. In the extreme case, when each plot repre-

sents an individual population of a species and traits were

measured for all populations of each species, each popula-

tion occurs only once in the abundance table, all other cells

being zero. This extremely sparse matrix might be intracta-

ble for regression or ordinationmethods.

The species-based approach can by definition account

for trait variability among species within a community. It

therefore allows examination of the response to environ-

mental changes of trait distributions among individual

species (Louault et al. 2005), and co-existence or special-

ization of different life-history strategies along environ-

mental gradients (Grime et al. 1988). Additionally, the

species′ view is relevant for the (1) functional comparison

of biogeographic distributions, regardless of their affiliation

to communities (Thuiller et al. 2004), and (2) when phylo-

genetic constraints on trait–environment relationships are

to be analysed (see Table 1; Lord et al. 1995). However,

Pillar & Duarte (2010) have recently shown that the phylo-

genetic signal in trait–environment relationships can also

be revealed at the community level.

How do traits relate to environmental gradients at the

species level?

To answer question 2, RLQ and double CCA both analyse

species–trait and species– environment relationships

simultaneously. RLQ has been frequently used to describe

trait–environment relationships, for instance the interac-

tions between environment, species traits and human uses

to describe patterns of plant invasions (Thuiller et al.

2006) or co-variations between traits of alpine plants and

the abiotic environment (Choler 2005).

As an alternative to the simultaneous analysis provided

by RLQ and double CCA, question 2 can be addressed by

either explaining the species position in environmental

space by their traits or the species position in trait space by

environmental variables. Conceptually, the first alternative
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predicts the species niche from the functional traits whereas

the second predicts the functional niche from the environ-

ment. In contrast to the species niche where the axes are

environmental gradients, a functional niche can be defined

as an n-dimensional hypervolume in functional space,

where the axes are functions (e.g. persistence, regenera-

tion) associated with specific response traits (e.g. SLA, seed

mass; Rosenfeld 2002). OMI-GAM and Cluster regression

are exponents of both alternatives. OMI-GAM predicts the

species environmental niche on trait gradients (Table 1,

question 2a). It can thus be used to investigate the form and

direction of the relationship between a trait and the envi-

ronment. In our case study, the relationships are sigmoidal

or even slightly unimodal, probably reflecting trade-offs in

plant ecophysiology (Fig. 3). In contrast, Cluster regression

predicts the distribution of functional groups defined by

combinations of multiple traits (i.e. emergent groups; Lavo-

rel et al. 1997) on environmental gradients (question 2c,

Fig. 4; see Kühner & Kleyer 2008). Functional groups may

be conceived as groups of species with similar functional

niches. Functional group distribution models allow the

mapping of functional niches to the landscape to infer bio-

logical constraints on species ranges and habitat suitability

(Kearney & Porter 2009).

How do groups of specieswith similar trait expressions

respond to environmental gradients?

Building functional groups requires analysing combina-

tions of traits rather than single traits. These combinations

could give better insight than CWM-RDA into the

functional relevance of trait combinations, or syndromes,

in the adaptation of species to multiple environmental

conditions. For instance, the species-based methods

showed that small polycarpic species with low C:N ratio

responded positively to grazing, whereas those with high

C:N ratio decreased. These different syndromes could not

be revealed by CWM-RDA because this method aggregates

the traits across co-occurring species.

Between procedures, there were differences in the trait

combinations used for the grouping and the number of

groups produced from them. While most methods were

consistent regarding the importance of life cycle and C:N

ratio, the other traits varied in their contribution to the

clustering. The regression tree provided a straightforward

classification that included only responsive traits. RDA-

RegTree selected in a forward hierarchical way the traits

that were best predictors of species response. If other traits

were correlated with the selected traits they were not

included in the model, although they may also be good

predictors. Cluster regression needed to sift through all

possible combinations of traits and assessed the responsive-

ness of each combination by using the R² and two cluster

stability criteria as an objective function. Sifting through

all possible combinations of traits to identify the most

responsive trait combination can also be done using RLQ

(Bernhardt-Römermann et al. 2008). Likewise, Pillar &

Sosinski (2003) used a recursive algorithm that searches

for the trait combination and number of groups that maxi-

mize the response to the environment. In contrast, RLQ,
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Fig. 4. Response of four functional groups composed with Cluster regression from the traits life cycle, C:N ratio in leaves and canopy height to

environmental gradients. The trait expressions characterizing each group are indicated by the boxplots. For instance, group 1 consists of low-growing

monocarpic species with intermediate to low C:N ratio. The weight of evidence of the environmental variables in the averaged models is given in Table 3.

Abbreviations see Fig. 2.
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double CCA and OMI-GAM used all traits to produce clus-

ters of species with similar traits and similar response to

given environmental factors. Responsive traits had greater

weight in the clusters than other traits, although, as the

final species scores used for clustering were thosemaximiz-

ing species trait–environment relationships.

In general, differences in combinations of responsive

traits among methods should not be over-emphasized.

Due to correlations among traits, different trait combina-

tions may still result in similar species groups. For instance,

if canopy height is correlated with seed mass (Moles et al.

2004; Leishman et al. 1995), clustering based on canopy

height may yield the same species groups as clustering

based on seedmass.

However, the analyses of the artificial data set showed

that gradient length in both environmental and functional

terms requires consideration when choosing the right

method. All methods, particularly Cluster regression and

RDA-mRegTree, required environmental and correspond-

ing trait heterogeneity to produce correct results. When

species became less well separated in functional and envi-

ronmental space because gradients were shorter or even

absent, random effects in species distributions, traits and

environmental conditions had an increasing influence on

the result of a single run, and hence decreased the consis-

tency of the results across all repetitions. This seemingly

trivial fact may however be difficult to assess in real

landscapes where gradients are not always strong, or even

evident.

Using only responsive traits for the classification of func-

tional groups introduces an additional source of variation

that decreased classification stability among repetitions for

Cluster regression and RDA-mRegTree. The ordination-

based methods extracted some trait–environment correla-

tions even under random conditions. Users should care-

fully scrutinize their results in situations where chance

effects and random fluctuations are likely, such as in early

successional or climax stages, and use the fourth-corner

testing procedure (Legendre et al. 1997; Dray & Legendre

2008) to evaluate the statistical significance of the trait–

environment relationships.

Conclusion

McGill et al. (2006) suggested rebuilding community ecol-

ogy from functional traits, with emphasis on environmen-

tal gradients. Here we present and compare multivariate

methods to assist in this attempt. These methods combine

several statistical components to analyse three matrices (1)

species abundances by plots, (2) plots by environmental

factors and (3) species by traits. All methods reproduced

the broad trait–environment relationships that were pres-

ent in the data sets. To yield stable results, all methods

require non-random heterogeneity in the environment

and corresponding trait values. The most important differ-

ence is that each method addresses particular ecological

concepts and research questions that cannot be answered

by the other methods. If the response of average trait

expressions of communities to environmental gradients is

the question, a community-level method such as CWM-

RDA may be the first choice. However, CWM-RDA does

not account for trait variability among species in a commu-

nity, because trait values are aggregated to a single aver-

age. Therefore, this approach cannot be applied to address

questions regarding the co-existence of different life histo-

ries or to assess how single species respond to environmen-

tal changes. In these cases, species-based methods should

be applied. RLQ and double CCA provide an excellent

overview of the trait–environment relationships at the spe-

cies level, allow post-hoc building of functional groups, and

produce repeatable results when gradients are strong. If

the user asks whether individual traits determine the

response of species to the environment in a linear or non-

linear form, OMI-GAM may be chosen. RDA-RegTree and

Cluster regression both determine the response of func-

tional groups to the environment. However, the number

and identity of traits selected for functional group classifi-

cation proved to be sensitive to random components in the

artificial data set. RDA-RegTree allows assessment of the

hierarchical combination of trait expressions that deter-

mine the environmental response of species. If the user

wants to predict the distribution of functional groups on

environmental gradients, Cluster regression is the appro-

priate choice. All in all, these methods cover different

aspects in the assessment of functional responses to envi-

ronmental gradients, in terms of ecological concepts,

usability and application. Thus, once a user has clarified

the research question, the appropriate method can be cho-

sen and adapted for any similar data by using the scripts in

Appendix S4 and the tutorial in Appendix S2.
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