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Preface

In 2001 H.A.V. started a course for second-year

undergraduate biology students at the Vrije Uni-

versiteit Amsterdam entitled Community Biology.

This course has now been running successfully for

8 years. The course was obligatory for all biology

students, and it differed from other courses in that

it was multidisciplinary and provided the students

with opportunities to perform their own research.

The multidisciplinarity was emphasized by the dif-

ferent disciplines of the teachers on the course: soil

ecology, plant ecology, systems ecology, microbial

physiology and theoretical biology. The important

task of finding a textbook that could link all disci-

plines and encourage participating lecturers to de-

liver a unified course was solved by using

Community Ecology by P.J.M. That book linked the

different subjects of community ecology, and

integrated the more theoretical parts on modelling

with the empirical studies, including topics such as

biodiversity and applied studies. Subsequently,

H.A.V. and P.J.M. met at an international meeting

on food webs, and discussed the possibility of par-

ticipating in a similarly themed graduate-level

course. And, thus, our current collaboration began.

In The Netherlands PhD students from different

universities are organized into interdisciplinary

thematic groups, called research schools, that pro-

vide an intellectual support base for instruction and

research. For example, students working in the field

of socioeconomic and natural sciences of the envi-

ronment belong to the Research School SENSE. In

2005, H.A.V., André de Roos, Claudius van de Vij-

ver and Johan Feenstra organized a PhD course on

Community Ecology for the SENSE PhD

programme. During this 1 week course held in

Zeist, leading researchers in the field of Community

Ecology from Europe and the USA were asked to

deliver lectures on recent and often unpublished

developments in their areas of expertise. The lec-

turers were accompanied by some of their PhD

students, creating an international group of com-

munity ecologists. The course was not intended to

be encyclopaedic, but rather it focused on the areas

of expertise of the invited speakers, many of which

share the theme of patterns and processes emerging

from ecological networks. Participants addressed

the state of the art in theory and applications of

community ecology, with special attention to topol-

ogy, dynamics, the importance of spatial and tem-

poral scale and the applications of community

ecology to emerging problems in human-domi-

nated ecosystems, including the restoration and

reconstruction of viable communities. The course

finished with speculations about future research

directions. During the course, it became clear that

this international group of students appreciated the

information presented by the various lecturers, de-

spite the fact that research topics exhibited great

diversity. It was during this very stimulating course

that the idea for this book took form. H.A.V. and

P.J.M., the editors, convinced most lecturers to

transform their lectures into book chapters, and

asked other colleagues to fill in some gaps. The

result captures much of the excitement about com-

munity ecology expressed during the course, and

expands the coverage of topics beyond what we

were able to discuss in an intensive week-long

course. We recognize at the outset that certain sub-

disciplines of community ecology are not covered

here, and we do not claim otherwise. We know that

the topics addressed here will be of interest to

advanced students and practitioners of community

ecology. Ultimately, 19 colleagues participated in

writing this book. We thank them all for their im-

portant contributions. Writing book chapters,

strangely enough, is less valued than writing arti-

cles for scientific journals in some academic circles.

Still, like the multidisciplinary course mentioned

xi



above, we find that the interactive writing that hap-

pens when people from different subdisciplines

work together is a fascinating, synergistic and pro-

ductive process.

We would like to thank friends and colleagues

who were indispensable during the process of

writing: H.A.V. thanks Nico van Straalen, who by

writing his book Ecological Genomics for Oxford

University Press acted as an instigator for this

book. H.A.V. also thanks his colleagues who made

the Community Biology course a success for so

many years: Wilfred Röling, Bob Kooi, Matty Berg,

Wilfried Ernst, Tanja Scheublin, Diane Heemsber-

gen, Stefan Kools, Marcel van der Heijden, Susanne

de Bruin, Lothar Kuijper, Rully Nugroho and Henk

van Verseveld. H.A.V. acknowledges colleagues

who were directly involved in the organization of

the PhD course: André de Roos, Claudius van de

Vijver, Johan Feenstra and Ad van Dommelen. H.A.

V. is very grateful to his critical friend, John Ash-

croft (Durham), for supportive focusing.

P.J.M. thanks the many students who partici-

pated in the Zeist Community Ecology Course, as

well as the students who have taken the community

ecology course that he has taught at Rutgers Uni-

versity since 1983. Their collective comments and

feedback have helped to refine his perspectives

about the nature of community ecology over the

years. Thanks also go to participants in a recent

seminar on Ecological Networks for critical feed-

back on some of the writing that appears here,

including Mike Sukhdeo, Maria Stanko, Wayne

Rossiter, Tavis Anderson, Faye Benjamin, Denise

Hewitt, Kris Schantz and Chris Zambel.

H.A.V. and P.J.M. both thank Ian Sherman of

Oxford University Press, who was immediately en-

thusiastic about this book project, and Helen Eaton,

who as assistant commissioning editor played a

crucial role in the development of the book.

H.A.V. thanks Emilie Verhoef, without whom

this book probably would never have been pro-

duced. P.J.M. thanks Marsha Morin for her under-

standing and support during another extended

writing project.

Herman A. Verhoef, Amsterdam

Peter J. Morin, New Brunswick
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CHAPTER 10

Community ecology and
management of salt marshes

Jan P. Bakker, Dries P.J. Kuijper and Julia Stahl

10.1 Introduction

Salt marshes are ecosystems at the edge of land and

sea. They are influenced by tidal movement. It is the

interaction of the vegetation and sediment trapped

from inundating water that creates a salt marsh.

Currently, there are about 176 000 ha of salt marsh

around the Baltic and Atlantic coasts of Europe. For

the Wadden Sea the area of the salt marshes can be

subdivided into �13 000 ha of salt marshes on

the barrier islands and �26 000 ha of salt marshes

along the mainland coast (Bakker et al. 2005a). Back-

barrier marshes develop at the lee side of the sand

dune system of barrier islands in front of the main-

land coast, where foreland marshes develop.

Salt marshes are considered to represent one of

the few pristine ecosystems in North-West Europe.

That may be true for some marshes, others are

distinctly influenced by humans (Davy et al. 2009).

The role of salt marshes along the coast has been

transformed from primarily coastal protection

tasks to a combination of the former with nature

conservation interest. Large areas are nowadays

assigned to nature reserves or national parks.

These designations initiated critical debates on nat-

uralness and suitable management of marshes

and concern especially the need and intensity of

livestock grazing (Bakker et al. 2003a).

Naturally developed salt marshes feature a self-

stimulated development and geomorphological

condition and growth that are not affected by

humans. They show a natural drainage system

with meandering creeks and levees with higher

elevation than the adjacent depressions. Erosion

protection measures, coastal defence or agricultural

purposes play no critical role. They occur in sandy

back-barrier conditions on islands such as Mellum,

Spiekeroog (Germany), eastern parts of Ameland

and Schiermonnikoog (The Netherlands). On

the other hand, semi-naturally developed salt

marshes either have an extensive wide-stretched

natural creek system but are affected by measures

to enhance livestock grazing (e.g. back-barrier con-

ditions at the peninsula of Skallingen (Denmark)

or feature a salt marsh within sedimentation fields

with a man-made drainage system by ditches

and are grazed by livestock or left fallow after pre-

vious grazing (e.g. artificial marshes along the

mainland coast of The Netherlands, Germany and

Denmark; Bakker et al. 2005a).

Abiotic conditions on salt marshes are related to

the inundation period and frequency depending

on an elevation gradient running from the upper

marsh at the foot of a dune at the back-barrier

marshes, or the foot of the seawall along the main-

land coast to the intertidal flats. This elevational

gradient also influences the rate of sedimentation,

which is the main driver of plant succession.

The rate of sediment input on salt marshes varies

from < 5 mm/year on sandy back-barrier marshes

to up to 20 mm/year on marshes in sedimentation

fields (Bakker et al. 2002). This results in a distinct

zonation of plant communities (Bakker et al. 2002),

invertebrate communities (Andresen et al. 1990),

avian herbivores (Stahl et al. 2002) and mammals

(D.P.J. Kuijper unpublished data).
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In this chapter we will discuss the naturalness

of salt marshes and their plant cover and the inter-

action of the vegetation with abiotic conditions,

such as sediment and nutrient input, andwith biotic

conditions, such as wild herbivores and livestock.

We will particularly address the long-term dynam-

ics of salt-marsh communities. Wewill demonstrate

to what extent the findings of small-scale experi-

ments on individual saltmarshes can be generalized

to add to our understanding of community ecology

of salt marshes, and how this knowledge can be

applied for management purposes.

10.2 Natural salt marsh: the back-barrier
model including a productivity gradient

Barrier islands in the Wadden Sea feature sandy

beaches along the North Sea and silty salt marshes

along the Wadden Sea. Sedimentation of fine sus-

pended material (silt or clay) can take place in

the shelter of dunes. The geomorphological condi-

tions of the sandy subsoil show a gradual slope

from the foot of the dunes towards the intertidal

flats. As the period of inundation is longer and the

frequency higher at low elevation, the input of sed-

iment is higher at the low marsh than at the higher

marsh. Apart from the zonation from low to high

marsh, the thickness of the sediment layer changes

over time from a young marsh to an older marsh.

The back-barrier salt marsh of the Dutch island

of Schiermonnikoog shows such a successional pat-

tern. The eastern part of the island gradually ex-

tends further eastward. Hence, a chronosequence

representing vegetation succession (De Leeuw et al.

1993; Olff et al. 1997) has established with very

young marsh (from 0 years onwards) at the far

east and older marshes (up to 150 years) more to

the west (Fig. 10.1). Increasing age of the marsh

coincides with a thicker layer of sediment resulting

from tidal inundation. Thus, the eastern part of

Schiermonnikoog features a matrix of two phenom-

ena: zonation and succession. While walking from

east to west at high or low elevation levels, succes-

sion of the higher and lower marsh can be studied,

respectively. With the sediment, organic matter in-

cluding nitrogen is imported. The nitrogen pool

of the top 50 cm of the soil, i.e. the rooting depth

of most plant species, is positively related to the

thickness of the sediment plus underlying sandy

soil. By comparing various back-barrier systems

<1809–1848

1874–1894

1913–1955

1964

1974

1986

1993

1500

(a)

(b)

1000

1800

S
ur

fa
ce

 a
re

a 
(h

a)

500

1900 2000

1km

Figure 10.1 (a) The development history of the eastern part of the Dutch Wadden Sea island of Schiermonnikoog. The
different shadings represent different age classes on the basis of maps and aerial photographs. (b) Development of the
size of the vegetated marsh and dune area on the eastern part of Schiermonnikoog from 1989 onwards. After Van der
Wal et al. (2000b).
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in the Wadden Sea (Schiermonnikoog, The Nether-

lands; Terschelling, The Netherlands; Skallingen,

Denmark), this appeared to be a general phenome-

non (Olff et al. 1997; Van Wijnen and Bakker 1997).

Soil nitrogen is a limiting factor for plant produc-

tion in salt-marsh systems (see overview inDavy et al.

2009). As the nitrogen availability is positively related

to the nitrogen pool (Bakker et al. 2005b), the plant

productivity increases with a growing thickness of

clay layer (Van de Koppel et al. 1996). In other

words the chronosequence of increasing thickness of

sediment represents a productivity gradient.

10.3 Effects of plants on herbivores
(bottom-up control)

Along the productivity gradient the density of

the wild herbivores such as different species

of Arctic geese (e.g. brent goose Branta bernicla berni-

cla, barnacle goose Branta leucopsis), brown hares

(Lepus europaeus) and rabbits (Oryctolagus cuniculus)

initially increases to an optimumat intermediate pro-

ductivity, but declines at sites with high productivity

(Van de Koppel et al. 1996). According to theory, at

sites with low productivity, plant biomass is too low

to support a herbivore population, and plant growth

will be regulated by bottom-up effects such as nutri-

ent availability (Oksanen and Oksanen 2000). With

increasing productivity a shift frombottom-up to top-

down effects is expected to occur. Top-down regula-

tion of plant biomass occurs at sites of intermediate

levels of productivity, and herbivore population will

be top-down regulated by carnivores at high produc-

tivity (Oksanen and Oksanen 2000). However, in the

absence of carnivores (e.g. one of our study systems,

Schiermonnikoog) bottom-up effects remain to play

an important role even at highly productive sites.

Herbivore density can decrease even in the absence

of carnivores. Intake rate of geese levels off or declines

with biomass above a certain threshold (Van der

Graaf et al. 2006). Forage quality declines at sites

of high biomass and tall canopy (Van der Wal et al.

2000a; Kuijper and Bakker 2005) featuring a decreas-

ing leaf–stem ratio. This bottom-up control of herbi-

vore density at high productivity sites is referred to as

the ‘quality threshold hypothesis’ (Van de Koppel et

al. 1996; Olff et al. 1997; Huisman et al. 1999).

The productivity gradient (chronosequence) on

Schiermonnikoog is accompanied by plant species

replacement. The unproductive lower salt marsh

is dominated by Salicornia spp., Puccinellia maritima,

Plantago maritima and Limonium vulgare, whereas

the oldest stages are dominated by Atriplex portula-

coides. The unproductive higher marsh features

Puccinellia maritima and Festuca rubra followed by

Artemisia maritima and, eventually, Elymus athericus

(Elytrigia atherica) at the productive marsh (Olff et

al. 1997; Van der Wal et al. 2000a). Both at the low

and high salt marsh, succession eventually features

a tall canopy of Atriplex portulacoides or Elymus

athericus, respectively. Recently, it was noticed

that Elymus athericus spread into lower elevation at

older marshes (Olff et al. 1997). These tall plant

species outcompete other species by light intercep-

tion (Huisman et al. 1999; Van der Wal et al. 2000a),

with subsequent decline in plant species richness

(Bakker et al. 2003b).

Herbivores are evicted by plant succession.

Goose numbers were estimated at young, interme-

diate and older parts of the salt marsh on Schier-

monnikoog between 1971 and 1997 (Fig. 10.2). In

the late 1970s brent goose numbers were high in the

old marsh. However, goose numbers declined sig-

nificantly in the following 20 years (Van der Wal et

al. 2000b). This decrease is not related to a decrease

in size of the area. On the contrary, the surface area

increased over the years as a result of sedimenta-

tion (Fig. 10.1). Goose numbers increased in the

intermediate aged salt marsh followed by a slight

but significant decrease towards 1997. Develop-

ment of new young marsh in the east led to a

further eastward movement and an increase of

goose abundance (Van der Wal et al. 2000b). The

decrease in number of brent geese at the older

marsh coincided with a change in vegetation com-

position. In 1977, when goose abundance was

still high, the clonal shrub Atriplex portulacoides

was lacking. Since then, the Atriplex community

has spread into the lower elevation salt marsh,

and this coincided with the observed decline in

goose numbers. Part of the Limonium community

was transformed into the Atriplex portulacoides com-

munity. The open Limonium vulgare community

harbours the preferred goose food plants such as

Puccinellia maritima, Festuca rubra and Triglochin
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maritima, which were replaced by non-preferred

species such as Artemisia maritima, Atriplex portula-

coides and Limonium vulgare itself (Van der Wal et al.

2000b). However, the losses of the Limonium vulgare

community were compensated for by an increase in

this community in newly developed parts of the

salt marsh at the east. We observed that ongoing

plant succession pushed the geese eastward and

geese had to follow the changing vegetation or, in

other words, ‘vegetation succession evicted spring-

staging geese’ (Van der Wal et al. 2000b).

Comparably, on the high elevation salt marsh,

foraging patch choice and spatial distribution of

brown hares is influenced by the ongoing vegeta-

tion succession. The tall-growing plants Elymus

athericus and Artemisia maritima are invading at

these sites with short vegetation consisting of the

preferred food plant for hares, Festuca rubra (Kuij-

per et al. 2008). The increasing abundance of these

tall-growing plants, which are not preferred as food

plants, reduces the grazing intensity of hares. As a

result, hare numbers decrease with increasing salt-

marsh age; hence, they are also evicted by vegeta-

tion succession (Kuijper and Bakker 2008).

10.4 Effects of intermediate-sized
herbivores on plants (top-down control)

Are small herbivores only a victim of plant succes-

sion? Studies on American salt marshes show that

small- to medium-sized herbivores can regulate

plant biomass. For instance, grazing by insects

(Bertness and Shumway 1992), crabs (Bortolous

and Iribarne 1999), snails (Silliman et al. 2005) and

greater snow goose (Chen caerulescens atlantica)

(Smith and Odum 1983) can regulate plant biomass

in Spartina-dominated marshes. The effects of lesser

snow goose (Chen caerulescens caerulescens) on sub-

arctic marshes along the Hudson Bay, Canada, are

another example (Jefferies et al. 2006). But what is

known about the effects of intermediate-sized her-

bivores in European salt-marsh systems?

10.4.1 Experimental evidence

Theory predicts the effects of herbivory to change

along a productivity gradient. The strongest top-

down effects are predicted at sites of intermediate

productivity (Oksanen et al. 1981). At the back-bar-

rier salt marsh on Schiermonnikoog the wild brown

hares occur year round, whereas brent and barnacle

geese are spring-staging visitors on their way to

arctic breeding grounds (Stahl 2001). Although

rabbits are also found at the salt marsh, their

grazing pressure is more than a factor of 10 lower

than that of hares and geese, and they mainly for-

age along the foot of the dunes high on the marsh

(Kuijper and Bakker 2005). Hence, their role on salt

marshes is expected to be low. Exclosures were
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established at four sites along the chronosequence

on the island of Schiermonnikoog. The sites were

established 1, 8, 20 and 30 years previously, when

experiments started. At each site, four exclosures

were established in autumn 1994: two in the high

marsh and two in the low marsh. Every exclosure

plot included three treatments. ‘controls’ were free-

ly accessible to geese and hares. ‘goose exclosures’

kept geese out and allowed hares to enter freely.

‘full exclosures’ excluded both geese and hares

(Kuijper and Bakker 2005). Dropping counts de-

monstrated that different herbivores were success-

fully excluded in the treatments. The vegetation

was monitored from 1995 to 2001.

10.4.2 Effects of herbivores at high marsh

Multivariate analyses revealed that full exclosures

in the 1-, 20- and 30-year-old marshes showed over-

all a different shift in plant species composition

compared with goose exclosures and control plots

(Kuijper and Bakker 2005), whereas the goose ex-

closures did not differ from the control plots. How-

ever, these changes in cover of individual plant

species did not show consistent responses to treat-

ments. To study the effects on vegetation species

composition, detrended correspondence analysis

(DCA) was used. This analysis orders a data set

and plots data points that are most similar close

together in a diagram. DCA can be used to show

graphically how the plant community structure,

taking the changing abundances of all plant species

into account, is changing in response the different

treatments. First, when all vegetation relevés

were ordered in the DCA, typically early succes-

sional species such as Elymus farctus, Parapholis

strigosa and Ammophila arenaria were located at the

left-hand side of the diagram. The typically late

successional species Elymus athericus was at the

right-hand side, and Festuca rubra and intermediate

successional species were in the middle of the dia-

gram (Fig. 10.3a). The ordination showed an order-

ing of plant communities typical of young marshes

(left in Fig. 10.3) to older marshes (right in Fig. 10.3).

Second, the positions of all exclosures (and con-

trols) at the start and at the end of the experiment

were included in these diagrams to show the

changes in plant community. The centroids of

each treatment, indicative of the averages of treat-

ments, at each site revealed different starting posi-

tions in the diagram. This resulted from the

different species composition at the establishment

of the exclosures. The centroids of all treatments

(control, goose exclosure and full exclosure) at the

youngest sites moved in the direction of increasing

cover of Festuca rubra, whereas all other centroids

moved towards increased cover of Elymus athericus.
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The magnitude of this change did not show consis-

tent differences between treatments, as indicated by

the lengths of the arrows. Only the full exclosures in

the 20 year-old marsh showed larger changes than

the other treatments. This shows that, at all but the

youngest sites, Elymus athericus increased at the

expense of Festuca rubra, and, despite of the signifi-

cant treatment effects, no clear pattern in the direc-

tion of plant communities could be detected.

10.4.3 Low marsh

The effects of the treatments on the species compo-

sition in the lowmarshweremore pronounced than

those in the high marsh. On the low marsh, the full

exclosures showed a different shift in species com-

position in the 1-, 8- and 30-yr-old marshes, but not

in the 20-year-old marsh where highest herbivore

density occurred (Kuijper and Bakker 2005). Over-

all, the full exclosures explained most of the varia-

tion in the shift in species composition. Typical

plant species that increased in cover inside full ex-

closures at the 1-year-old marsh were Atriplex por-

tulacoides and Festuca rubra, whereas Salicornia spp.

increased the least compared with the other treat-

ments. Also, the typically late successional species

Elymus athericus had become established, whereas it

could not be found in the area surrounding the

exclosures at the young marsh site. At the 8-year-

old marsh, Festuca rubra increased most in the full

exclosures at the expense of Puccinellia maritima. At

this site the goose exclosures showed a shift in

species composition that was intermediate between

the full and control treatments. At the oldest site (30

years) two typically late successional species

increased in cover and dominated the vegetation:

in one full exclosure Elymus athericus, in the other

exclosure Atriplex portulacoides.

In the DCA diagram, typically early successional

plant species such as Salicornia spp., Spartina anglica,

Spergularia maritima and Suaeda maritimawere in the

bottom left-hand corner whereas late successional

species such as Elymus athericus and Atriplex portu-

lacoides were in the upper right-hand corner (Fig.

10.3b). All treatments showed a similar direction in

the shift of species composition, i.e. they moved in

the direction of increasing cover of late successional

species and decreasing cover of early successional

species. Moreover, all sides converge to the same

point, indicating that all sites started to resemble

each other in species composition. The largest

changes in plant species occurred in the full exclo-

sure at the 1 yr-old marsh; this is indicated by the

largest vector (Fig. 10.3), which describes the change

in community composition. Here, the largest in-

crease in vegetational cover of late successional spe-

cies occurred in the absence of herbivores

(Kuijper and Bakker 2005).

These experiments revealed that grazing by in-

termediate-sized herbivores retards vegetation suc-

cession and that these top-down effects are most

pronounced at low, young salt marshes. The open

vegetation in the young unproductive marshes of-

fers the opportunity for late successional species to

become established as long as selective grazing by

herbivores is absent. Once late successional species

have established, they will spread more rapidly in

the absence of herbivores, indicating that establish-

ment is actually the limiting factor in this invasion

and herbivory can retard further spread. In the

absence of herbivores, late successional species

can directly invade, during the ‘window of oppor-

tunity’ in young marshes, and will dominate the

vegetation at an earlier stage. Hence, the top-

down effects of the herbivores combined with the

bottom-up effects of the vegetation can retard veg-

etation succession in these salt-marsh systems for

several decades (Kuijper et al. 2004).

A second conclusion is that small migratory

herbivores such as geese alone do not show a

long-lasting impact on the vegetation, but the com-

bination with hares is essential to retard succession.

It was argued that the hare is the most important of

these two herbivores in determining the effects.

First, migratory geese use the salt marsh in spring

before peak productivity periods of most plant spe-

cies. This allows plants to recover from goose

grazing once the geese have left the salt marsh.

Second, in spring, hares and geese have a strongly

overlapping diet, namely early successional plant

species such as Festuca rubra, Puccinellia maritima,

Triglochin maritima and Plantago maritima. Howev-

er, in winter, hares eat late successional woody

species which are sensitive to grazing, such as Atri-

plex portulacoides, Artemisia maritima and Elymus

athericus (Van der Wal et al. 2000c).
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During undisturbed succession at the high

marsh in temperate European marshes, the low-

statured species Festuca rubra eventually will be

replaced by the tall-growing grass Elymus ather-

icus (Leendertse et al. 1997). Both species were

affected when herbivores were excluded, indicating

local effects of grazing by intermediate-sized herbi-

vores, because the herbivores are not able to

prevent the increase of Elymus athericus at the

high marsh (Kuijper and Bakker 2005). The main

reason for this may be that Elymus athericus is not

preferred by any herbivore (Prop and Deerenberg

1991; Van der Wal et al. 2000a; Kuijper et al. 2008),

and grazing pressure drops dramatically once

this species dominates the vegetation (Kuijper

et al. 2008).

10.5 Large-scale effects of an
intermediate herbivore on salt-marsh
vegetation

The small-scale exclosure experiments and studies

on individual plants on the salt marsh on Schier-

monnikoog revealed that plant species replacement

is retarded by herbivory. The effects of hare grazing

especially were dominant and were most pro-

nounced in young salt marshes (Kuijper and Bakker

2005). Grazing by hares retarded succession by

more than 25 years (Van der Wal et al. 2000c). This

implies succession should proceed fast when hares

are not present at the initiation of salt-marsh devel-

opment. Hence, late successional species should

dominate at an earlier stage of development com-

pared with salt marshes that developed in the pres-

ence of hares. This idea was tested by comparing

the hare-grazed salt marsh on Schiermonnikoog

with those of two Wadden Sea islands without

hares, namely Rottumerplaat (The Netherlands)

and Mellum (Germany).

On all three islands, sites were selected where

salt-marsh development had started in the early

1970s. Transects of 1000 m running from the foot

of a dune towards the intertidal flats were matched

for surface elevation with respect to the level of

mean high tide and sediment thickness (Kuijper

and Bakker 2003). Early to mid-successional plant

species Puccinellia maritima and Plantago maritima,

which are the preferred food plant of geese,

occurred at a similar elevation with higher cover

on Schiermonnikoog than on Rottumerplaat and

Mellum (Fig. 10.4). Plantago maritima was

rarely found on Rottumerplaat andMellum. Festuca

rubra, a preferred food plant for both geese and

hares, occurred over a large part of the elevation

gradient on Schiermonnikoog, but was found at

only a small part of the gradient on Rottumerplaat

and Mellum (Kuijper and Bakker 2003). In contrast,

the typically late successional species Atriplex

portulacoides dominated the lower elevations on

both Rottumerplaat and Mellum, whereas it had

low cover on Schiermonnikoog (Fig. 10.4). Elymus

athericus, a characteristic late successional species of

the high marsh, occurred with higher cover at both

low and high elevation on Rottumerplaat and Mel-

lum compared with that on Schiermonnikoog.

At the upper part of the elevation gradient on

Rottumerplaat and Mellum a monoculture of

Elymus athericus, covering 100%, was found. In con-

trast, on Schiermonnikoog, Elymus cover did

not reach values higher than 70% (Kuijper and

Bakker 2003).

It can be concluded that the small-scale exclosure

experiments on Schiermonnikoog are not applica-

ble only to understanding the local effects of

grazing, but can also be extrapolated to a larger

scale. Intermediate-sized herbivores affect the com-

munity structure of large-scale salt-marsh systems

on the back-barrier Wadden Sea islands.

10.6 Interaction of herbivory and
competition

Apart from experiments focusing on the level of the

entire vegetation, detailed experiments with indi-

vidual plant species may reveal which mechanisms

play a role in plant species replacement along the

productivity gradient. In addition to plant–plant

competition, plants have to deal with changing le-

vels of herbivory. The small highly herbivore-pre-

ferred Triglochin maritima is hardly present at the

very young and old marshes, but is very abundant

at intermediate-aged marshes. Competition and

grazing are closely linked: when grazing pressure

is relaxed, competition with neighbouring plants is

intensified. Grazing is shown to influence these

competitive interactions between plants, acting
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both directly on the target plant and indirectly

through its neighbours. The significance of compe-

tition and herbivory largely depends on plant stat-

ure relative to the neighbouring vegetation.

Although establishment of Triglochin maritima starts

from seed, the high grazing pressure at younger

marshes determines its abundance in the sward.

However, at productive old marshes this small-sta-

tured plant is outcompeted by tall-growing late

successional species. The distribution of T. maritima

is ‘sandwiched’ between intense grazing in the

younger marsh and increasing competition for

light in the older marsh (Van der Wal et al. 2000a).

Adult plants of Elymus athericus are tall and not

preferred by any of the herbivores. However, experi-

ments in which grazing and competition were ma-

nipulated along the productivity gradient show that

herbivory negatively affects the survival of seedlings

(being a good food source) in the unproductive sites.

At the productive sites, plant competition becomes

an overruling factor.When seedlings grow in natural

vegetation, the increased competition prevents any
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increase in biomass, whereas in the absence of com-

petition the plant can grow fast because of high nu-

trient availability along the productivity gradient.

Even though Elymus athericus is an unpalatable supe-

rior competitor as an adult plant at highly productive

sites, in its seedling phase its growth is strongly

reduced by herbivory at unproductive stages and

competition with neighbouring plants at the produc-

tive stages (Kuijper et al. 2004).

10.7 Competition and facilitation
between herbivores

10.7.1 Short-term competition and
facilitation between hares and geese

For a large part of the year hares and geese forage on

the same food plants, hence competitive interactions

may also occur. Exclusion of brent geese at scales

ranging from 30 m2 to 1 ha at the salt marsh on

Schiermonnikoog enhanced the level of utilization

by hares in both Festuca rubra- and Puccinellia mari-

tima-dominated marshes. The more geese were ex-

cluded from a site, the stronger the increase of

hare grazing pressure. When geese were excluded,

the ‘original’ decrease in Festuca consumption by

geese was completely matched by increased hare

grazing, while for Puccinellia only part of the surplus

was grazed. Apparently, competition for food be-

tween hares and brent geese also occurs and plays

a role in the habitat use of hares (Van der Wal

et al. 1998).

Competitive and facilitative interactions between

geese (barnacle and brent geese) (Stahl 2001) and

geese and hares were studied on Schiermonnikoog

(Stahl et al. 2006). Biomass (through temporary

exclosures) and quality (by fertilizer application)

of grass swards were manipulated and the foraging

preferences of the herbivores were recorded. Cap-

tive barnacle geese were used to set the stage for

a choice experiment with captive brent geese, as

the latter species normally exploits the vegetation

‘on the heels’ of the former. Brent geese preferred

to forage on vegetation previously grazed by bar-

nacle geese, probably reacting to enhanced quality

of the regrowth, in spite of the higher biomass

of the ungrazed swards (Stahl 2001). In another

experiment with captive barnacle geese, it was

demonstrated that grazing affected the sward

characteristics significantly: the proportion of dead

biomass in the vegetation was reduced, and the

production of additional axillary tillers increased
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(Van der Graaf et al. 2005). Both barnacle and

brent geese selected plots with plants that have a

high nitrogen content. Barnacle geese avoided

plots with high biomass. Geese mainly selected

plots that have been previously grazed by either

geese or hares within the same season. Grazing

by both geese and hares leads to an increased

quality of the sward. Under these circumstances,

herbivores profit from the increased tissue quality

as a result of an elevated rate of nutrient in-

take. However, when the forage resource is used

jointly by more than one herbivore species, a shift

towards less preferred plots by one species may

take place. Hares prefer the combination of high

biomass with high plant quality in the absence of

geese (Stahl et al. 2006). Van der Wal et al. (1998)

suggested that large flocks of socially foraging

geese rapidly deplete preferred salt-marsh sites in

spring and evict hares to alternative less favourable

foraging sites.

10.7.2 Long-term facilitation between
herbivores

The previous section showed that the cover of spe-

cies that are selected as food plant by both geese

and hares, such as Puccinellia maritima, Plantago

maritima and Festuca rubra, is higher at hare-grazed

islands, whereas the cover of unpreferred plants,

such asAtriplex portulacoides and Elymus athericus, is

lower. Hare grazing may thus facilitate food supply

for geese (Kuijper and Bakker 2003). This idea was

tested experimentally at the salt marsh on Schier-

monnikoog. The woody shrub Atriplex portulacoides

is unpalatable for geese. It can overgrow the pre-

ferred food plant Pucinellia maritima. When Atriplex

portulacoides was removed, goose grazing, ex-

pressed as the number of droppings found, was

higher than in the control plots. In contrast, goose

grazing declined when Atriplex portulacoides indivi-

duals were planted in a Pucinellia maritima sward

(Van der Wal et al. 2000c). Knowing that hares

forage on Atriplex portulacoides during winter, this

experiment clearly demonstrated the effect of

grazing facilitation by hares for geese.

Although hares can retard vegetation succession

for several decades (Van der Wal et al. 2000c;

Kuijper and Bakker 2005), they eventually lose con-

trol in the higher ranges of the productivity gradi-

ent. Large herbivores, such as livestock, are needed

to set back the successional clock. Indeed, at the

older cattle-grazed salt marsh in the chronose-

quence on Schiermonnikoog, grazing pressure of

hares and geese increases again compared with

the ungrazed older marsh (Kuijper 2004; Fig. 10.5).

An experiment with exclosures on the cattle-grazed

marsh revealed that after 30 years of cessation of

cattle grazing no hares grazed inside the exclosures

when the cover of tall plants, such as Elymus ather-

icus, was > 30%. Thus, clear facilitative effects of

cattle on the feeding opportunities of hares were

found (Kuijper et al. 2008). This finding is in con-

trast to studies from other areas that reported only

competitive interaction between hares and live-

stock (Hulbert and Andersen 2001; Smith et al.

2004). The contrasting conclusions of these studies

may be the result of the timescale of the experi-

ments. Facilitative effects between cattle and hares

on Schiermonnikoog were observed only when

looking at the long-term effects, including the effect

of cattle on the competitive replacement of plant

species. Only when species replacement did

occur in the absence of cattle was an effect on the

abundance of hares observed. In contrast, in a

short-term experiment on Schiermonnikoog in

which cattle were excluded for 5 years, plant bio-

mass increased inside the exclosure, but the period

was too short for plant species replacement to

occur. In this short-term study no effect on the

abundance of hares was detected (Kuijper et al.

2008). This suggests that at a short timescale no

effect of cattle grazing on hare abundance is appar-

ent, whereas at a longer timescale facilitation occurs

(Kuijper et al. 2008).

It can be concluded that competition between

different species of herbivores occurs only in the

short term, i.e. within one spring season. In the

long-term, facilitation plays an important role. At

the salt marsh on Schiermonnikoog, barnacle geese

facilitate for brent geese within one season, hares

facilitate for geese for several decades, and
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ultimately cattle facilitate for hares and geese, when

hares have lost control of the vegetation.

10.8 Exclusion of large herbivores: effects
on plants

10.8.1 Natural marshes

The effects of large herbivores on salt marshes is

restricted to that of livestock. In fact, livestock

grazing is the most common land use of North-

West European salt marshes (Bakker et al. 2005a;

Davy et al. 2009). Hence, the obvious way to study

the effects of livestock grazing is to establish exclo-

sures. In 1973 at the oldest part of the chronose-

quence on Schiermonnikoog (> 150 years) that was

always cattle grazed, two exclosures were estab-

lished, one at the higher and one at the lower

marsh. At the higher marsh Elymus athericus was

already present in the grazed area. The Elymus

athericus community established at the expense of

the Juncus maritimus community within five years

after the cessation of grazing. The deposition of

driftline material initiated temporary spots with

the annual Atriplex prostrata, but within two years

these were taken over again by the Elymus athericus

community. This community also spreads at the

transition to the low dune, but only gradually, and

after 27 years remnants of the Festuca rubra commu-

nity with Armeria maritima were still present. It

seems that Elymus athericus is also spreading in the

grazed area, but this is mainly due to the fact that

the tall Juncus maritimus is not preferred by cattle

and protects Elymus athericus from grazing, thus

acting as a ‘natural’ exclosure (Bakker et al. 2003a).

At the lower marsh Elymus athericus was lacking

in the grazed area at the start of the experiment. The

Artemisia maritima community dominated within

five years in the relatively higher parts inside the

exclosure. It took 12 years before the first clone of

Elymus athericus found its window of opportunity

and became established. After 22 years the Elymus

athericus community expanded. The initially bare

soil at the lowest places became covered by the

Plantago maritima/Limonium vulgare community

after about ten years, after which the Atriplex portu-

lacoides community took over after 22 years. The last

has locally been replaced by the Elymus athericus

community, 27 years after the cessation of grazing

(Bakker et al. 2003a).

Taking into account the aforementioned natural

succession without livestock grazing, it is likely that

the oldest part of the salt marsh with a thick layer of

clay in most sites will eventually be covered by the

Elymus athericus community at both the high and

the low salt marsh. That is exactly what happens

after the long-term exclusion of livestock. The ces-

sation of livestock grazing produces two main con-

clusions. Initially, the vegetation transforms into a

‘flower garden’ as many existing species have the

opportunity to flower during the first few years

before tall species become dominant and replace

the present plant community with another one.

Eventually, most plant communities are replaced

by the Elymus athericus community at the salt

marsh on Schiermonnikoog. Another part of the

salt marsh on Schiermonnikoog was abandoned in

1958 for cattle grazing and grazed anew from 1972

onwards. Permanent plots in exclosures revealed

that different plant communities converged into

the Elymus athericus community after various peri-

ods of cessation of grazing: the Juncus maritimus

community, the Plantago maritima/Limonium vulgare

community and the Artemisia maritima community

after 30 years and the Juncus gerardi community

after 35 years. The only exception was the Festuca

rubra/Armeria maritima community, which was not

replaced 35 years after cessation of livestock grazing

(VanWijnen et al. 1997). Perhaps the combination of a

thin layer of sediment (lownutrient pool) at this high

elevation site and evapotranspiration during dry

summer periods with subsequent high soil salinity

have until now prevented replacement.

The natural marsh of Süderhafen (Germany) de-

veloped in the shelter of the former salt-marsh is-

land of Nordstrand after 1925. The site was hardly

grazed before 1968, and not at all since 1971. Re-

peated vegetation mapping in 1968 and 1995 re-

vealed an expansion of the Elymus athericus

community at the expense of the Festuca rubra com-

munity, and of the Atriplex portulacoides community

at the expense of the Puccinellia maritima communi-

ty (Bakker et al. 2003a).

Combining permanent plot data from experimen-

tally ungrazed sites on the back-barrier marshes on

Schiermonnikoog (The Netherlands), Terschelling
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(The Netherlands) and Skallingen (Denmark) re-

vealed that the convergence to the Elymus athericus

community after the exclusion of livestock grazing is

a general phenomenon (Bos et al. 2002).

Not only the diversity of plant communities de-

clined after the cessation of livestock grazing. The

species richness within plant communities in

paired permanent plots in experimentally un-

grazed and control plots also decreased significant-

ly after five years (Fig. 10.6). (Data have been

combined from the back-barrier marshes on Schier-

monnikoog, Terschelling and Skallingen (Bos et al.

2002; Bakker et al. 2003a).) These permanent plots

also revealed that out of 30 frequently occurring

plant species only four had a significantly higher

occurrence at ungrazed than at grazed marshes,

namelyArtemisia maritima,Atriplex portulacoides,At-

riplex prostrata and Elymus athericus. Three species

were indifferent, namely Festuca rubra, Juncus mar-

itimus and Lotus corniculatus. All remaining 23 spe-

cies had a significantly higher occurrence at grazed

than at salt-marsh sites excluded for more than 20

years (Bos et al. 2002).

10.8.2 Artificial salt marshes

There are experimentally ungrazed plots in artifi-

cial marshes in Dollard Bay, The Netherlands. In

these brackish, highly productive marshes the ex-

clusion of cattle resulted in the increase of Elymus

repens within six years, mainly at the expense of

Puccinellia maritima. Species richness was higher in

grazed than in excluded plots (Esselink et al. 2002).

When salt marshes are broad enough, a gradient in

grazing intensity emerges. Cattle and sheep tend to

concentrate near the seawall, where fresh drinking

water is available. Hence a reduction in grazing is

found at the seaward site of salt marshes resulting

in a taller canopy. Indeed, gradients of increasing

canopy height towards the marsh edge were re-

ported in the Dollard (Esselink et al. 2000), the Ley

Bucht (Andresen et al. 1990) and Sönke-Nissen-

Koog (Germany) (Kiehl et al. 1996).

No controlled large-scale grazing experiments

have been established along the Dutch mainland

coast with artificial marshes. However, three good

examples can be found along the German coast. The

first site is located at Friedrichskoog in Lower Sax-

ony. It developed after 1854 and was long-term

sheep grazed. The experiment was established in

1988 to study the effects of different stocking rates

on soil and vegetation (Kiehl et al. 1996; Kiehl 1997).

The stocking rate was expressed in sheep-units, i.e.

adult sheep including their lambs (1 sheep-unit

equals 2.8 sheep). The area was heavily grazed ‘as

a golf course’ by 3.4 sheep-units/ha at the end of

the grazing season. The control area with 3.4 sheep-

units/ha was compared with 1.5 and 1.0 sheep-

units/ha and cessation of grazing. At the start of the

experiment this salt marsh harbouredmainly Festuca

rubra community, at the lower marsh Puccinellia mar-

itima community, and at the intertidal flats Spartina

anglica and Salicornia spp. communities were found

(Kiehl 1997). The vegetation revealed a relatively

small coverage of the Elymus athericus community

after the cessation of grazing 11 years after the start

of the experiment (Bakker et al. 2003a).

Apart from the above large-scale patterns, the

Friedrichskoog experiment also revealed different

micropatterns in the vegetation with the various

stocking rates seven years after the start of the

experiment. The micropatterns were formed by a
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mosaic of short and tall Festuca rubra stands on a

scale of square decimetres in transects of 2 m �
10 m. In the most intensively grazed and the aban-

doned paddocks, no micropattern was found. The

vegetation in the transects was homogeneously

short or tall, respectively. However, micropatterns

occurred in the three intermediately grazed pad-

docks with the highest spatial diversity in the 1.5

sheep-units/ha (Berg et al. 1997).

The second site is located at Sönke-Nissen-Koog

in Schleswig Holstein. It developed after 1924 and

was long-term sheep-grazed. The experimental

treatments were established at the same time and

had the same layout as at the Friedrichskoog site. At

the start of the experiment this salt marsh mainly

harboured the Puccinellia maritima community with

locally some Festuca rubra and Elymus athericus com-

munities, and with Spartina anglica and Salicornia

spp. near the intertidal flats (Kiehl 1997). The

marsh showed a large coverage of the Elymus ather-

icus community after the cessation of grazing. The

community covered smaller areas at the lower

stocking rates, 11 years after the start of the experi-

ment (Bakker et al. 2003a).

The third site is in the Ley Bucht (Germany). The

site was cattle-grazed since its formation after 1950.

The site was established as an experiment in 1980.

The area with 2 cattle/ha was compared with areas

with stocking rates of 1 and 0.5 cattle/ha and cessa-

tion of grazing. The zonation included Elymus re-

pens/Elymus athericus and Festuca rubra communities

close to the seawall, the Agrostis stolonifera commu-

nity at the transition, the Puccinellia maritima com-

munity at the lower marsh, and Spartina anglica and

Salicornia spp. communities near the intertidal flats.

Eight years after the cessation of grazing, the Ely-

mus athericus community covered large areas at the

higher salt marsh and one spot at the lower marsh.

It hardly occurred at the other grazing regimes

(Bakker et al. 2003a). The Elymus athericus commu-

nity quickly spread over both the higher and the

lower marsh, and covered nearly the entire gradi-

ent 20 years after the cessation of grazing, at the

expense of the Festuca rubra and the Agrostis stolo-

nifera communities, and the Puccinellia maritima

community, respectively. Also the 0.5 cattle/ha re-

gime revealed a spread of the Elymus athericus com-

munity 15 years after the start of the experiment at

both the higher and the lower marsh, but to a lesser

degree than at the abandoned area.

Both artificial and the natural back-barrier salt

marshes tend to transform into a dominance of the

Elymus athericus community after the cessation of

livestock grazing within 10–30 years, as could be

predicted from succession without livestock

grazing. However, a correlation between the num-

ber of years of exclusion of livestock grazing and

the spreading of Elymus athericus is not always

found. The salt-marsh sites that do not follow this

rule seem to have a low sediment (nitrogen) input

(Schröder et al. 2002). In these sites exclusion of

livestock grazing did not result in a dominance of

Elymus athericus within 30 years. A complication

may be that because of the low sediment input

these sites are building a sedimentation deficit due

to continuous sea-level rise, and hence are becom-

ing wetter. This may be an extra factor preventing

the establishment of Elymus. Another conclusion is

that grazing with low stocking rates cannot prevent

the spread of Elymus athericus, but only retards the

spread. In contrast to intensive grazing and no

grazing at all, intermediate grazing can create

small-scale patterns in the vegetation.

10.9 Exclusion of large herbivores: effects
on invertebrates

On the natural mainland salt marsh in Mont Saint-

Michel Bay (France), the invasive species Elymus

athericus outcompetes Atriplex portulacoides. Apart

from changes in plant communities, this results in

changes in invertebrate communities, particularly

spiders. The invasion of Elymus athericus led to an

increase in the overall species richness. Causes may

be the formation of a dense, tall swardwhich allows

colonization of web-spinning species such as Ar-

giope bruennichi,Neoscona adianta and Larinioides cor-

nutus. The building of a deep litter layer favours

nocturnal wanderers (Gnaphosids, Clubionids),

ambush hunters (Thomisids) and litter-sensitive

sheet-weavers. Non-coastal species such as the

ground-living nocturnal Pachygnatha degeeri and

the halophilic sheet-web spinning Arctosa fulvoli-

neata increased. However, the dominant halophilic

species Pardosa purbeckensiswas strongly negatively

affected by the invasion of Elymus athericus (Pétillon
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et al. 2005). Some halophilic ground beetle species

were more abundant in grazed than in abandoned

sites and vice versa. In general, no effect of manage-

ment on species richness was found for ground

beetles. Generally, spiders seem to be more depen-

dent on vegetation and litter structure than ground

beetles (Pétillon et al. 2008).

The aforementioned experiment in the artificial

marsh of the Ley Bucht aimed to study the effect of

various stocking rates on the invertebrate fauna

(Andresen et al. 1990). For invertebrates, it may

not only be the plant species composition that is

important. Non-flowering Asters were found only

at the higher salt marsh within the highest stocking

rate. The canopy height of the understorey was

higher in the abandoned site than in the grazed

sites (Andresen et al. 1990). In the third year of

cessation of grazing, positive effects for several in-

vertebrate groups were recorded for Collembola,

Aranea, Amphipoda, Coleoptera and Diptera. This

was attributed to the accumulation of litter, increase

of flowering plants and hence availability of pollen

and nectar and therefore higher aboveground bio-

mass for leaf- and stem-dwelling species (Irmler

and Heydemann 1986). Erigone longipalpis, a halo-

philic species, is the most important spider species

in the Puccinellia maritima community. Other spe-

cies occur mainly in the Festuca rubra community

and cannot be considered halophilic, namely Oe-

dothorax retusus, Pardosa agrestis and Pachygnata

clerki. Whereas Erigone longipalpis still occurred in

high abundance in the Festuca rubra community at

the start of the experiment in 1980, it has since 1982

moved to the lower Puccinellia maritima and Salicor-

nia spp. communities in the abandoned site. The

other species spread into the lower salt marsh at

different rates (Andresen et al. 1990). A distinct

zonation of the invertebrate communities was ob-

served in the first three years of the experiment. The

community diversity was highest in the abandoned

site, since communities of the higher marsh spread

into the lower marsh. In 1988, however, the com-

munity of the higher marsh had spread over the

entire elevation gradient, and completely replaced

the communities of the lower marsh in the aban-

doned site. Hence, eventually the community di-

versity was lowest at the abandoned site.

However, the number of species became highest at

the abandoned site, partly as a result of immigra-

tion from adjacent grassland. But the main reason

was that many species are damaged by grazing

(Irmler and Heydemann 1986). The authors espe-

cially stress the damaging effects of grazing on

many arthropod communities.

Two and three years after the start of the afore-

mentioned grazing experiment in Friedrichskoog

and Sönke-Nissen-Koog, invertebrates were moni-

tored. Mainly herbivorous and flower visitors were

positively affected by cessation of sheep grazing

and the resulting flowering of Aster tripolium and

Plantago maritima. A minor part of the herbivorous

fauna profits from enhanced plant growth in mod-

erately grazed sites. Typical soil dwellers benefit

from grazing owing to greater amounts of bare

soil (Meyer et al. 1995).

In general, the community structure changes

from a dominance of detritivores to a dominance

of herbivores after the cessation of sheep grazing,

and after the cessation of cattle grazing. The num-

ber of species and individuals increases shortly

after the cessation of grazing, but after a longer

period of cessation of grazing typical halophilic

species may decrease. For the time being it is not

possible to discuss top-down or bottom-up con-

cepts with respect to the interaction between vege-

tation and invertebrates. Food web studies could

help in this discussion and are currently being car-

ried out.

10.10 Exclusion of large herbivores:
effects on birds

10.10.1 Migrating birds

In order to evaluate the importance of livestock

grazing for habitat use by geese in the Wadden

Sea, a large-scale inventory was made. Sixty-three

transects were established, subdivided over 38

sites. Only those sites with a stable and clearly

defined management regime for at least six preced-

ing years were included. Management was subdi-

vided into ‘long-term ungrazed’(> 10 years), ‘short-

term ungrazed’ (6–10 years), ‘lightly grazed’ (low

stocking rates, i.e. � 4.5 sheep/ha or � 1 cow/ha),

and ‘intensively grazed’ (i.e. with high stocking

rate). Only marshes with sufficiently large surface
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area (> 5 ha), large enough for a flock of geese to

land on, were included. The sites were distributed

over the entire Danish (n ¼ 11), German (n ¼ 17)

and Dutch (n ¼ 10) Wadden Sea. Twenty-two sites

harboured transects with at least two different

grazing regimes under similar abiotic conditions.

Seventeen sites with paired transects were visited

twice, once in April and once in May 1999. The

transects on back-barrier marshes were, with one

exception, visited only by brent geese, whereas

most transects on artificial marshes along the main-

land coast were utilized by both brent and barnacle

geese. For each management regime at each site,

one transect was established perpendicular to the

seawall and the coastline, along the entire extent of

the marsh. Hence, transects were variable in length,

ranging from 100 m to 1000 m, and included high-

marsh, mid-marsh and lower marsh sections.

Twenty plots of 4 m2 were sampled per transect,

and the accumulated number of goose droppings

were counted and the plant community was as-

sessed (Bos et al. 2005).

The communities of Elymus athericus, Artemisia

maritima and Atriplex portulacoides had a significant-

ly taller canopy, but a lower goose dropping densi-

ty than the communities of Agrostis stolonifera,

Festuca rubra and Puccinellia maritima. Dropping

density at the transect level declined with decreas-

ing livestock grazing regime. However, only the

long-term ungrazed regime combined for barrier

marshes and artificial marshes had significantly

lower dropping densities than the other regimes

(Fig. 10.7). These results are valid for May, the end

of the staging period for both goose species. In

April, goose-dropping densities at the transect

level did not differ between grazing regimes.

There were no significant differences in dropping

densities by geese between transects grazed by

sheep or cattle (Bos et al. 2005). We conclude that

the long-term exclusion of livestock on salt marshes

will result in a decline in utilization of these areas

by spring-staging geese.

10.10.2 Breeding birds

The effects of excluding livestock grazing on breed-

ing birds cannot be studied in small-scale exclosure

experiments as for plants and invertebrates. Also a

comparative study in the entire Wadden Sea, as for

migrating birds, has not been carried out so far. We

derive our knowledge from a small number of stud-

ies describing differences in ungrazed and differ-

ently grazed marshes. At the natural marsh on

Schiermonnikoog, including some low dunes, the

breeding population was monitored in 1973 and

1978. The 83 ha of marsh ungrazed since 1958 har-

boured maximally 31 species with in total 850–1000

breeding pairs, the 77 ha continuously cattle-grazed

marsh hosted maximally 25 species with in total

550–600 breeding pairs. In 1978, the grazed marsh

harboured 133 breeding territories for oystercatch-

er, 10 for lapwing and 71 for redshank, whereas the

grazed marsh harboured 85, five and 48 territories,

respectively (Van Dijk and Bakker 1980).

Studies on the relationship between management

and vegetation, and the occurrence of breeding

birds have been summarized by Koffijberg (in

press). Most studies have been carried out on artifi-

cialmarshes inGermany (Hälterlein 1998; Eskildsen

et al. 2000; Hälterlein et al. 2003; Oltmanns 2003;

Schrader 2003; Thyen and Exo 2003, 2005; Thyen

2005). They reveal a trend that relaxation of former-

ly heavily grazing regimes results in an increase in

species richness, particularly due to a species group

shift from waders, gulls and terns towards ducks

and songbirds. Another trend is the decrease of

avocet (Recurvirostra avosetta), great ringed plover

(Charadrius hiaticula), Kentish plover (Charadrius

alexandrinus), common tern (Sterna hirundo) and

Arctic tern (Sterna paradisaea) after the cessation of

grazing and subsequent vegetation succession. A

problem in these studies is that the results represent

snapshots, describing ‘pioneer situations’ a few

years after transition of management, and do not

include the long-term effects of cessation of grazing.

For some species more detailed information is

available. Increased grazing negatively affects the

number of redshanks. This was attributed to the

destructive effects of trampling of nests and hatchl-

ings, whereas changes in the vegetation composi-

tion were considered less important (Schultz 1987).

However, in salt marshes in Great Britain the occur-

rence of redshank densities were positively related

to the extent of the Elymus athericus community.

This relation could be explained by the variation

in vegetation structure. Cattle-grazed plots, with
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Elymus athericus covering up to 30%, supported the

most structurally diverse vegetation and the high-

est breeding densities. In contrast, ungrazed plots

of similar habitat contained tall, uniform vegetation

and supported significantly lower breeding densi-

ties (Norris et al. 1997). The period of abandonment

was not indicated. However, a survey on 77 salt-

marsh sites in Great Britain revealed that breeding

redshank densities were lowest on heavily grazed

marshes and tended to be highest on lightly or

ungrazed marshes (Norris et al. 1998). Redshanks

breeding on salt marshes partly feed on nearby

intertidal flats and build their nests hidden among

vegetation of intermediate height, avoiding areas

with low cover or with very tall vegetation

(Cramp and Simmons 1983). In the Dollard (The

Netherlands) cattle-grazed salt marsh, densities of

redshanks were approximately two breeding pairs

per hectare at a grazing regime of�200 cattle-days/

ha in 1984, and decreased to less than one breeding

pair per hectare in 1998. Within the same period

cattle grazing was reduced to �50 animal-days/ha.

The redshanks preferentially breed in the Elytrigia

repens community, and in the less preferred short-

grass stands with Festuca rubra, Agrostis stolonifera

and Puccinellia maritima. Especially the latter stands

were partly replaced by bare soil and secondary

pioneer community of Salicornia spp. and Suaeda

maritima, which was, however, attributed to in-

creasing numbers of spring-staging barnacle geese

and not to decreased cattle grazing (Esselink 2000).

We have to conclude that the effects of cessation

of livestock grazing on breeding birds need further

study. From the results so far, we suppose an initi-

ally positive, but in the long term negative, effect.

10.11 Ageing of salt marshes and
implications for management

As long as the area of salt marshes increases,

marshes will feature the successional series of pio-

neer, young and older mature marshes. When these

extension processes stabilize eventually, only ma-

ture marshes will be found. This happens at back-

barrier marshes that do not expand. It also happens

along the mainland coast where the present area is

maintained, and no further expansion into the in-

tertidal flats takes place. In the past, it was econom-

ically feasible to embank marshes, and start new

sedimentation fields (Esselink 2000). Nowadays, it

is no longer economically feasible for many farmers

to graze livestock at the marshes. The combination

of decrease in the pioneer zone, and hence matura-

tion of the marshes, and abandonment of livestock

grazing results in the encroachment of Elymus ather-

icus on artificial marshes (Dijkema 2007).

What are the implications for management (often

livestock grazing) in view of these ageing processes

of salt marshes? According to the ‘wilderness con-

cept’ (a contradiction in itself for an artificial

marsh), the solution with respect to the question

‘to graze or not to graze’ (Bakker et al. 2003a) is

easy: the management option will be ‘no grazing’.

This will undoubtedly result in a loss of biodiversi-

ty at the local scale. However, at the scale of the

entire Wadden Sea, it should be a preferred option

for the marshes that have never been grazed by

livestock such as the eastern parts of Terschelling

(The Netherlands), Schiermonnikoog (The Nether-

lands), Ameland (The Netherlands) and Spiekeroog

(Germany). In the long run, these areas will dem-

onstrate whether there is a world beyond Elymus

athericus.
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According to the ‘biodiversity concept’ the answer

to the question ‘to graze or not to graze’ will be:

define the biodiversity target at a distinct scale, and

decide to what extent livestock grazing as a manage-

ment tool may help to reach the biodiversity target.

It is known that no grazing results in a low diver-

sity for plants and less favourable feeding conditions

for hares and spring-staging geese. High-intensity

livestock grazing is a good option for spring-staging

geese. Low-intensity grazing renders a pattern of

intensively grazed short swards and lightly or no-

grazed taller patches of vegetation. The difference

with respect to the options no grazing or intensive

grazing seems the patchiness and the spatial scale.

However, our knowledge of the consequences of

such a mosaic for the diversity of breeding birds

and invertebrates is fragmentary.

Another option with respect to grazing is rota-

tional grazing. Livestock grazing can be abandoned

after a period of intensive livestock grazing. The

result will be flowering of the plants and the possi-

bility of replenishing the soil seed bank. Flowers

and taller stems will attract invertebrates, which

can be the prey items for breeding birds. Before

Elymus athericus invades, the intensive grazing re-

gime should be re-installed. The results of such a

rotational grazing regime have not been monitored so

far. Salt-marsh communities and their management

will profit from large-scale and long-term experi-

ments in which the interactions of plants, inverte-

brates and birds are studied.

In summary, in order to have a full display

of salt-marsh communities, including many species

of plants, vertebrates and invertebrates, the best

management option is to have variety in the struc-

ture of the vegetation. This can be achieved by

variation in grazing management, both in space

and time.
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Saetre, P. and Bååth, E. (2000) Spatial variation and pat-

terns of the soil microbial community structure in a

mixed spruce-birch stand. Soil Biology and Biochemistry,

32, 909–17.

Schoenly, K. and Cohen, J.E. (1991) Temporal variation in

food web structure: sixteen empirical cases. Ecological

Monographs, 61, 267–98.
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Setälä, H. and Aarnio, T. (2002) Vertical stratification

and trophic interactions among organisms of a soil

decomposer food web: a field experiment using 15N as

a tool. European Journal of Soil Biology, 38, 29–34.

Shah, V. and Nerud, F. (2002) Lignin degrading system of

white-rot fungi and its exploitation for dye decoloriza-

tion. Canadian Journal of Microbiology, 48, 857–70.

Teng, J. and McCann, K. (2004) The dynamics of compart-

mented and reticulate food webs in relation to energetic

flows. The American Naturalist, 164, 86–100.

Vanni, M.J. (2002) Nutrient cycling by animals in freshwa-

ter ecosystem. Annual Review of Ecology and Systematics,

33, 341–70.

Wardle, D.A. (2002) Communities and Ecosystems. Linking

the Aboveground and Belowground Components. Princeton

University Press, Princeton, NJ.

Wardle, D.A. and Lavelle, P. (1997) Linkages between soil

biota, plant litter quality and decomposition. In Driven

by Nature. Plant Litter Quality and Decomposition (eds G.

Gadisch and K.E. Giller), pp. 107–24. CAP International,

Wallingford.

Warren, P.H. (1989) Spatial and temporal variation in the

structure of a freshwater food web. Oikos, 55, 299–311.

Chapter 7

Abraham, K.F., Jefferies, R.L. and Alisauskas, R.T. (2005)

The dynamics of landscape change and snow geese in

mid-continent North America.Global Change Biology, 11,

841–55.

AlMufti,M.M., Sydes, C.L., Furness, S.B., et al. (1977) Quan-

titative-analysis of shoot phenology and dominance in

herbaceous vegetation. Journal of Ecology, 65, 759–91.

Bakker, E.S., Ritchie, M.E., Olff, H., et al. (2006) Herbivore

impact on grassland plant diversity depends on

habitat productivity and herbivore size. Ecology Letters,

9, 780–8.

Bakker, J.P. and Berendse, F. (1999) Constraints in the

restoration of ecological diversity in grassland and

heathland communities. Trends in Ecology & Evolution,

14, 63–8.

Bardgett, R.D.,Wardle, D.A. and Yeates, G.W. (1998) Link-

ing above-ground and below-ground interactions: how

plant responses to foliar herbivory influence soil organ-

isms. Soil Biology and Biochemistry, 30, 1867–78.

Bardgett, R.D., Bowman, W.D., Kaufmann, R. and

Schmidt, S.K. (2005) A temporal approach to linking

aboveground and belowground ecology. Trends in Ecol-

ogy & Evolution, 20, 634–41.

Bell, J.R., Traugott, M., Sunderland, K.D., et al. (2008)

Beneficial links for the control of aphids: the effects of

compost applications on predators and prey. Journal of

Applied Ecology, 45, 1266–73.

REFERENCES 217



Bever, J.D. (2003) Soil community feedback and the

coexistence of competitors: conceptual frameworks

and empirical tests. New Phytologist, 157, 465–73.

Bezemer, T.M. andvanderPutten,W.H. (2007)Diversity and

stability in plant communities.Nature, 446, E6–E7.

Bezemer, T.M., De Deyn, G.B., Bossinga, T.M., et al. (2005)

Soil community composition drives aboveground

plant-herbivore-parasitoid interactions. Ecology Letters,

8, 652–61.

Blomqvist, M.M., Olff, H., Blaauw, M.B., et al. (2000) Inter-

actions between above- and belowground biota: impor-

tance for small-scale vegetation mosaics in a grassland

ecosystem. Oikos, 90, 582–98.
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Schröder, H.K., Kiehl, K. and Stock, M. (2002) Directional

and non-directional vegetation changes in a temperate

salt marsh in relation to biotic and abiotic factors. Ap-

plied Vegetation Science, 5, 33–44.

Schultz, W. (1987) Einfluss der Beweidung von Salzwiesen

aufdieVogelfauna. InSalzwiesen: geformt vonKüstenschutz,
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