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Introduction

Using species composition to predict environmental 
variables, ‘bio-indication’, is common in community 
ecology (Zonneveld 1983; Diekmann 2003). In a nu-
merical sense, this is calibration sensu Jongman et al. 
(1995). Particularly widespread are predictions based on 
single indicator values (IV) of plant species, especially 
by calculating averages of Ellenberg’s IVs. While in-
dicator values have proven to work reasonably well in 
many cases, it has been argued that IVs suffer from the 
lack of information about species amplitudes (Ertsen 
et al. 1998; Gégout et al. 2003; Wamelink et al. 2005). 
The term ‘amplitude’ is used here in the sense of ‘envi-
ronmental amplitude’, i.e. that part of a gradient where 
the species is most likely to occur. In other words, the 
amplitude describes the realised niche referring to the 
gradient under consideration.

Describing species behaviour along ecological    
gradients, response curves

It is widely assumed that species show a unimodal, 
Gaussian response to environmental gradients (Jongman 
et al. 1995). However, there is evidence from several 
studies, that response curves are often skewed or mo-
notonous (e.g. Minchin 1989; Lawesson & Oksanen 
2002; Rydgren et al. 2003). Therefore, various methods 
for modelling different types of species response curves 
are applied (Guisan & Zimmermann 2000; Austin 2007). 
For presence-absence data, logistic regression models 
(= generalized linear models, GLM, with a logit link, 
McCullagh & Nelder 1989) are particularly adopted. 
Most commonly, monotone (sigmoidal) and symmetrical 
bell-shaped curves are modelled by using second order 
polynomials (e.g. Oksanen & Minchin 2002a; Gégout et 
al. 2003; Coudun & Gégout 2005). Generalized additive 
models (GAM, Yee & Mitchell 1991) and other non-
parametrical approaches (e.g. Kernel estimation: Gégout 
& Pierrat 1998) allow for various response shapes and 
are more descriptive of the data. Due to their ability to 
represent complex behaviours along gradients, they can 
also be used to find suitable parametric models (Guisan et 
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al. 2002). Huisman-Olff-Fresco (HOF) models (Huisman 
et al. 1993; Oksanen & Minchin 2002a) can be seen as 
an extension of parametric logistic regression modelling, 
allowing for a limited set of response shapes, including 
monotonic, plateau, symmetric and skewed response 
curves. HOF-models have been increasingly used in 
recent years (Lawesson & Oksanen 2002; Oksanen & 
Minchin 2002a; Rydgren et al. 2003). HOF models are 
applied in the present study as they provide parsimonious 
models, yet able to meet relevant theoretical considera-
tions about the nature of species responses along the pH 
gradient. Some of the sites investigated show extreme pH 
values as low as pH (CaCl2) 2.5. Thus, skewed responses 
representing a stronger limitation towards the extreme 
part of a gradient might occur as hypothesized by Austin 
(1990). Furthermore, ecophysiological evidence and the 
observed behaviour of some species suggest the existence 
of pH thresholds (triggered e.g. by Al-toxicity, Tyler & 
Falkengren-Grerup 1998), resulting in a plateau-like 
response shape. As opposed to non-parametrical models, 
HOF models provide the possibility to test statistically for 
these basic response types (e.g. symmetric vs. skewed, 
sigmoidal vs. plateau, Oksanen & Minchin 2002a).

Species optima and amplitudes

Apart from modelling continuous response curves 
along environmental gradients, species behaviour can 
be characterised more simply by the optimum and the 
environmental amplitude. Optima are derived either from 
unimodal response curves or, as a simpler approximation, 
by weighted averaging (ter Braak & Barendregt 1986; 
Jongman et al. 1995; Schaffers & Sýkora 2000). A similar 
approach to describe species behaviour along gradients 
is the well-known indicator value approach introduced 
by Ellenberg (see review by Diekmann 2003). 

Established parameters measuring species amplitudes 
are, in case of Gaussian response curves, tolerance (t) 
and range (2t) (ter Braak & Looman 1986; Jongman et 
al. 1995; Heegard 2002), where tolerance equals the 
standard deviation of the optimum. For other unimodal 
response models such as Gaussian logit curves, skewed 
or irregular shaped curves (modeled e.g. with GAM), t is 
not an appropriate measure (Heegard 2002). Therefore, 
Heegard (2002) introduced novel border parameters, but 
these are still applicable only to unimodal response types 
with a known optimum. Amplitudes used as properties 
in predicting specific environmental variables require a 
more general definition in order to include species with 
monotonous responses. Gégout & Pierrat (1998) propose 
a definition of species amplitudes which can also be 
applied to monotonous response shapes. The amplitude 
is defined by the part of the gradient containing 80% 
of the distribution of probability of presence. Austin 

et al. (1990) use an arbitrary threshold of probability 
of occurrence at P = 0.1 to define a “feasible qualita-
tive environmental realized niche” (QUERN). For an 
‘optimal’ QUERN a threshold of   = 0.7 is adopted. In 
the present study, two additional amplitude definitions 
based on different probability thresholds are tested. All 
these amplitude definitions provide an estimation of the 
preferred interval of a gradient independently of specific 
assumptions about species responses. 

Predicting environmental variables from vegetation

The indicator value methods use single values for 
each species, representing species optima. Environmental 
variables are predicted by calculating a weighted aver-
age of present species indicator values across samples 
(Gégout el al. 2003; Wamelink et al. 2005). As opposed 
to IV methods, maximum likelihood methods use the 
complete information of species response curves to 
predict environmental variables (Jongman et al. 1995; 
Gégout et al. 2003; Wamelink et al. 2005). 

Here, a novel approach of predicting environmental 
variables from species environmental amplitudes is in-
troduced. It is based on the assumption that the predicted 
value of an environmental variable must be an element of 
the intersection of species niches (cf. Zonneveld 1983). 
The niche referring to the variable under consideration 
is quantified by the lower and upper limits of the species 
amplitude. The part of the gradient where the intersec-
tion (or overlap) of amplitudes of all present species is 
maximised is taken as the predicted value (Fig. 1).

In particular, this study deals with the following 
questions: 1. Can species amplitudes improve prediction 
of pH in forest soils compared to established indicator 
value and maximum likelihood methods? 2. Which 
definitions of species amplitudes are appropriate? 3. Is 
prediction success influenced by an uneven distribution 
of the predictor variable along the gradient? The ques-
tions are approached by comparing prediction success 
based on three different amplitude definitions with those 
of established methods by using explained variance (R²) 
and root mean square errors of prediction (RMSEP).

Fig. 1. pH prediction with the amplitude overlap (AO) 
method.
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Material and Methods

Study area

The study area is located in NW-Germany within 
a radius of 50 km around the city of Oldenburg (53° 
09' N, 8° 12' E). Sample plots were placed in stands of 
semi-natural deciduous forests, predominantly ancient 
woodlands. Dominant tree species are Quercus robur, 
Carpinus betulus, Fagus sylvatica, Fraxinus excelsior 
and Alnus glutinosa. Soil substrate is mainly ground 
moraine boulder clay (Saale period), more or less cov-
ered by sand layers, or clay (‘Lauenburger Ton’). Soil 
types are podzols, pseudogley and gley soils, including 
intermediate types. 

Data sets

The training data set consists of 558 phytosociological 
relevés, mostly unpublished data (collected 1996-1998), 
except 93 taken from Huntke (2002). The evaluation data 
set comprises 151 unpublished relevés from the same 
region (but different locations), collected between 2003 
and 2005. Thus, the evaluation data set is completely 
independent of the training data set and is not a random 
subset. Although both data sets cover nearly the same 
range of pH gradient (Table 1), 14 modelled species are 
completely absent in the evaluation data set, due to local 
distribution patterns. Likewise, other species occurring in 
the evaluation set have not been modelled due to absence 
or low prevalence in the training data set.

The sampling design was preferential and aiming to 
cover the major gradients (dry - moist, base-poor - base-
rich). Plot sizes were mostly between 100 and 200 m² 
(median 150 m², interquartile range 100 - 200 m²). 
Species presence/absence data were used as dependent 
variables in the analyses.

To test for effects of uneven distribution of pH values 
across the training data set, a second reduced data was 
created (see Table 1). For this purpose, the pH gradient 
was partitioned in seven classes with a class width of 
0.5 pH, except for class seven including all pH > 5.5. In 
the full data set, there is a considerable accumulation of 
samples at pH values < pH 4.0. In the stratified, reduced 

data set, for each of the pH classes < pH 4.0, the sample 
size was limited to 55 randomly selected plots, resulting 
in an overall sample size of 312 plots. Thus, the uneven 
distribution of pH values could be widely reduced.

Soil samples were mixed from three to five subsam-
ples within the plot from the upper 10 cm of the mineral 
soil. pH values were measured in the laboratory in CaCl2 
(according to Schlichting et al. 1995). The range of pH-
values covers the whole extent of the pH gradient in 
woodland sites of the region. 

Response curve modelling

Response curves for 127 species of the understorey 
vegetation (vascular plants and epigeic bryophytes with 
at least ten occurrences in the training data set) were 
modelled  with Huisman-Olff-Fresco (HOF) models 
(Huisman et al. 1993). Calculations were performed 
with R 2.2.1 (Anon. 2005), using the ‘gravy’ package, 
v. 0.0-21 by J. Oksanen (Oksanen & Minchin 2002a, b). 
HOF models consist of a set of five hierarchical models 
(types I to V) of increasing complexity, involving one 
to four model parameters. Constant (type I), sigmoidal 
(type II), sigmoidal with plateau below P = 1 (type III), 
unimodal symmetric (type IV) and unimodal skewed 
(type V) response curves can be modelled and tested 
for significance. The selection of the best model was 
done according to the likelihood ratio test of residual 
deviance (χ2-method) with P = 0.05 (see Oksanen & 
Minchin 2002a). The function of the gravy package 
selecting the best model was slightly modified. Fitted 
type V models with identical signs of parameters b 
and c, resulting in a monotonic curve, were skipped in 
favour of the next less complex significant model. The 
same was done with type V and type III models showing 
extremely high coefficients (> 100), resulting in response 
shapes with very abrupt increases or decreases (absolute 
values of slopes converging to infinity) and peak-like 
maxima (cf. Zelený, unpubl. URL: http://sci.muni.cz/
botany/zeleny/selfish-hof.php). Model goodness of fit 
is expressed by Nagelkerke’s R² (R²N) as an analogous 
measure to the R² of least squares estimated regression 
models (Nagelkerke 1991).

Table 1. Distribution of plots in relation to pH.
 
    pH-class    Min. Max.
Data set ≤ 3 ≤ 3.5 ≤ 4 ≤ 4.5 ≤ 5 ≤ 5.5 ≤ 6.1  

Training data sets:         
Full data set 149 193 69 56 47 31 13 2.5 6.1
Reduced data set 55 55 55 56 47 31 13 2.5 6.1

Evaluation data set 36 30 14 18 15 26 12 2.5 5.9

http://sci.muni.cz/botany/zeleny/selfish-hof.php
http://sci.muni.cz/botany/zeleny/selfish-hof.php
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Defining amplitudes

Different methods of defining species amplitudes were 
tested. The first two are based on probability thresholds 
used in predictive modelling (see Liu et al. 2005). A.prev 
is the pH-amplitude where the predicted probability of 
occurrence exceeds prevalence, i.e. a priori probability 
(= proportion of observed occurrences in the data set). 
A.kappa is defined by the threshold for predicted prob-
ability resulting in a maximum of Cohen’s κ (Cohen 1960). 
For this, κ-values for an array of thresholds with 0.01 pH 
resolution within the observed pH range were calculated 
and the threshold yielding the maximum κ-value was taken 
as the classification cut value. The derived amplitude can 
be interpreted as the part of the gradient with a maximum 
prediction success compared to a random distribution 
for the given prevalence of the species. A.area defines 
the pH-amplitude comprising 80 % of the area under the 
response curve (Gégout & Pierrat 1998; Coudun & Gégout 
2005). All amplitude calculations have an accuracy of 
0.01 pH units.

Prediction methods

Predictions derived from species amplitudes are based 
on the maximum amplitude overlap method. For a given 
species composition, amplitudes of present species are used 
to sum up all species predicted to be present for a certain 
pH value. The pH with a maximum of predicted species is 
the predicted pH (Fig. 1). The calculations were performed 
for a pH scale with a step width of 0.05 pH units. In cases 
with more than one pH-value yielding the maximum species 
number, the mean of all values reaching the maximum was 
taken as the predicted pH. The predictions were calculated 
for the three different amplitude definitions (AO.prev, 
AO.kappa, AO.area method). For comparison, various 
established calibration procedures were performed. Maxi-
mum likelihood predictions (ML method; Jongman et al. 
1995; Gégout et al. 2003; Wamelink et al. 2005) based upon 
present and absent species require fitted response curves 
for all the species. A probability (likelihood) of observing 
a certain pH-value for a given combination of present and 
absent species can be calculated by:
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The pH that maximises the likelihood is the predicted 
pH-value (ML-p/a method, ‘full’ method sensu Wamelink 
et al. 2005). The likelihood based on present species 
only is calculated accordingly (ML-p method, ‘present’ 
method sensu Wamelink et al. 2005):
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The maximum likelihood estimation was performed 
with the nlm function in R 2.2.1.

Prediction by weighted averaging was carried out 
by first calculating indicator values of each species, us-
ing presence/absence data according to Jongman et al. 
(1995). The predicted pH value is the mean indicator 
value calculated from the indicator values of the species 
present (IV-wa method). Due to double averaging, IV-
wa predictions lead to a compression of the predicted 
pH values. To account for this, pH values were rescaled 
using linear regression as described by ter Braak & van 
Dam (1989) and Wierda et al. (1997).

Additionally, mean indicator values were also calculated 
using the R (soil reaction) indicator value of Ellenberg et 
al. (1992) (IV-e method). Observed pH values and mean 
soil reaction values often show a curvilinear relationship 
(Ertsen et al. 1998; Diekmann 2003). To transform mean R 
value (mR) to pH scale, non-linear regression was applied 
according to Ertsen et al. (1998). 

Predictions are evaluated using two quality measures, 
the squared linear correlation coefficient (R²), and the root 
mean square error of prediction (RMSEP). The RMSEP 
is the square root of the mean of all squared differences 
between observed and predicted pH (see Gégout at al. 
2003; Wamelink et al. 2005). The R² expresses a linear 
relationship between predicted and observed values 
independently of the scale of predicted values. For the 
sake of comparability, RMSEP values require identical 
scales. Thus, prediction results based on Ellenberg’s 
ordinal indicator values cannot be compared to the oth-
ers using RMSEP, unless transformed to the pH scale by 
regression (see above). 

Results

The prediction success of the models derived from 
the stratified data set did not generally improve compared 
to the full data set with uneven sampling (see below, 
Table 2). Thus, the results of the reduced data set are 
not shown in detail. If not stated otherwise, the results 
refer to the full data set.

Response curves and species amplitudes

The 127 modelled species show all response shapes 
HOF models allow for (Fig. 2, App. 1). Eight species are 
indifferent (type I, Fig. 2a); all other species are signifi-
cantly related to pH. 79 models (62%) have sigmoidal 
(type II, cf. Fig. 2b,c and type III, cf. 2d) curves, 59 
with an increasing and 20 with a decreasing response to 
increasing pH. All Type III models (48) have plateaus 
at high pH values. 40 species (31 %) have unimodal 
response curves, with 31 species (24%) displaying sym-
metric (type IV, cf. Fig. 2e) and nine species (7%) show-
ing skewed (type V, cf. Fig. 2f) responses. All species 
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with a skewed response show a steeper decrease towards 
more acid soil conditions (cf. Fig 2f). 

Model goodness of fit (R²N) of type II to type V 
models range from below 0.1 to 0.72, with model R²N 
of 100 species exceeding 0.1 and 45 species exceed-
ing 0.3. Type III models with mean R²N of 0.36 yield 
a significantly (Behrens-Fisher-Test, P < 0.01) higher 
proportion of explained variance than model types II, IV 
and V with mean R²N of 0.19, 0.18 and 0.18, respectively. 
Model parameters, variance explained (R²N) and species 
amplitudes are given in App. 1. 

The width of species amplitudes depends on ampli-
tude definition, prevalence and position on the gradient 
(App. 2). A.kappa yields amplitude widths with the great-
est variance and results in very small amplitude widths 
for a number of species (mean = 1.48, SD = 0.84, models 
type I omitted, cf. App. 2). As opposed to that, A.prev 
shows a high mean amplitude width (mean = 1.85, SD 
= 0.71). A.area results in intermediate mean amplitude 
widths with a relatively small variance (mean = 1.67, SD 
= 0.58). Contrary to this general pattern, type III models 
yield narrower A.area widths than A.kappa and A.prev 
(cf. Fig. 2d), due to steep slopes occurring in the plateau 

response curves. There is a clear tendency for ampli-
tudes to increase with prevalence, especially for A.area 
(Spearman’s ρ = 0.71, P < 0.001). This effect is weaker 
concerning A.kappa (0.56, P < 0.001) and A.prev (0.29, 
P = 0.001). The deviances between amplitude widths of 
different definitions are more pronounced in species with 
high prevalences. Position on the gradient influences am-
plitude widths in so far as species with positions near the 
lower end of the gradient have much narrower amplitudes 
than those with intermediate or high gradient positions. 
This applies to all amplitude definitions, but especially to 
A.prev and, to a lesser extent, to A.kappa. Species with 
high positions on the gradient do not generally yield nar-
rower amplitudes (with the exception of A.area), mainly 
due to the high proportion of type III models showing 
wide A.kappa and A.prev amplitudes.

Evaluation of pH predictions

Prediction methods differ in performance (Table 2), rang-
ing from 0.53 to 0.76 in explained variance and from 0.51 
to 1.05 in mean prediction error. Referring to the R²-values, 
ML-p, IV-wa and AO.kappa (full data set) and AO.prev, 
ML-p, IV-wa and AO.kappa (reduced data set) yield the 
best results for the evaluation data set. ML-p/a works well 
with the training data set , but performs considerably weaker 
when applied to the evaluation data set. IV-e, AO.area predic-
tions have intermediate performances. Referring to RMSEP 
values, the situation is partly different. Predictions with the 
smallest mean error are yielded by ML-p and AO.kappa with 
RMSEP of about 0.5 pH (full data set). Smallest mean errors 
derived from the reduced data set show ML-p, AO.kappa and 
AO.prev. All other methods result in predictions with mean 
errors exceeding 0.6 or even 0.7. Some insights into the rea-
sons for different performances can be derived considering 
Appendix 3. As indicated by the R²-values, ML-p, IV-wa, 
AO.kappa and AO.prev (reduced data set only) display the 
highest linearity between predicted and observed pH. Indica-
tor value (IV) predictions show a distinct compression with 
predicted values ranging only from ca. 3.0 to 4.5, which is 
reflected in the weaker RMSEP value. RMSEP of IV-wa im-
proves considerably after rescaling (0.57 vs. 0.75). A certain 
compression of the y axis can also be recognised regarding 
AO.prev. Methods showing an evident deviation from linear-
ity are especially IV-e with a curvilinear relationship, but also 
ML-p/a, AO.area and AO.prev (full data set only).

Performance of predictions derived from the reduced 
data set is weaker than that of predictions derived from 
the full data set, except for AO.prev. AO.prev predictions 
are significantly enhanced by a more balanced sampling 
structure, but a more even distribution of pH values does 
not generally lead to better predictions. Considering both 
quality measures, ML-p, IV-wa with rescaling, AO.kappa 
and AO.prev (reduced data set) show the best results.

Fig. 2. Response curves with amplitudes of selected species. 
HOF model type in brackets.
                 : A.prev               : A.kappa             : A.area. 
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Discussion

Response curves and gradient properties

The results confirm the variability in response shapes 
stated by previous studies (e.g. Oksanen & Minchin 
2002a; Rydgren et al. 2003). The relatively low propor-
tion of unimodal responses (31%) can be connected to 
gradient length (Lawesson & Oksanen 2002; Rydgren 
et al. 2003). While the lower end of the pH gradient in 
the present study (pH 2.5) approximately coincides with 
the lowest possible pH in woodland sites of central Eu-
rope, the upper end is truncated by the almost complete 
absence of calcareous soils. Thus, sites with pH values 
exceeding 6.0 hardly occur. Presumably for the same 
reason, skewed responses are rare in the data set, as 
opposed to other observations (Minchin 1989; Austin 
et al. 1994; Lawesson & Oksanen 2002). The fact that 
all skewed response curves are right-skewed supports 
the hypothesis of Austin (1990) that species display 
stronger limitations towards the extremes than towards 
the central portion of a gradient. Plateau responses are 
frequent (48) with a significantly better goodness of fit 
than all other model types. Therefore, plateau response 
models can be regarded as particularly suitable for many 
species to describe their occurrence along the pH gradi-
ent in the study area. 

Prediction success

The different prediction methods explain between 
0.53 and 0.76 percent variance soil pH with mean errors 
mainly between 0.51 and 1. Comparable studies from 
woodlands with data-based prediction methods report 
R²-values ranging from 0.15 to 0.47 and RMSEP from 
0.47 to 0.9 (Gégout et al. 2003; Gégout & Krizova 2003). 
Wamelink et al. (2005) present results from different pre-
diction methods derived at a broader scale. They report 
RMSEP values ranging from 0.6 to 1.3, depending on 
prediction method and region of evaluation data. 

Numerous studies contain correlations between 
mean Ellenberg’s R-value and pH measurements (see 

Diekmann 2003). In the present study, predictions from 
mean R-values (IV-e method) perform rather weakly. 
The results from the evaluation data set show that even 
using a non-linear regression to meet the weakness of 
a curvilinear relation between IV-e predictions and ob-
served values (see Schaffers & Sýkora 2003; Diekmann 
2003) is not a successful approach. Another prediction 
method showing a considerable decline in prediction 
success when applied to the evaluation data set is the 
ML-p/a method, apparently due to some differences in 
species composition between training and evaluation 
data set. Lack or low frequencies of modelled species 
in the evaluation data set leads to a shift towards lower 
predicted pH values, as plots with lower species richness 
tend to have lower pH values. The ML-p/a method will 
only yield good predictions, if the absence of species in 
the evaluation data can be really linked to pH. If species 
are missing for any other reason (dispersal, range, other 
vegetation types), the results can be misleading. Based 
on these considerations, the good prediction success of 
ML-p/a reported by Gégout et al. (2003) can be linked 
to the circumstance that the evaluation data set used was 
a random subsample of the whole data set. Wamelink et 
al. (2005) report a much weaker general performance of 
the ML-p/a method. Comparing the prediction success 
reported by Wamelink et al. (2005) to those yielded by 
the present study or by Gégout et al. (2003) and Gégout 
& Krizova (2003), respectively, reveals the tendency of 
better results from small study areas than from large ones. 
Likewise, training data sets comprising a wide range of 
vegetation types may result in weaker prediction success 
than those confined to certain types, e.g. woodlands. 

Amplitude overlap methods are  among the most ef-
fective prediction methods in the present study with the 
exception of AO.area (discussion see below). Nonethe-
less, a general weakness (also applying to IV methods) can 
be seen in that fixed univariate amplitudes do not account 
for possible interactions with other environmental factors 
(Pakeman et al. 2008). Otherwise, e.g. species amplitudes 
for pH should vary with water regime. Yet, one has to 
take into account that amplitudes and IVs are only simple 
approximations of species behaviour along a gradient and 

Table 2. Evaluation of pH predictions for different prediction methods. All correlations are significant at the P = 0.001 level.

Model  Models reduced data set   Models full data set
Data set training  evaluation training  evaluation
Prediction method R² RMSEP R² RMSEP R² RMSEP R² RMSEP

AO.prev 0.70 0.52 0.76 0.55 0.70 0.50 0.70 0.67
AO.kappa 0.72 0.46 0.72 0.54 0.73 0.43 0.75 0.52
AO.area 0.59 0.63 0.64 0.65 0.57 0.67 0.66 0.63
ML-p/a 0.71 0.50 0.58 0.73 0.76 0.42 0.64 0.70
ML-p 0.75 0.47 0.73 0.54 0.72 0.45 0.75 0.51
IV-wa 0.70 0.66 0.73 0.75 0.74 0.57 0.76 0.75
IV-wa (rescaled) 0.73 0.71 0.70 0.57 0.74 0.48 0.76 0.57
IV-e 0.64 - 0.67 - 0.60 - 0.68  -
IV-e (transformed) 0.69 0.49 0.66 0.60 0.70 0.44 0.57 0.69
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their advantage lies in this simplicity (straightforward, 
easy-to-use). More reliable predictions could possibly 
be achieved by maximum likelihood methods based on 
more complex multiple regression models accounting 
for different factors and their interactions (Jongman et 
al. 1995). This would also improve the general valid-
ity of the models beyond a regional scale. Predictions 
based on univariate models perform reasonably well 
within a certain region because they implicitly reflect 
interactions with other factors as characteristic landscape 
properties (cf. Austin 2005). Their performance, though, 
strongly depends on the existence of similar interaction 
patterns.

Species amplitudes

In the present study, amplitude definitions are tested 
on their ability to predict the pH value of a site with a 
given species combination. Thus, possible amplitude 
definitions were selected that maximise the prediction 
success based on modelled response curves. This is 
admittedly a rather heuristic approach, as theoretical 
considerations about species responses take a back seat. 
The suitability of an amplitude definition for calibration 
purposes requires a predictive performance as high as 
possible. Defined too broad, amplitudes might include 
parts of the gradient where the absence of a species is in 
fact more likely than its presence. This problem particu-
larly applies to A.area and A.prev (full data set). A.area 
definitions mostly lead to wider amplitudes compared 
to A.kappa, especially concerning species with high 
prevalence and unimodal response curves. As opposed 
to that, species with type III models almost completely 
show narrower A.area amplitudes. Both circumstances 
lead to a shift in amplitude overlap towards higher pH 
values between pH 2.7 and 4.5, resulting in a curvilinear 
relationship between predicted and observed values and 
weaker predictions (App. 3g). AO.prev (full data set) 
suffers from a similar distorting effect caused by the 
prevalence threshold applied. Because of oversampling 
at the lower part of the gradient, prevalence of species 
preferring high pH values is considerably reduced, 
leading to wide A.prev amplitudes. This means that the 
amplitudes of species with pronounced positions at the 
upper part of the gradient are extended towards lower 
pH values. Thus, A.prev amplitude overlap predictions 
shift towards lower pH values particularly in the mid-
dle and upper part of the gradient, resulting in a poor 
performance (App. 3e). This negative effect is more or 
less removed in the reduced data set, leading to better 
AO.prev predictions. In general, however, a more bal-
anced sampling cannot fully compensate for the loss of 
information by omitting 45 % of the plots. 

While A.area mainly depends on the shape of the 

response curve, the probabilistic approaches of A.kappa 
and A.prev additionally account for species a priori 
probability and error structure respectively (A.kappa), 
leading to a wide variation in amplitude widths. Thus, 
A.kappa and A.prev (even sampling provided) seem to 
be more effective in delineating that part of the gradient 
where the predictive significance of a species occurrence 
is maximised.

Application

With given species amplitudes derived from response 
curve modelling (App. 1), it takes nothing but a simple 
spreadsheet software to calculate pH predictions for given 
species assemblages. In this, the method is nearly as easy-
to-use as indicator value methods. An Excel-spreadsheet 
for pH prediction based on species amplitudes modelled 
in this study can be obtained from the author. Yet, the 
predictions are restricted to forest sites in comparable 
landscapes with a comparable species pool.
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App. 1. HOF model parameters of species’ response curves and boundaries of amplitudes along the pH gradient.

Species HOF                            HOF model parameters*                 A.kappa          A.prev              A.area
  model 
  type a b c d R2 lower upper lower upper lower upper

Acer platanoides I 2.7669  -   -   -  0.00 2.50 6.10 2.50 6.10 2.50 6.10
Acer pseudoplatanus II 0.5772 -1.3292  -   -  0.03 3.42 6.10 3.64 6.10 3.43 6.10
Adoxa moschatellina III 5.9726 -19.1640 -1.0579  -  0.55 3.61 6.10 3.56 6.10 4.10 6.10
Aegopodium podagraria IV -6.4899 9.4283 6.3059  -  0.28 3.95 5.93 3.92 5.97 4.18 5.71
Agrostis capillaris II 1.9992 8.5956  -   -  0.11 2.50 2.74 2.50 3.22 2.50 3.21
Agrostis stolonifera II 4.3568 -2.7484  -   -  0.06 4.35 6.10 3.90 6.10 4.20 6.10
Ajuga reptans III 5.9576 -18.3289 0.2752  -  0.36 3.91 6.10 3.59 6.10 4.14 6.10
Anemone nemorosa III 3.7195 -29.5875 -3.3527  -  0.48 3.01 6.10 3.13 6.10 3.57 6.10
Angelica sylvestris V -2.4278 8.5135 26.4243 61.2577 0.31 4.07 4.36 3.91 5.14 3.96 4.82
Athyrium filix-femina V -3.2118 3.5806 3.0349 13.4516 0.29 3.45 5.48 3.32 5.88 3.38 5.67
Atrichum undulatum  III 4.0825 -19.7064 0.8918  -  0.14 3.43 6.10 3.32 6.10 3.81 6.10
Betula pubescens II 1.9707 10.0449  -   -  0.13 2.50 2.84 2.50 3.19 2.50 3.10
Brachythecium rutabulum  IV -3.2046 6.6291 2.6350  -  0.06 3.34 4.83 3.27 4.91 3.05 5.12
Brachypodium sylvaticum III 6.2083 -16.7916 0.0264  -  0.42 3.91 6.10 3.70 6.10 4.25 6.10
Calamagrostis canescens I 2.9407  -   -   -  0.00 2.50 6.10 2.50 6.10 2.50 6.10
Cardamine amara II 7.0005 -6.3603  -   -  0.27 5.16 6.10 4.31 6.10 5.09 6.10
Cardamine flexuosa III 6.2341 -21.3336 0.5361  -  0.31 4.18 6.10 3.51 6.10 4.05 6.10
Cardamine pratensis III 8.2030 -19.2312 0.3931  -  0.43 4.32 6.10 3.86 6.10 4.42 6.10
Carex elongata II 6.2443 -4.8789  -   -  0.17 5.64 6.10 4.16 6.10 4.86 6.10
Carex pilulifera IV -2.9867 23.1638 3.1600  -  0.24 2.81 3.15 2.67 3.29 2.66 3.29
Carex remota IV -5.7521 5.4399 2.9699  -  0.24 4.03 6.10 3.73 6.10 4.14 6.10
Carex sylvatica III 6.8571 -18.9926 -0.7004  -  0.55 3.92 6.10 3.68 6.10 4.24 6.10
Carpinus betulus V -0.1264 1.3538 5.3860 60.0566 0.07 2.92 3.80 2.90 4.09 2.84 5.29
Ceratocapnos claviculata IV -2.7804 19.0802 2.5186  -  0.25 2.70 3.29 2.65 3.35 2.63 3.37
Chaerophyllum temulum III 6.0492 -15.5235 2.7347  -  0.15 4.26 6.10 3.74 6.10 4.28 6.10
Chrysosplenium alternifolium III 10.7341 -28.9432 0.5429  -  0.44 4.21 6.10 3.75 6.10 4.28 6.10
Chrysosplenium oppositifolium II 6.9673 -6.6935  -   -  0.30 5.01 6.10 4.32 6.10 5.11 6.10
Circaea lutetiana III 3.8116 -13.0311 -1.4218  -  0.46 3.41 6.10 3.51 6.10 4.02 6.10
Cirsium palustre III 7.3596 -17.3202 1.6297  -  0.26 4.02 6.10 3.84 6.10 4.41 6.10
Convallaria majalis IV -2.3213 6.6612 2.6174  -  0.04 3.38 4.29 3.12 4.55 2.84 4.83
Corylus avellana IV -2.3321 3.7342 1.2643  -  0.02 3.44 5.03 3.27 5.19 2.93 5.54
Crataegus laevigata III 4.1597 -17.0404 0.3579  -  0.22 3.85 6.10 3.40 6.10 3.91 6.10
Crepis paludosa III 9.3068 -21.0239 0.2364  -  0.48 4.11 6.10 3.92 6.10 4.47 6.10
Dactylis glomerata II 5.6190 -4.7998  -   -  0.18 4.98 6.10 4.12 6.10 4.81 6.10
Deschampsia cespitosa III 1.7975 -12.8512 -2.4960  -  0.30 3.21 6.10 3.28 6.10 3.63 6.10
Deschampsia flexuosa II -0.5462 18.7721  -   -  0.33 2.50 2.89 2.50 3.10 2.50 2.89
Dicranella heteromalla  IV -1.6743 10.3201 1.8609  -  0.13 2.92 3.31 2.62 3.61 2.53 3.70
Dicranum scoparium  II 0.5962 7.6359  -   -  0.17 2.50 3.07 2.50 3.28 2.50 3.34
Dryopteris carthusiana V -0.4502 4.1752 6.2160 74.0045 0.16 2.84 3.49 2.82 3.65 2.75 4.41
Dryopteris dilatata II -0.8175 5.1050  -   -  0.22 2.50 3.18 2.50 3.48 2.50 3.97
Epilobium angustifolium IV -3.9632 32.4952 5.8049  -  0.17 2.91 3.17 2.79 3.29 2.79 3.29
Epilobium montanum IV -5.3629 10.9898 7.5162  -  0.14 4.08 5.13 3.71 5.51 3.86 5.36
Epipactis helleborine IV -8.8536 12.5757 10.0531  -  0.30 5.08 5.33 4.25 6.10 4.61 5.80
Equisetum arvense IV -9.1064 15.1279 9.6684  -  0.31 4.60 4.87 4.00 5.47 4.21 5.26
Equisetum hyemale IV -3.6919 8.4608 5.7761  -  0.08 3.98 5.05 3.55 5.48 3.59 5.44
Euonymus europaea III 5.1367 -11.8659 -0.5286  -  0.44 4.11 6.10 3.80 6.10 4.38 6.10
Eurhynchium hians  IV -8.3645 14.2414 9.4876  -  0.27 4.70 4.81 3.98 5.53 4.19 5.32
Eurhynchium praelongum  III 5.5332 -16.2195 0.5888  -  0.30 4.02 6.10 3.62 6.10 4.18 6.10
Eurhynchium striatum  II 4.8177 -5.5469  -   -  0.29 4.92 6.10 4.08 6.10 4.75 6.10
Fagus sylvatica II -1.5746 2.5360  -   -  0.10 2.50 3.59 2.50 3.69 2.50 4.98
Festuca gigantea III 6.4383 -16.0192 0.1934  -  0.41 4.23 6.10 3.77 6.10 4.34 6.10
Filipendula ulmaria III 9.4698 -21.6232 -0.1687  -  0.54 4.21 6.10 3.91 6.10 4.46 6.10
Frangula alnus II 0.4874 9.7663  -   -  0.19 2.50 2.78 2.50 3.22 2.50 3.17
Fraxinus excelsior II 1.7695 -3.7741  -   -  0.19 3.81 6.10 3.68 6.10 3.89 6.10
Gagea spathacea III 10.1809 -37.1570 1.3869  -  0.25 3.63 6.10 3.46 6.10 4.00 6.10
Galeopsis tetrahit ag. V 4.1304 -35.2231 -1.7729 -3.1849 0.18 2.99 4.45 3.00 4.35 2.90 5.13
Galium aparine III 1.7672 -11.6106 -0.3147  -  0.11 3.33 6.10 3.32 6.10 3.65 6.10
Galium odoratum III 4.5949 -15.5321 -0.5649  -  0.39 3.62 6.10 3.52 6.10 4.05 6.10
Galium palustre III 7.9502 -20.4569 1.3915  -  0.29 4.15 6.10 3.77 6.10 4.32 6.10
Geranium robertianum III 4.1294 -12.3882 -0.5312  -  0.37 3.62 6.10 3.59 6.10 4.12 6.10
Geum urbanum III 5.4141 -14.4525 -1.2209  -  0.55 3.81 6.10 3.69 6.10 4.25 6.10
Glechoma hederacea III 11.3725 -39.9444 0.9990  -  0.32 3.51 6.10 3.50 6.10 4.03 6.10
Hedera helix V -2.3736 3.1130 0.6515 30.8932 0.11 2.75 4.09 2.78 3.94 2.61 5.13
Holcus lanatus I 3.6599  -   -   -  0.00 2.50 6.10 2.50 6.10 2.50 6.10
Holcus mollis IV -2.0094 6.3580 3.0085  -  0.02 3.32 4.52 3.16 4.68 2.87 4.97
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App. 1, cont.
Species HOF                            HOF model parameters*                 A.kappa          A.prev              A.area
  model 
  type a b c d R2 lower upper lower upper lower upper

Hypnum cupressiforme  II -0.0686 7.0342  -   -  0.21 2.50 3.18 2.50 3.33 2.50 3.48
Ilex aquifolium II -1.4293 4.8812  -   -  0.25 2.50 3.37 2.50 3.57 2.50 4.19
Impatiens noli-tangere III 2.9917 -17.2687 0.2026  -  0.13 3.32 6.10 3.28 6.10 3.71 6.10
Impatiens parviflora V 6.5838 -32.8827 0.0807 -5.3737 0.10 3.32 3.57 3.11 4.17 3.04 4.45
Iris pseudacorus IV -6.8487 9.9881 8.2630  -  0.24 5.00 5.45 4.11 6.10 4.52 5.92
Juncus effusus I 2.0614  -   -   -  0.00 2.50 6.10 2.50 6.10 2.50 6.10
Lamium galeobdolon ag. III 3.6704 -18.6167 -1.5012  -  0.39 3.31 6.10 3.31 6.10 3.78 6.10
Leucobryum glaucum  II -0.3034 17.0372  -   -  0.30 2.50 3.08 2.50 3.11 2.50 2.92
Listera ovata IV -6.5839 11.6275 7.6936  -  0.23 3.95 5.47 3.85 5.57 4.03 5.39
Lonicera periclymenum II -0.8084 2.4147  -   -  0.08 2.50 3.88 2.50 3.61 2.50 4.85
Lophocolea bidentata  I 3.1931  -   -   -  0.00 2.50 6.10 2.50 6.10 2.50 6.10
Luzula pilosa II 0.4030 2.7921  -   -  0.07 2.50 3.19 2.50 3.50 2.50 4.48
Lysimachia nemorum III 6.1136 -15.3636 0.9235  -  0.30 4.33 6.10 3.76 6.10 4.32 6.10
Lysimachia vulgaris IV -4.6391 9.2001 6.7967  -  0.11 4.11 5.36 3.71 5.76 3.88 5.60
Maianthemum bifolium V -0.8625 6.1255 1.5680 33.8196 0.21 2.72 3.29 2.65 3.51 2.55 3.92
Melica uniflora III 3.3717 -16.8341 0.6115  -  0.13 3.31 6.10 3.32 6.10 3.78 6.10
Mercurialis perennis IV -6.8525 12.2414 7.8031  -  0.23 4.33 4.98 3.83 5.48 4.01 5.30
Milium effusum III 2.0191 -29.4467 -2.4500  -  0.20 2.81 6.10 3.05 6.10 3.41 6.10
Mnium hornum  I -0.0933  -   -   -  0.00 2.50 6.10 2.50 6.10 2.50 6.10
Moehringia trinervia IV -3.0242 7.6392 3.1003  -  0.06 3.12 4.77 3.20 4.68 3.01 4.88
Molinia caerulea II -1.0752 22.1427  -   -  0.38 2.50 2.89 2.50 3.07 2.50 2.86
Oxalis acetosella V -3.3962 3.8954 1.7241 30.3263 0.18 2.81 4.98 2.91 4.31 2.77 5.27
Paris quadrifolia III 8.0125 -15.7151 1.2818  -  0.33 4.52 6.10 4.04 6.10 4.63 6.10
Phalaris arundinacea IV -8.5797 13.1451 8.8417  -  0.32 4.41 5.36 4.05 5.72 4.29 5.48
Phyteuma nigrum III 10.8281 -28.0498 1.2123  -  0.35 4.03 6.10 3.79 6.10 4.32 6.10
Picea abies II 0.3677 12.8057  -   -  0.23 2.50 2.88 2.50 3.16 2.50 3.02
Platanthera chlorantha III 7.9484 -20.3278 0.2129  -  0.45 4.22 6.10 3.77 6.10 4.33 6.10
Plagiomnium affine  III 15.6661 -54.7609 1.7296  -  0.27 3.89 6.10 3.51 6.10 3.86 6.10
Plagiomnium undulatum  III 7.8876 -22.0898 -0.3068  -  0.52 3.82 6.10 3.69 6.10 4.24 6.10
Poa nemoralis I 4.0037  -   -   -  0.00 2.50 6.10 2.50 6.10 2.50 6.10
Poa trivialis III 4.8959 -13.3064 -0.6158  -  0.44 3.81 6.10 3.67 6.10 4.23 6.10
Polygonatum multiflorum III 3.1717 -30.7037 0.5824  -  0.05 3.13 6.10 3.09 6.10 3.48 6.10
Polytrichum formosum  II -0.5455 4.6123  -   -  0.18 2.50 3.37 2.50 3.47 2.50 4.05
Primula elatior III 10.2346 -25.9685 -0.7808  -  0.64 3.81 6.10 3.81 6.10 4.35 6.10
Prunus avium I 3.5227  -   -   -  0.00 2.50 6.10 2.50 6.10 2.50 6.10
Pteridium aquilinum II 0.1370 15.4817  -   -  0.26 2.50 2.97 2.50 3.12 2.50 2.94
Pulmonaria obscura IV -7.4834 12.7941 6.9426  -  0.30 4.08 4.98 3.75 5.31 3.91 5.15
Quercus robur IV -3.2318 5.2028 -0.3764  -  0.10 2.61 4.37 2.75 4.22 2.50 4.76
Ranunculus auricomus ag. III 11.8737 -33.0122 -0.0041  -  0.53 3.81 6.10 3.73 6.10 4.24 6.10
Ranunculus ficaria III 6.0274 -17.7137 -2.6981  -  0.72 3.61 6.10 3.62 6.10 4.18 6.10
Ranunculus repens III 7.2820 -16.6325 0.1928  -  0.44 4.32 6.10 3.87 6.10 4.44 6.10
Rubus fruticosus ag. II -0.6811 3.2470  -   -  0.13 2.50 3.79 2.50 3.56 2.50 4.52
Rubus idaeus IV -1.9514 4.6897 -0.2721  -  0.10 2.52 3.77 2.50 3.91 2.50 4.55
Rumex sanguineus IV -7.2572 10.1754 7.0459  -  0.31 4.69 5.37 4.01 6.05 4.32 5.74
Sambucus nigra IV -3.3936 16.2347 5.3396  -  0.10 3.07 3.87 3.01 3.92 2.96 3.97
Sanicula europaea III 7.5529 -20.2471 0.9911  -  0.32 3.91 6.10 3.72 6.10 4.27 6.10
Scrophularia nodosa II 3.8272 -2.9134  -   -  0.08 4.89 6.10 3.89 6.10 4.21 6.10
Scutellaria galericulata IV -5.8559 11.7813 7.5137  -  0.15 4.19 4.89 3.70 5.38 3.85 5.23
Senecio sylvaticus IV -2.9618 14.8229 5.4964  -  0.07 3.28 3.78 3.02 4.03 2.95 4.10
Sorbus aucuparia II -1.3654 4.6480  -   -  0.23 2.50 3.37 2.50 3.57 2.50 4.24
Stachys sylvatica III 7.9529 -26.6316 -0.5644  -  0.54 3.51 6.10 3.53 6.10 4.07 6.10
Stellaria holostea III 0.8167 -11.1627 -1.5473  -  0.12 3.43 6.10 3.26 6.10 3.49 6.10
Taraxacum sect. Ruderalia II 3.9795 -2.7121  -   -  0.07 5.38 6.10 3.88 6.10 4.17 6.10
Thuidium tamariscinum  IV -5.1955 10.4081 6.1025  -  0.14 4.05 4.86 3.60 5.31 3.70 5.21
Trientalis europaea II 0.2139 14.5573  -   -  0.25 2.50 2.89 2.50 3.13 2.50 2.96
Urtica dioica III 2.5959 -8.3311 -0.7902  -  0.26 3.82 6.10 3.56 6.10 3.99 6.10
Vaccinium myrtillus II -1.6232 18.5497  -   -  0.41 2.50 2.99 2.50 3.15 2.50 2.98
Valeriana procurrens IV -8.2887 12.8624 8.7856  -  0.31 4.53 5.25 4.05 5.73 4.29 5.49
Veronica chamaedrys II 5.7815 -4.2692  -   -  0.13 5.20 6.10 4.09 6.10 4.71 6.10
Veronica montana III 7.0210 -16.4292 0.5477  -  0.38 4.53 6.10 3.84 6.10 4.41 6.10
Viburnum opulus IV -6.2135 11.1471 7.6553  -  0.19 4.45 5.02 3.83 5.65 4.02 5.46
Viola reichenbachiana III 5.2744 -14.9224 -0.2122  -  0.41 3.91 6.10 3.65 6.10 4.20 6.10

* pH values are rescaled by pH’=(pH-2.5)/3.6.
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App. 1-3. Internet supplement to: Peppler-Lisbach, C.  2008.
Using species-environmental amplitudes to predict pH values from vegetation
Journal of Vegetation Science, 19: 437-444. doi: 10.3170/2008-8-18394

App. 2. Amplitude width vs. species gradient position and prevalence (full data set).
(a) A.prev, (b) A.kappa, (c) A.area  Gradient position derived from species weighted averages. 
Gradient position classes [pH]: A: ≤ 3.5 ; B : ≤ 4.5 ; C : > 4.5;  Prevalence classes: 1: ≤ 0.2 ; 2 : ≤ 0.4 ; 3 : > 0.4
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App. 3. Predicted vs. observed pH values for different prediction methods (full data set)
(a) ML-p/a,  (b) ML-p, (c) IV-wa, (d) IV-e, (e) AO.prev, (f) AO.kappa, (g) AO.area


