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a b s t r a c t

Prior to making general inferences or predictions from habitat models, their generalizabil-

ity requires thorough assessment. However, systematic testing of model generality is often

claimed, but rarely done. We used existing models for phytophagous insects (grasshoppers

and leafhoppers) from a study on urban brownfields. Data for model building had been col-

lected in two major cities of Northern Germany, Berlin and Bremen. We transferred these

models to test data from another year (Bremen, 30 model transfers), and to test data from

different geographic regions (transfer from Berlin to Bremen and vice versa, 30 model trans-

fers). We evaluated discriminatory ability as well as model calibration for the test data. Most

transfers (28 in time, 27 in space) were successful, i.e. occupied sites within the test data

were assigned higher occurrence probabilities than unoccupied sites, the threshold inde-

pendent c-index for the test data exceeded chance. Our results indicated that models built

on the larger dataset (147 plots, Bremen) were more general than the ones basing on the

smaller dataset (89 plots, Berlin).

The overall good transferability had three important drawbacks: (1) models were mostly

not well calibrated to the test data, thus predicted occurrence probabilities may not be

used as absolute values, but as ordinal ranks. (2) Model fit to the test data often decreased

considerably compared to the training data. (3) Dichotomising occurrence probabilities to

presence/absence predictions required prior information about species prevalence. Assign-

ing presences to the sites with the highest predicted occurrence probabilities, with the

number of presences corresponding to the prevalence, proofed to be a comparatively simple

and reliable way of dichotomising predictions. Still, it only allowed predictions exceeding

chance for 19 model transfers in time and 23 transfers in space, and required information

about species’ prevalences.

We qualitatively compared pairs of models for 10 species, with one model basing on the

Bremen data, one on the Berlin data. Both models had been built with the same model-

ing technique. Vegetation structure variables were largely comparable between models. It
seemed that they were more directly related to species’ occurrences and thus more general

than landscape context variables and soil parameters.

© 2007 Elsevier B.V. All rights reserved.
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. Introduction

abitat models, also called species distribution models or
pecies–habitat relationship models, quantify species–habitat
elationships. Habitat models see increasing use in ecology
nd conservation biology (Guisan and Zimmermann, 2000;
aughan and Ormerod, 2005). The availability of satellite data
nd remote sensing techniques enables predictions of species
ccurrences over large areas. A commonly ignored draw-
ack is that models based on data from one study year or
ite (‘training data’) may lose most of their predictive power
hen applied to data from other years or different geographic

egions (Bulluck et al., 2006). Such failure might stem from
verfitting of the model to its training data as well as from
ifferent conditions experienced in new data (Vaughan and
rmerod, 2005). Even though it is often claimed that prior to

heir application, the validity of models beyond their training
ata needs to be tested with independent test data (Pearce
nd Ferrier, 2000b; Vaughan and Ormerod, 2005; Araujo and
uisan, 2006), this is rarely done. Internal validation (e.g. boot-
trapping) enables unbiased estimates of model performance
or the training data, but it cannot assess a model’s general-
zability, i.e. its capacity to predict a species’ distribution with
ew data from different regions or different years (Altman
nd Royston, 2000; Vaughan and Ormerod, 2005; Randin et al.,
006). Vaughan and Ormerod (2003) propose that independent
est data, collected from a geographically discrete region, are
he only valid test. Still, few studies systematically investi-
ate the generalizability of models (but see Bulluck et al., 2006;
leishman et al., 2003; Jensen et al., 2005; Randin et al., 2006).
t is common to split one data set in training and test data
o evaluate a model’s performance and generalizability (e.g.
yre et al., 2005). However, the significance of such tests may
ot exceed what could be achieved with internal validation as
ell. The generalizability of habitat models needs to be eval-
ated with respect to two aspects: (1) discrimination, and (2)
alibration (Pearce and Ferrier, 2000b).

Discriminatory power of a model is the capacity to distin-
uish occupied from unoccupied sites (Pearce and Ferrier,
000b). It can be evaluated by several threshold dependent and
hreshold independent measures. Threshold dependent mea-
ures require dichotomisation of a model’s quantitative output
probabilities of occurrence) into presences and absences
Fielding and Bell, 1997). The choice of the threshold largely
etermines the result. Sensitivity (the model’s ability to cor-
ectly predict presences), specificity (ability to correctly predict
bsences), and the overall correct classification rate (CCR) are
asy to interpret. However, they can be highly misleading if
hance is not considered. For instance, a model for a rare
pecies can achieve high correct classification if all sites are
redicted as absences (Olden et al., 2002). Such a model is of

imited use for ecological applications. In general, prevalences
ifferent from 0.5 allow high chance predictions. Thus, when
sing threshold dependent measures, it is necessary to assess

f a model’s predictions are better than what could be achieved
y chance alone (Vaughan and Ormerod, 2005).
Despite these threshold related problems, a common goal
n ecological applications is to produce presence/absence pre-
ictions, making the choice of a threshold unavoidable. During
4 ( 2 0 0 7 ) 104–114 105

model building, a threshold may be chosen based on the data
(Fielding and Bell, 1997). If a model is applied to new envi-
ronmental data, where nothing is known about a species’
presence or absence, this way of finding an optimal threshold
is not possible. Applying the ‘training threshold’ to new data
might be risky, in particular if prevalences differ between the
training data and the area where the model is to be applied.

The selection of one particular threshold tests accuracy
under only one scenario and thus limits the capacity to
describe generalizability (Pearce and Ferrier, 2000b). Thres-
hold independent, non-parametric correlation coefficients
like the c-index (equivalent to the AUC and the Wilcoxon
statistic) overcome this problem by making direct use of
the occurrence probabilities (Vaughan and Ormerod, 2005).
They compare the mean rank of occurrence probabilities for
occupied sites with those of unoccupied sites. The c-index rep-
resents the probability that the model assigns a higher proba-
bility of occurrence to a randomly chosen occupied site than to
a randomly chosen unoccupied one (Hanley and McNeil, 1982).

Model calibration addresses the numerical accuracy of pre-
dictions, i.e. if each predicted probability is an accurate
estimate of the likelihood of detecting a species at a given site
(Pearce and Ferrier, 2000b). Calibration can be split up into two
measurable components: bias and spread. Consistent over- or
underestimation (bias) typically results when a species’ preva-
lence differs from the training data (Pearce and Ferrier, 2000b).
Probabilities that are too extreme (spread), i.e. too low at unoc-
cupied sites and too high at occupied ones, indicate overfitting
(Vaughan and Ormerod, 2005). Even if a model successfully dis-
criminates new data, calibration might be poor (Vaughan and
Ormerod, 2005). This becomes a problem if maps with prob-
abilities of occurrence are produced, where, for example, an
estimated probability of 0.9 represents an actual probability
of only 0.6.

In this paper, we transfer habitat models for phytophagous
insects in time (data from 2 years) and space (data from dif-
ferent geographic regions). With these model transfers, we
address the following questions:

(1) Can species models from 1 year and region be used to pre-
dict species occurrence in another year and/or different
geographic region, namely:
• Are sites correctly ranked from unsuitable to suitable?
• Is it possible to apply a threshold that successfully sep-

arates occupied from unoccupied sites?
• Are transferred models well calibrated, allowing quan-

titative predictions of occurrence probabilities?
(2) Do data from different regions lead to similar models, if

the same modeling techniques are applied?

2. Methods

2.1. Habitat models, training data and test data

For this paper, we used existing habitat models for grasshop-

pers and leafhoppers (Orthoptera and Hemiptera: Auchen-
orrhyncha) in urban brownfields (Strauss and Biedermann,
2006). Models were available from two study areas in North-
ern Germany, Berlin (sampled in 2004) and Bremen (sampled
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Table 1 – Overview of model transfers

Training data Test data # of models Transfer

Bremen 2003 (157) Bremen 2004 (149) 30 Temporal
Bremen 2003 (157) Berlin 2004 (89) 10 Spatial, temporal
Berlin 2004 (89) Bremen 2003 (157) 10 Spatial, temporal

Berlin 2004 (89) Bremen 2004 (149)

Sample size in brackets.

in 2003 and 2004). These study areas are located at a distance of
300 km. In Berlin (52◦30′ N, 13◦28′ E, mean temperature 9.7 ◦C,
mean annual precipitation 560 mm), 89 plots had been set
up in a random stratified way, in Bremen (53◦05′ N, 8◦44′ E,
mean temperature 8.8 ◦C, mean annual precipitation 694 mm),
157 plots. For each species with a prevalence ≥ 10%, mod-
els had been built using logistic regression (i.e. generalized
linear models (GLMs) with a logistic link) and model aver-
aging (Burnham, 2002; Gibson et al., 2004b). Only monotonic
and univariate relationships were considered. Several ‘good’
models for a species had been weighted and averaged. Each
model entering the model averaging process consisted of one
to four environmental variables. This process resulted in aver-
aged models for 28 species in Berlin and 30 in Bremen. Details
on the model building process can be found in Strauss and
Biedermann (2006). For 10 species, models were available from
both study areas.

Environmental variables covered four main driving factors:
vegetation structure (e.g. several height and density measures
and litter cover), landscape context (proportions of different
brownfield types within different radii around the plots), soil
parameters (e.g. pH, available water capacity, soil nutrients),
and site age (for details, see Strauss and Biedermann, 2006).
Note that environmental variables approximately covered the
same ranges of values in both study areas. However, the dis-
tribution of values within the total range differed between
Bremen and Berlin.

We applied the habitat models to different test data
(Table 1). To test transferability in time, the Bremen models
were used on test data from the same plots, recorded in the
following year. Transferability in space we tested for the 10
species that had models for both study areas. Bremen mod-
els were applied to Berlin data, and vice versa. The transfers
from the Bremen 2003 models to the Berlin 2004 data and
from the Berlin 2004 models to the Bremen 2003 data repre-
sented transfers in both time and space. Such transfers might
be expected to lead to poorer models than transfer in time
only. All calculations were performed using Splus 6.1.

2.2. Assessing model discrimination

We assessed model discrimination by threshold-dependent (c-
index) and threshold-independent measures. A chance model
has a c-index of 0.5 (Hanley and McNeil, 1982). With small data-
sets and/or few observations, confidence limits grow large
(McPherson et al., 2004). We therefore performed a randomi-

sation test (Manly, 2001) to test if species occurrences were
associated with significantly higher predicted probabilities of
occurrence. The model’s predicted probabilities for the data
were randomly distributed over the sites and the c-index was
10 Spatial

calculated. This procedure was repeated 10,000 times to pro-
duce a null (or chance) distribution with a median of 0.5. If
a model’s c-index exceeded the 95%-percentile of this chance
distribution, we considered it to be significantly (p ≤ 0.05) dif-
ferent from chance.

We applied two methods to dichotomise predictions. First,
we used PKappa (threshold that maximizes Cohen’s Kappa) of
the original models (Liu et al., 2005). Second, we assigned
presence to the plots with the highest predicted occurrence
probabilities. The number of plots that was assigned presence
we chose to be the same as the observed number of presences
(prevalence based proportion of highest probabilities = pbp).
For a species with a prevalence of 30%, the 30% of plots with
the highest predicted occurrence probabilities were assigned
presence. Since models with high discriminatory power assign
the highest occurrence probabilities to occupied sites, we
expected this method to correctly classify a substantial pro-
portion of plots. The quality of dichotomised predictions we
assessed with four measures of agreement: sensitivity, speci-
ficity, CCR, and Cohen’s Kappa (Fielding and Bell, 1997). To
illustrate ‘chance’, we generated a chance distribution for each
of these measures: for each species, given its prevalence and
the number of plots, we randomly distributed the observa-
tions over the plots and calculated the measures of agreement.
This we repeated 10,000 times. The resulting chance dis-
tributions have a median corresponding to the prevalence
(for sensitivity), 1 − prevalence (for specificity), [prevalence ×
# of presences] + [(1 − prevalence) × # of absences] (for CCR)
(Fielding and Bell, 1997), and approximately 0 (for Kappa).
The 95%-percentiles depend on prevalence and sample size.
We considered the model to perform better (p ≤ 0.05) than
chance with the respective threshold if all measures of
agreement exceeded the 95%-percentile of their chance
distribution.

2.3. Assessing model calibration

For every model transfer, we calculated a calibration curve as
described by Pearce and Ferrier (2000b). It relates the logit-
transformed model predictions (ln[�i/(1 − �i)]) to the observed
presences/absences by means of logistic regression. In case
of a perfectly calibrated model, the resulting regression line
has an intercept of zero and a slope of one (Miller et al.,
1991). Transforming logits to probabilities results in curved
logistic lines (Fig. 1). Significant deviations from perfect cal-
ibration we tested with likelihood ratio tests (Pearce and

Ferrier, 2000b; Miller et al., 1991). Deviations of the inter-
cept from 0 indicate bias, with intercepts < 0 resulting in
predictions that are too high, and with intercepts > 0 giv-
ing too low predictions. Slopes > 1 result in predictions that
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Fig. 1 – Calibration curves, resulting from relating
logit-transformed model predictions to observed
occurrences by logistic regression. The example shows the
Bremen model for Chorthippus mollis and its transfer to
Berlin data. After transfer, significant bias is obvious:
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onsistent underestimate of occurrence probabilities, due to
n increase in prevalence from 39% (Bremen) to 81% (Berlin).

re too extreme, i.e. too low for probabilities < 0.5 and too
igh for probabilities > 0.5, indicating overfitting. The reverse
ccurs for slopes between 0 and 1. If slopes are < 0, the
verall trend of predictions is wrong with unoccupied sites
aving the highest predicted occurrence probabilities. Note
hat with slopes significantly different from 1, the intercept

erely describes the bias for p = 0.5 (Vaughan and Ormerod,
005).

.4. Qualitative comparison of models

or the 10 species that had models for both study areas, we
ualitatively compared these models. Model averaging, which
e had used for model building, considers a number of models

or each species and does not eliminate significant variables or
odels like, e.g. stepwise procedures. It also allows to assess

he weight of each variable within a species’ averaged model
Burnham, 2002). Thus, via the qualitative model comparison,
e could check if the same variables were important in both

egions. Moreover, we compared the functional form of the
elationships (Altman and Royston, 2000).

. Results

.1. Transfer in time

he detailed results for models transfers in time (transfer
f Bremen models 2003 to Bremen data 2004) are shown in

ig. 2. Numbers below the species name give prevalences: in
he case of Aphrodes makarovi, 28% in the test data and 15%
n the training data. The first black dot gives the c-index of
he model transfer: 0.57 for A. makarovi. This does not exceed
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the 95%-percentile of the null distribution generated by a
randomisation test. The span between the 50% and the 95%-
percentile of this null distribution is indicated by the solid
black line. The not successful transfer in terms of c-index
is indicated by the minus on top of the species column. For
the training data, the c-index was 0.88, shown as an open
circle. This far exceeded the 95%-percentile of the null dis-
tribution, the distance is shown as a dashed line. The next
pair of symbols represents Kappa for test and training data.
Again, the open circle represents the training data. In this case
of a threshold dependent measure, the black dot represents
Kappa for pbp, the ‘x’ for PKappa of the original model. The +
and − on top indicate that for PKappa, in A. makarovi, Kappa was
higher than chance (+, upper symbol), for pbp not higher than
chance (−, lower symbol). The next pairs of symbols represent
sensitivity, specificity and CCR in the same way.

Results of all species are summarized in Tables 2 and 3. For
28 out of 30 species, the c-index of the model transfer was sig-
nificantly better than chance. Most models assigned highest
occurrence probabilities to occupied test sites, with the excep-
tions of A. makarovi and Macrosteles cristatus. c-Index values
mostly decreased with model transfer (Table 3). Median of this
decrease (for the transfers with significant c-index) was −0.11
with a maximum of −0.3 and a minimum of +0.05. Apply-
ing a threshold caused difficulties. With the models’ original
PKappa-thresholds, dichotomised predictions exceeded chance
for only four models. Pbp performed better, 19 species mod-
els exceeded chance (these species’ names are printed in bold
in Fig. 2). For the models that could be successfully trans-
ferred using pbp, Kappa decreased considerably (median of
difference: −0.19).

Most models partly lost their calibration when transferred
in time (Table 2). About half of the models showed significant
spread (slope of calibration curve differs from 1) with new data.
However, for models that could be successfully transferred
using pbp, only 6 out of 19 exhibited significant spread. For the
two species where the c-index was not significant, the slope of
the calibration curve was < 0. This indicates that the overall
trend of probabilities was wrong with high predicted occur-
rence probabilities where observed probabilities were low and
vice versa. The other slopes different from 1 were between 0
and 1, indicating overfitting. Most models showed significant
bias (intercept different from 0). This could mostly be traced
back to differences in prevalence. If prevalence decreased with
respect to the training data, the intercept was < 0, resulting in
consistent overestimation of occurrence probabilities. Where
prevalences were similar, intercepts were not different from 0
(e.g. Oedipoda caerulescens, Neophilaenus minor). For only three
species (O. caerulescens, N. minor, Rhopalopyx vitripennis), models
were well calibrated to the test data.

3.2. Transfer in space

Details of model transfers in space are given in Fig. 3. Trans-
fers in space worked well for 9 out of 10 species regarding
the c-index (Table 2). Transfer of the model for Doratura homo-

phyla failed for all test data and models. Overall, transfer in
space worked better from Bremen to Berlin than vice versa:
c-index decrease was minor for the transfer of Bremen mod-
els to Berlin data (median −0.04), but larger for the transfer
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Table 2 – Results of model transfers: discrimination and calibration with test data

Discrimination (‘discr.’): threshold independent c-index (first column, non-significant values marked grey), threshold dependent measures with
PKappa (second column), and with pbp (third column). + indicates that all four criteria (sensitivity, specificity, CCR, Kappa) exceed chance.
Calibration (‘cal.’): intercept (bias, first column) and slope (spread, second column), + indicating no significant deviation from 0 (intercept) and
1 (slope).

Table 3 – Overview of model discrimination for training data (‘Train.’) and test data (‘Test’), and difference (‘Diff.’) of model
performance between training and test data

Transfer c-index Kappa (pcrit = pbp)

# Train. Test Diff. # Train. Test Diff.

Bremen’03 → Bremen’04
Med. 28 0.89 0.76 −0.11 19 0.64 0.41 −0.19
Min. 0.81 0.60 −0.30 0.46 0.25 −0.42
Max. 0.98 0.96 0.05 0.69 0.58 −0.07

Bremen’03 → Berlin
Med. 9 0.89 0.85 −0.04 9 0.64 0.41 −0.25
Min. 0.82 0.72 −0.19 0.46 0.24 −0.42
Max. 0.91 0.90 0.03 0.68 0.57 0.08

Berlin → Bremen’03
Med. 9 0.93 0.72 −0.17 8 0.68 0.34 −0.33
Min. 0.83 0.63 −0.31 0.58 0.15 −0.66
Max. 0.94 0.85 −0.06 0.81 0.60 −0.07

Berlin → Bremen’04
Med. 9 0.93 0.72 −0.22 6 0.71 0.34 −0.33
Min. 0.83 0.61 −0.31 0.58 0.18 −0.63
Max. 0.94 0.85 −0.06 0.81 0.46 −0.18

Median, minimum and maximum values for c-index and Kappa (threshold = pbp). Only successfully transferred models are presented (# =
number of models).
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Fig. 2 – Model transfer in time. Discriminatory ability assessed by the threshold independent c-index, and threshold
dependent Kappa, sensitivity, specificity and CCR. Measures for model transfer (x for PKappa, black dots for pbp), and for
original models (open circles). Chance distributions (50–95%-percentiles) for each measure are indicated by black bars. +/−
on top of each measure indicate whether the model transfer is better than chance predictions. The upper row represents
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Kappa, the lower pbp. Numbers under the species names giv
xplanations.

f Berlin models to Bremen 2003 data (−0.17) and Bremen
004 data (−0.22) (Table 3). For the Bremen’03 → Berlin’04
ransfer, all species with significant c-index also reached sig-
ificant dichotomised predictions with pbp as a threshold,
ven though Kappa decrease was considerable (median differ-
nce −0.25). For the Berlin’04 → Bremen’03 transfer, 8 species

eached significant 0/1 predictions, for Berlin’04 → Bremen’04,
species. PKappa of the original models performed poorly as a

hreshold, even though for one species (Athysanus argentarius)
t performed better than pbp.
evalences for test/training data. See text for further

Like discrimination, calibration of the Bremen → Berlin
transfer was better than vice versa. In the first case, six
models showed no significant spread, in the latter one model
(2003 data) and three models (2004 data). D. homophyla cal-
ibration curves had slopes < 1 in two cases. This enhances
that models for this species could not be transferred in space,

which had already been indicated by the lack of discrimi-
natory power. Most models showed bias with the test data,
reflecting differences in prevalence. C. mollis is an example
for the resulting consistent underestimate of occurrence
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spa
Fig. 3 – Model transfer in

probabilities in case of prevalence increase (Fig. 1). Only two
models were overall well calibrated to the test data for the
Bremen’03 → Berlin’04 transfer (Athysanus argenarius, Ophiola
decumana), none for Berlin’04 → Bremen’03, and one model
for Berlin’04 → Bremen’04 (Euscelis incisus).

3.3. Qualitative comparison of models
The qualitative comparison of Berlin and Bremen models
revealed that, regarding the main driving factors, only veg-
etation structure appeared in all model pairs (Fig. 4). Age
was in both models for three species, landscape context
ce. For details, see Fig. 2.

for five and soil parameters for four. Since soil parameters
in the models differed between the two study area mod-
els for all species, comparison was not possible for these
parameters. Investigation of the shape of response curves
showed no case of opposite influence of one parameter on
a species in either study area. In some cases however (e.g.
vegetation height for Cicadula quadrinotata), one relationship
was unimodal and the other monotonic. Overall, vegeta-

tion parameters largely agreed between models, even though
variable weights usually differed. In contrast to this, for land-
scape context, mostly different parameters entered into the
models.
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Fig. 4 – Qualitative comparison of models based on Berlin (Be) vs. Bremen (Br) data. Main driving factors in bold. Numbers
indicate variable weight [%], symbols illustrate the functional form of the relationship between species and variable: (u)
unimodal (bell shaped); (−) monotonic, decreasing; (+) monotonic, increasing. If a species showed different reactions to one
variable complex (e.g. vegetation density: + for density at the 0–5 cm height, u for density at the 25–50 cm height), all are
listed. Black frames indicate a variable or variable complex to be present in both models, grey background indicates
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. Discussion

.1. Model discrimination – c-index

t seems that the majority of habitat models tested in this
tudy are general in the sense that they successfully rank
est sites from suitable to unsuitable. Models for both taxa
grasshoppers and leafhoppers) could be transferred equally
ell. However, the limited number of grasshoppers (five

pecies) does not allow to detect possible differences between
he taxa. Fifty-seven of 60 transfers achieved a c-index exceed-
ng chance. Forty-five transfers (75%) reached c-values ≥ 0.70.
his is considered as ‘good’ discrimination by Hosmer and
emeshow (2000), and Randin et al. (2006) require a c-index
f 0.7 for model transferability. In comparison to our results,
ulluck et al. (2006) found only 56% of their breeding bird mod-
ls to reach c-indexes ≥ 0.70 when transferred to new data
n time or space. Randin et al. (2006) achieved sufficient spa-
ial transferability for less than half of their models for alpine

lant species. This suggests our models to be robust and gen-
ral, indicating that model averaging might lead to more stable
odels than stepwise procedures. The modelling technique

howed an influence on model transferability in previous stud-
ers because no species reacted to the same soil parameters

ies (Randin et al., 2006; Araujo and Guisan, 2006). However, a
clearly superior method leading to transferable models has
not yet been identified.

Despite the overall good transferability, model transfer
mostly went along with a loss of accuracy. This loss was
not necessarily larger for transfer in space than for trans-
fer in time, since models could be transferred better from
Bremen to Berlin than from Bremen 2003 to Bremen 2004
regarding the c-index. Bulluck et al. (2006) found in their
study as well that some transfers in space worked better
than those in time. Possibly, the Bremen 2004 test data were
unusual, being affected by the exceptionally hot and dry sum-
mer of 2003. This assumption is supported by the fact that
Berlin 2004 models could be transferred more successfully
to Bremen 2003 than to Bremen 2004 data. Thus, transfer in
space and time did not lead to poorer results than transfer
in space or time only. Jensen et al. (2005), who extensively
tested model transfer in time for the blue crab Callinectes
sapidus, found that some years showed unique habitat rela-
tionships that were not well predicted by models from the

other years. The comparison between the years showed that
there can be enormous differences in species prevalence,
particularly in dynamic habitats like brownfields. Predictive
habitat models are generally static (Bulluck et al., 2006; Guisan
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and Zimmermann, 2000), i.e. not explicitly considering popu-
lation dynamics or dispersal. Even though modelling species
in disequilibrium using such static models is problematic
(Gibson et al., 2004a), and theories based on equilibrium might
be inadequate for urban communities (Rebele, 1994), mod-
els from 1 year were mostly valid in the next and in another
region.

A closer look at which species models transferred worse
than others reveals that low c-values might be associated
with eurytopic species. None of the species considered eury-
topic (A. makarovi, Chorthippus biguttulus, Javesella pellucida and
Philaenus spumarius) (Detzel, 1998; Nickel, 2003) reached a c-
index ≥ 0.7. It seems reasonable that habitat generalists do
not exhibit strong species–habitat relationships. If strong rela-
tionships are found for such species, they might be an artifact
within a particular dataset. In fact, none of these species,
though present, had shown significant relationships in the
Berlin dataset. Investigations on the relation between species
properties (biological traits) and model transferability might
be able to reveal more general patterns (Randin et al., 2006).

Model transfer from Bremen to Berlin worked better than
vice versa. Randin et al. (2006) suggest such asymmetrical
transferability to be caused by differences in the width of
environmental ranges or in species abundances. In our case,
however, environmental ranges had comparable widths, and
abundance differences did not seem to produce particularly
asymmetric values for the c-index. Thus, it seems likely that
the Bremen models, based on a larger dataset of 147 plots,
were more general than the Berlin ones (based on 89 plots).
Harrell et al. (1984) found that smaller training samples had
an apparent higher quality, but a large loss in quality when
applied to test data. The opposite was true for large training
samples. McPherson et al. (2004) obtained best models for very
large sample sizes (300–500), Pearce and Ferrier (2000a) recom-
mend sample sizes of > 250. In this light, the Berlin dataset in
particular might have been too small to build general models.
Considering these results it seems desirable to base models
on large datasets. On the other hand, test datasets as well
require a certain size, Vaughan and Ormerod (2005) suggest
200. This is particularly important for rare species, since oth-
erwise the c-index cannot be calculated reliably (McPherson
et al., 2004). Pearce et al. (2001) required sufficient evaluation
data to have at least nine species records. Since sample sizes
for labor intensive field data are usually restricted by logistic
constraints, available money and manpower, it will be diffi-
cult to follow these recommendations in practice. Our results
indicate that also sample sizes of 150 lead to general models,
even though larger samples might allow even better results.

An interesting finding was that those species that made
models in both study areas could be transferred better in
time than the others. The fact that they exhibited statistically
strong relationships to the measured environmental factors
in both regions might indicate that they show stable, general
relationships to these factors.

4.2. Model calibration
Models applied to new data hardly ever showed good calibra-
tion. Considerable bias was fully expected, since prevalences
between training and test data differed on a large scale (Pearce
2 0 4 ( 2 0 0 7 ) 104–114

and Ferrier, 2000b; Vaughan and Ormerod, 2005). Bremen mod-
els applied to Berlin showed less spread than the other way
round. Since spread indicates overfitting, this is another hint
that Berlin models might have had a stronger tendency to be
overfitted to their small dataset.

The consequence of these findings is that predicted occur-
rence probabilities cannot be used in a quantitative way since
they do not express the true probability of a site as being occu-
pied. Sites are ranked according to their relative probability
of being occupied, thus predictions are ordinal rather than
quantitative. They should be displayed as ranked categories
to avoid quantitative interpretation (Vaughan and Ormerod,
2005). If poor calibration of a model is due to a subset of plots
for which the model can not be transferred well, such plots can
be identified and restrictions placed on the model’s use (Miller
et al., 1991). In general, intercept and slope of the calibration
curve can be used to adjust model predictions (Steyerberg et
al., 2003). Such fine-tuning leads to a better model adjustment
to the local circumstances of the test data, but not necessarily
to a more general model. Thus, this method should be used
with caution (Miller et al., 1991).

4.3. Dichotomising predictions

Converting occurrence probabilities into presences/absences
raises the problem of finding an optimal threshold. When
applying models to new environmental data, this problem
cannot be overcome without information of the species’
prevalence. We clearly showed that using the training data’s
threshold was doomed to failure since models were mostly
poorly calibrated to new data. This resulted in consistent
over- or underestimation of occurring probabilities, making
the original threshold useless. In some studies, a new optimal
threshold was calculated for the test data (e.g. Eyre et al., 2005;
Schröder and Richter, 1999/2000). This allows assessment of
model transfer to the test data. However, it does not give any
hint on what threshold should be used with new data, where
true species presence/absence is not known, but to be pre-
dicted with the model. If it is possible to gain information on
the species prevalences within the area where a model is to
be applied, pbp is a promising alternative to defining thresh-
olds, at least for the majority of species. Before relying on
it, this should probably be verified with more than one set
of test data. If information on prevalence is not accessible,
there does not seem to be much point in dichotomis-
ing occurrence probabilities since misclassifications are
likely.

4.4. Qualitative comparison

Comparing the models for Bremen and Berlin allowed a deeper
insight into the question why model transfers might succeed
or fail. Parameters contained in both models are likely to have
a stable relationship to the species’ presence and can prob-
ably be generalised. Parameters that were in only one of the
models might have an indirect influence. The relationship to

the underlying direct variable might not be the same in other
datasets (Vaughan and Ormerod, 2003). This seems to be the
case with all soil parameters. Even though they might have
had considerable influence in one model, the same param-
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ters never went in the model for the other study area. In
he case of Doratura homophyla, this led to a model that could
e transferred in time (Bremen) but not in space. Landscape
ontext also showed large differences between models. Fisher
t al. (2005) note that research has rarely been undertaken
o test the assumption that the response to landscape struc-
ure from one area can be extrapolated to another. Purtauf et
l. (2005) believe that there is a high risk of artificial corre-
ations in hierarchical multi-scale landscape analyses when
cological data are related to the landscape context. Thus,
t might well be that species–landscape context relationships
re region specific. In our study this might stem from the fact
hat distribution of herbaceous and grassy brownfields dif-
ered considerably between the study areas, and moist to wet
rownfields were not present in Berlin. Overall, it seems likely
hat the vegetation structure variables have a more direct
elationship to species occurrences than the other variables
Strauss and Biedermann, 2006). Thus, their influence was
omparable between the study areas. This highlights that for
eneralizations on the species–environment relationship as
ell as for model transfer, models basing on direct parameters
re more suitable.

The overall trend that there were more variables in the
remen models was probably caused by the larger dataset.
ith more data, variables more easily exceeded the signif-

cance level. Therefore, differences between models did not
ecessarily result in poor transferability and might mainly be
ue to statistical reasons during the model building process.
eactions to vegetation structure were considerably similar in
oth cities. Since vegetation structure was the most important
riving factor, this probably enabled the good overall trans-
erability. Some species exhibited responses that seemed to
e relocated (monotonic to unimodal and vice versa) between
he study areas. Even though this could be caused by incom-
lete stratification not covering the whole gradient (Vaughan
nd Ormerod, 2003), it seems more likely that: (1) there was a
rue difference in species reactions between the oceanic Bre-

en and the more continental Berlin or (2) differences were
ue to differences in data distributions. The ranges of values

minimum/maximum values) were comparable for all vari-
bles between the study areas, but data distribution within the
ange often differed, in particular for the landscape context
ariables.

In this context, when applying models in nature conserva-
ion practice, one has to keep in mind that models that proofed
o be transferable are only valid for data ranges present in the
est data until the model is tested under different conditions
Vaughan and Ormerod, 2003). Therefore, test sites should be
arefully selected, representing the full range of environmen-
al conditions present in the training data. This requirement
as met within our study, where all plots had been chosen

n a random-stratified design, covering the whole gradient of
rban brownfield stages.

. Conclusions
he vast majority of models tested in this study turned out to
e transferable to new data from different years and different
egions. However, some models could not be transferred at all
4 ( 2 0 0 7 ) 104–114 113

in time or space. This implies that generality always needs
to be tested if inference about general relationships is to be
drawn or models are to be applied on independent data. Both
temporal and spatial transferability should be tested, since
single years may exhibit unusual relationships. Certain factors
seem to enhance model generality: (1) Large sets of training
data. (2) Strong influence of direct variables within models.
(3) Species are not eurytopic. (4) Species show significant rela-
tionships to environmental variables in more than one study
area/dataset. It is likely that these general findings also hold
for other taxa.

Model accuracy usually decreases with model transfer.
Thus, models that do not fit their training data well should
not be transferred. On the other hand, well fitting models do
not necessarily transfer well. In most cases, model transfer
leads to poor calibration. Predicted occurrence probabilities
can therefore not be used quantitatively and should not be
presented as such, but as ordinal information on habitat
quality.

Dichotomisation of predictions should be avoided with-
out information about species’ prevalences. With prevalence
information available, the prevalence based proportion of
highest probabilities (pbp) allows classification with reason-
able accuracy.
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Stuttgart.

Eyre, M.D., Rushton, S.P., Luff, M.L., Telfer, M.G., 2005.
Investigating the relationships between the distribution of
British ground beetle species (Coleoptera, Carabidae) and
temperature, precipitation and altitude. J. Biogeogr. 32 (6),
973–983.

Fielding, A.H., Bell, J.F., 1997. A review of methods for the
assessment of prediction errors in conservation

presence–absence models. Environ. Conserv. 24 (1), 38–49.

Fisher, J.T., Boutin, S., Hannon, S.J., 2005. The protean relationship
between boreal forest landscape structure and red squirrel
distribution at multiple spatial scales. Landsc. Ecol. 20 (1),
73–82.



i n g

shortcomings in the field collection of training data. Conserv.
114 e c o l o g i c a l m o d e l l

Fleishman, E., Mac Nally, R., Fay, J.P., 2003. Validation tests of
predictive models of butterfly occurrence based on
environmental variables. Conserv. Biol. 17 (3), 806–817.

Gibson, L.A., Wilson, B.A., Cahill, D.M., Hill, J., 2004a. Modelling
habitat suitability of the swamp antechinus (Antechinus
minimus maritimus) in the coastal heathlands of southern
Victoria, Australia. Biol. Conserv. 117 (2), 143–150.

Gibson, L.A., Wilson, B.A., Cahill, D.M., Hill, J., 2004b. Spatial
prediction of rufous bristlebird habitat in a coastal heathland:
a GIS-based approach. J. Appl. Ecol. 41 (2), 213–223.

Guisan, A., Zimmermann, N., 2000. Predictive habitat distribution
models in ecology. Ecol. Modell. 135, 147–186.

Hanley, J.A., McNeil, B.J., 1982. The meaning and use of the area
under a receiver operating characteristic (ROC) curve.
Radiology 143 (1), 29–36.

Harrell, F.E., Lee, K.L., Califf, R.M., Pryor, D.B., Rosati, R.A., 1984.
Regression modeling strategies for improved prognostic
prediction. Stat. Med. 3 (2), 143–152.

Hosmer, D.W., Lemeshow, S., 2000. Applied Logistic Regression,
second ed. Wiley, New York.

Jensen, O.P., Seppelt, R., Miller, T.J., Bauer, L.J., 2005. Winter
distribution of blue crab Callinectes sapidus in Chesapeake Bay:
application and cross-validation of a two-stage generalized
additive model. Mar. Ecol. Progr. Ser. 299, 239–255.

Liu, C., Berry, P.M., Dawson, T.P., Pearson, R.G., 2005. Selecting
thresholds of occurrence in the prediction of species
distributions. Ecography 28 (3), 385–393.

Manly, B.F., 2001. Randomization, Bootstrap and Monte Carlo
Methods in Biology. Chapman and Hall, London.

McPherson, J.M., Jetz, W., Rogers, D.J., 2004. The effects of species’
range sizes on the accuracy of distribution models: ecological
phenomenon or statistical artefact? J. Appl. Ecol. 41 (5),
811–823.

Miller, M.E., Hui, S.L., Tierney, W.M., 1991. Validation techniques
for logistic-regression models. Stat. Med. 10 (8), 1213–

1226.

Nickel, H., 2003. The Leafhoppers and Planthoppers of Germany
(Hemiptera, Auchenorrhyncha). Patterns and Strategies in a
Highly Diverse Group of Phytophagous Insects. Series
Faunistica 28. Pensoft, Sofia.
2 0 4 ( 2 0 0 7 ) 104–114

Olden, J.D., Jackson, D.A., Peres-Neto, P.R., 2002. Predictive models
of fish species distributions: a note on proper validation and
chance predictions. Trans. Am. Fisheries Soc. 131 (2), 329–336.

Pearce, J., Ferrier, S., 2000a. An evaluation of alternative
algorithms for fitting species distribution models using
logistic regression. Ecol. Modell. 128 (2–3), 127–147.

Pearce, J., Ferrier, S., 2000b. Evaluating the predictive performance
of habitat models developed using logistic regression. Ecol.
Modell. 133, 224–245.

Pearce, J., Ferrier, S., Scotts, D., 2001. An evaluation of the
predictive performance of distributional models for flora and
fauna in north-east New South Wales. J. Environ. Manage. 62
(2), 171–184.

Purtauf, T., Thies, C., Ekschmitt, K., Wolters, V., Dauber, J., 2005.
Scaling properties of multivariate landscape structure. Ecol.
Indicators 5 (4), 295–304.

Randin, C.F., Dirnbock, T., Dullinger, S., Zimmermann, N.E.,
Zappa, M., Guisan, A., 2006. Are niche-based species
distribution models transferable in space? J. Biogeogr. 33 (10),
1689–1703.

Rebele, F., 1994. Urban ecology and special features of urban
ecosystems. Global Ecol. Biogeogr. Letters 4 (6), 173–187.
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