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The analysis of co-occurrence matrices is a common practice to evaluate community
structure. The observed data are compared with a ‘‘null model’’, a randomised
co-occurrence matrix derived from the observation by using a statistic, e.g. the C-score,
sensitive to the pattern investigated. The most frequently used algorithm, ‘‘sequential
swap’’, has been criticised for not sampling with equal frequencies thereby calling into
question the results of earlier analysis. The bias of the ‘‘sequential swap’’ algorithm
when used with the C-score was assessed by analysing 291 published presence-absence
matrices. In 152 cases, the true p-value differed by �/5% from the p-value generated by
an uncorrected ‘‘sequential swap’’. However, the absolute value of the difference was
rather small. Out of the 291 matrices, there were only 5 cases in which an incorrect
statistical decision would have been reached by using the uncorrected p-value (3 at the
pB/0.05 and 2 at the pB/0.01 level), and in all 5 of these cases, the true p-value was close
to the significance level. Our results confirm analytical studies of Miklos and Podani
which show that the uncorrected swap gives slightly conservative results in tests for
competitive segregation. However, the bias is very small and should not distort the
ecological interpretation. We also estimated the number of iterations needed for the
‘‘sequential swap’’ to generate accurate p-values. While most authors do not exceed a
number of 104 iterations, the suggested minimum number of swaps for 29 out of the
291 tested matrices is greater than 104. We recommend to use 30 000 ‘‘sequential swaps’’
if the required sample size is not assessed otherwise.
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Analysing co-occurrence data has become a common

practice in ecology to study the community structure

within single observations (Gotelli et al. 1987) as well as

to verify general ecological theories by using meta-

analysis of co-occurrence matrices (Gotelli and McCabe

2002). All these analyses require a randomisation of the

observed data, i.e. (0, 1)-matrices, to which the observed

pattern is compared. Although a number of different

null models is used to test different ecological hypotheses

(Gotelli (2000) compares nine different null models),

most authors use a variant of the null model proposed by

Connor and Simberloff (1979). It retains row and

column sums simultaneously to incorporate site effects

such as island size as well as rarity of species to account

for species dependent characteristics such as niche

breadth. Connor and Simberloff (1979) also used a third

constraint by restricting species occurrences to those

islands for which the total species richness fells within

the range occupied by the species. The basic assumption

of the null model methodology is, that if the observed

co-occurrence matrix differs by much with respect to a

certain pattern from the total set of unique matrices,
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then there is a structure which can be ecologically

interpreted. The investigated pattern is often sum-

marised within a single score (metric or test statistic)

which is extreme for structured matrices, e.g. if the

matrix is structured by an ecological mechanism. If this

score is not significantly different between the observed

matrix and the randomised matrices, no pattern can be

detected. For instance, to evaluate the co-occurrence

between species, the number of perfect checkerboard

pairs or the C-score (Stone and Roberts 1990) is used by

several authors (Wilson 1987, Feeley 2003). Since it is

only possible to calculate the total set for relatively small

matrices (as will be shown below), a randomisation

algorithm is applied to sample a subset of matrices,

which will then be compared to the observed matrix.

A valid randomisation algorithm has to sample all

matrices with fixed row and column sums at equal

frequencies. The choice of the randomisation algorithm

has been shown to influence the result of the study. In a

re-analysis of a presence/absence matrix from the

Vanuatu avian fauna, Sanderson et al. (1998) concluded

that the ‘‘results from previous studies are flawed’’ due

to an inappropriate randomisation algorithm. Gotelli

and Entsminger (2001) showed by using probability

calculations that the randomisation algorithm used by

Sanderson et al. (1998), the ‘‘Knight’s Tour’’, is biased

towards not sampling all matrices with equal frequen-

cies, which in turn has led to contradictory results. On

the other hand, the ‘‘sequential swap’’ algorithm is also

prone to sample matrices with unequal frequencies

depending on the observed matrix (Gotelli and

Entsminger 2001). This controversy about null models

has lead to publications reporting results using several

randomisation algorithms (Feeley 2003). Although

Miklos and Podani (2004) proposed a new unbiased

randomisation method, we suggest using the original

‘‘sequential swap’’ and performing a frequency correc-

tion afterwards as described by Zaman and Simberloff

(2002). The first method converges to the unbiased

uniform distribution, the latter uses a frequency correc-

tion i.e. ‘‘importance weighting’’ to eliminate the bias of

the sequential swap algorithm.

Another issue when applying a randomisation proce-

dure is the necessary size of the random sample of null

matrices needed for an analysis. Since the matrices

sampled by the ‘‘sequential swap’’ are not independent

of each other, this question is not straightforward.

Raftery and Lewis (1996) developed a procedure which

calculates the minimum number of required iterations to

estimate stable state probabilities of a Markov chain

which we apply to the randomisation of matrices.

The bias of the sequential swap and the necessary

number of swaps calculated by the procedure of Raftery

and Lewis (1996) is assessed using a large collection of

published presence/absence matrices.

Material and methods

Data

The applicability of null models and especially of the

‘‘sequential swap’’ has been discussed using the data set

of the Vanuatu avifauna (Diamond and Marshall 1979,

Wilson 1987, Stone and Roberts 1990). The p-value of

the C-score for this data set is calculated. To show the

relevance of the approach we use 291 published matrices,

collected by Patterson and Atmar (1986) and calculate

the p-values of the C-scores as well as their differences

obtained with and without a frequency correction of the

‘‘sequential swap’’.

Scores

We use the checkerboard score (C-score) to illustrate the

analysis (Roberts and Stone 1990). It measures the mean

number of pairs of species and islands with one species

occurring on one island only and the second occurring

on the second island only. The number of checkerboards

involving species i and j can be calculated as follows:

Cij�(ri�Sij)(rj�Sij): (1)

Where ri is the sum of the ith row and Sij is

the number of islands that the two species share. Let

P�/m(m�/1)/2 be the number of species pairs for m

species, then the C-score is:

C�
X

iBj

Cij=P: (2)

Randomisation algorithms

There are two general techniques for generating

random matrices with given row and column sums: filling

and swapping (for a survey see Gotelli and Entsminger

2001). We will solely consider swap algorithms. The

original ‘‘sequential swap’’ (Manly 1995) randomly

selects a pair of rows and a pair of columns. If one

species occurs only at the first site and the other species

occurs only at the other site, their occurrences are

interchanged, i.e. after the swap the first species is

assigned to the second site and the other species is

assigned to the first site. In this way, both row and

column sums are kept constant. If swapping was not

possible, a new pair of rows and columns is selected � this

is not counted as a step. The algorithm starts with the

observed presence/absence matrix.

The set of all matrices with given row and column

sums

The best way to test the C-score of the observed

occurrence matrix would be to calculate the C-score of
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all elements in the set A of all possible matrices with

the same row and column sums as the observed matrix.

In almost all cases this is computational impossible

nowadays.

Except for trivial matrices, the generation of the

complete null set is computationally infeasible.

Even the much simpler problem of computing ½A½,
the number of elements in A, i.e. the size of the null

space, is often impossible to solve. A formula for ½A½
was found by Wang and Zhang (1998) and simplified

by Perez-Salvador et al. (2002). However, this formula

can only be evaluated in reasonable time if at least one

dimension of the matrix is small, e.g. B/11. Never-

theless, for about one third of the matrices in the

Patterson and Atmar (1986) collection it was possible

to find ½A½. For some very small matrices this

permitted enumeration of the whole set A and to

compare the estimated p-value with the true global

p-value. It also revealed that in some cases the size of

A is really enormous: e.g. the 4�/180-matrix of the

data collection gives ½A½�/4.7�/1068. In sharp contrast

to the large number of matrices in the set A is the fact

that the minimal number of swaps required to trans-

form matrix M1 into matrix M2 is B/d(M1, M2)/2�/1,

where d(M1, M2) is the number of positions where M1

and M2 differ (Brualdi 1980 p. 172). By a rough

estimate using only the row or column sums one

obtains d5/282 for the 4�/180 matrix mentioned

above, hence with B/140 swaps one can go from

any matrix to any other matrix within this set of

4.7�/1068 matrices. Besides the formulas for the exact

value of ½A½, there are Markov chain Monte Carlo

techniques which give approximations (chapter 4.3; Liu

2001).

The frequency correction of the swap algorithm

The generation of random matrices by the ‘‘sequential

swap’’ can be seen as a Markov process in which each

matrix is one state. There are as many ways to reach

different states (possibilities to swap) as there are

checkerboards within a given matrix. As an example

consider the matrix published by Maly and Doolittle

(1977). There are five unique matrices with the same

row and column sums (M0�M4) representing five

states of the Markov process (Box 1). The probabilities

of going from one state to another are drawn in Box

1. Box 1 lists the transition probabilities, the C-score

and the stable state probabilities. If a large number of

swaps is performed, matrix M0 will be sampled in 25%

of the cases, while each other matrix will be sampled

only in 18.75% of all cases. If this matrix would be

analysed using the ‘‘sequential swap’’, the resulting

expected C-score would be 0.2167 instead of the

correct value of 0.2133. In the general case one can

show that the stationary distribution and hence, in

the long run, the frequencies of the possible matrices

in a simulation are proportional to the C-scores.

This is very plausible if the process is viewed as a

random walk on a graph with the matrices as vertices

and with edges joining them if there is a swap which

transforms one into the other: vertices with a high

number of edges, i.e. matrices with high C-score, are

visited more often than others (Zaman and Simberloff

2002).

If S is any statistic and Si denotes its value at the ith

step of a simulation of length n, the usual sample mean

S�
1

n
a

n

j�1Si is biased and has to be replaced by a

weighted sum Scorr�
1

n
a

n

i�1wiSi: To correct the unequal

frequencies observed above, the weights wi should have

the form a/Ci, where Ci is the C-score of the matrix

in the ith step. The constant a is a proportional

factor, determined by the condition a
n

i�1wi�n which
gives a�Ccorr; with

Ccorr�
n

Xn

i�1

1

Ci

(3)

and finally

Scorr�

Ccorr

Xn

i�1

Si

Ci

n
: (4)

The frequency corrected p-value can be obtained from

this by choosing the statistic S(M)�/1, if the C-score of

M is greater than or equal to the C-score of the initial

matrix and S(M)�/0 otherwise. Hence, to obtain the

probability of reaching a certain score, the frequency of

each matrix has to be weighted by the ratio of Ccorr=Ci

(see example in Box 1). In a histogram of the C-scores

generated by the original algorithm, all bars representing

C-scores higher than the expected value Ccorr would

therefore become smaller and all bars of C-scores

smaller than the expected value would become higher.

Minimum number of required swaps

Several authors suggest invoking a ‘‘burn in period’’ for

the swap algorithm, i.e. the first randomised matrices are

discarded (Gotelli and McCabe 2002, Zaman and

Simberloff 2002), or generating the start matrix with a

fill algorithm (Miklos and Podani 2004) to minimise the

influence of the structure of the observed matrix.

Although theoretical considerations show that, regard-

less of the starting matrix, the algorithm will converge to

the correct stable state distribution, it may be useful not
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only to discard the first set of matrices, but also to

use only every kth which is referred to as ‘‘thinning’’

the chain. While this will remove some of the corr-

elation between consecutive iterations, it will not yield

independence.

Raftery and Lewis (1996) developed a procedure to

estimate the number of iterations required to calculate

the stable state distribution of a Markov chain with a

given precision. Using their procedure, we calculated the

required number of swaps to detect a significant devia-

tion at the p�/0.025 level (as a compromise between the

0.05 and the 0.01 level) with a precision of 9/0.0125 for

each matrix at a 95% confidence level. A trial run of the

swap algorithm is performed and the results are used to

calculate the required minimum number of iterations. If

the suggested number was greater than the trial run, the

size of the pilot sample was increased until it was greater

than the suggested minimum number of iterations.

Results

The Vanuatu data set

The C-score of the Vanuatu data set (Diamond

and Marshall 1979) is 9.5299. Performing 106

Box 1. Example calculation of the expected frequencies

and C-scores by the ‘‘sequential swap’’ and the

frequency corrected ‘‘sequential swap’’.

The matrix (M0) published by Maly and Doolittle

(1977) has only 5 unique randomisations (M0�M4)

with fixed row and column totals. Figure A shows the

five matrices and the transition probabilities.

Frequency correction:

Ccorr�
n

Xn

i�1

1

Ci

Consider a simulation with 10 000 swaps, the expected

frequencies of the C-scores generated by the ‘‘sequen-

tial swap’’ would be 2500 times 0.2666 and 7500 times

0.2. The mean C-score generated by the ‘‘sequential

swap’’ is 0.2167. The correction would be calculated

as:

Ccorr�
10000

2500 �
1

0:2666
� 7500 �

1

0:2

Ccorr�0:2133

The probability of reaching a C-score as extreme as the

observation by using the ‘‘sequential swap’’ is 0.25

while the correct probability is 0.20 (Table A).

The frequency correction would give a corrected

p-value as follows:

Pcorr�

Xn

i�1

Ccorr

Ci

n
for Ci]Cobs

Pcorr�

0:2133

0:266
� 2500

10000

Pcorr�0:2

The frequency corrected ‘‘sequential swap’’ gives a

p-value of 0.200 which is equal to the theoretical

expectation while the uncorrected version results in a

p-value of 0.25.

1 1 1 1 1 1
1 1 1 1 1 1
1 1 0 1 0 0
1 1 1 1 1 0
0 1 1 1 0 0
1 1 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 0 0 1 1 0 1 0 0 0 1 1 1 0 0
1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0
1 1 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0
0 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 0 0 0
1 1 1 1 1 0
1 1 0 1 0 0
0 1 0 1 0 0

Observation (M0)M1

M2

M3

M4

1/3

1/3

1/3

1/3
1/3

1/3

1/3

1/3

1/4

1/4

1/3

1/3

1/3

1/3
1/4

1/4

Fig. A. Unique matrices and transition probabilities of the
Maly and Doolittle (1977) data set

Table A. Lists of the transition probabilities, the C-score and
the stable state probabilities of each matrix using the ‘‘sequen-
tial swap’’. Note that the stable state probabilities are propor-
tional to the C-score.

Matrix
nr

0 1 2 3 4 C-
score

Stable state
prop.

0 0 1/4 1/4 1/4 1/4 0.2666 0.25
1 1/3 0 1/3 0 1/3 0.2000 0.1875
2 1/3 1/3 0 1/3 0 0.2000 0.1875
3 1/3 0 1/3 0 1/3 0.2000 0.1875
4 1/3 1/3 0 1/3 0 0.2000 0.1875

Mean 0.2133

The C-score derived by the ‘‘sequential swap’’ is: 4�0.20�
0.1875�1�0.2666�0.25�0.2167, while the correct C-score
using equal frequencies for each state is: 4�0.20�0.20�1�
0.2666�0.20�0.2133.
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swaps gives a mean value C�/9.1299 (min�/8.8279;

max�/9.7227; SD�/ 0.0886) and a corrected mean value

Ccorr�9:1290: The p-value generated by the ‘‘sequential

swap’’ is 9.4�/10�5 and the frequency corrected p-value

is 8.969�/10�5. Both are highly significant. The mini-

mum number of required iterations is computed to

107519/3603 (using 50 independent pilot samples) by

the algorithm of Raftery and Lewis (1996) using the

above mentioned parameters.

A rough estimate of the minimum number of swaps to

be performed to go from any one of the matrices to any

other yields a number B/336. Hence we have no

indication, that the performed 106 iterations did not

sample the full variance of the null space.

The Patterson and Atmar data set

Using 291 matrices collected by Patterson and Atmar

(1986), the p-value of the C-score for each matrix was

calculated using the ‘‘sequential swap’’ with and without

frequency correction (Fig. 1). Compared to the original

algorithm, the frequency corrected ‘‘sequential swap’’

identifies three more matrices as statistically significant

(pB/0.05) and two more matrices as strongly significant

(pB/0.01). These matrices have uncorrected p-values of

0.0576, 0.0613, 0.0648, 0.014 and 0.0106. The corrected

p-values are 0.0485, 0.049, 0.0347, 0.0086 and 0.0096

respectively. The total and relative differences of the

p-values derived by the two algorithms are displayed in

Fig. 2. Though the total p-values are relatively similar

(maximum total difference is 0.062), they differ substan-

tially in relation to each other. In 152 out of 291 matrices

the differences are over 5% and in 85 matrices they

are �/10%.

The ‘‘burn in period’’ as suggested by the procedure of

Raftery and Lewis (1996) is in all cases negligible,

compared to the total of required iterations with a

maximum ratio of 0.0063 to the suggested total number

of iterations. For some matrices it was found, that

invoking a ‘‘burn in’’ using the algorithm of Raftery

and Lewis (1996) decreases the suggested number of

iterations. The procedure may hence not always deliver

the optimal combination of ‘‘burn in period’’ and

minimum of iterations, but still a valid one. Figure 3

plots the minimum number of required swaps. For 29

matrices this number is above 104. While the bias of the

C-score is especially pronounced for small matrices, we

found no relation between the required number of

iterations and the size of the matrix.

Discussion

The search for structure in presence/absence matrices has

a long history in ecology, as in many cases these are the

only available data. Since Diamond (1975) published his

assembly rules, there has been an ongoing debate on the

methods for detecting structure and how to interpret them

(for a review see Gotelli and Graves 1996). One of the

questions remaining open is the choice of the best

algorithm for generating random matrices with fixed

row and column totals. Although the ‘‘sequential swap’’

has been shown to oversample certain matrices depending

on the observed data set, Gotelli and Entsminger (2001)
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3 more matrices found significant (*) due to
frequency correction

Fig. 1. Histogram of p-values of the deviation of the observed
C-score from the expected value using the ‘‘sequential swap’’
(empty bars) and the frequency corrected ‘‘sequential swap’’
(solid bars). 291 published sets of data were analysed using 105

iterations (swaps).

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

50

100

150

200

Total differences of p-values

1 1.5 2 2.5

N
um

be
r 

of
 m

at
ric

es

0

50

100

150

200

N
um

be
r 

of
 m

at
ric

es

Ratio of p-values

Fig. 2. Histograms of the total and relative differences of the
p-values for the C-score generated by the ‘‘sequential swap’’ and
the frequency corrected ‘‘sequential swap’’, using 105 swaps and
291 published data sets.
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Fig. 3. Histogram of the minimum number of required itera-
tions to estimate a p-value of 0.025 with a precision of9/0.0125
at a 95% confidence level, calculated by the algorithm of
Raftery and Lewis (1996) for 291 published data sets. Note
that 10 percent of all matrices require more than 104 iterations.
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suggest using the ‘‘sequential swap’’ since the possible bias

seems to be low and is out-weighted by the low computa-

tional demand. Zaman and Simberloff (2002) investigated

the statistical properties of the ‘‘sequential swap’’ and

suggest weighting the calculated statistic by the number of

neighbouring matrices (which is related to the C-score).

Miklos and Podani (2004) suggested a ‘‘trial swap’’ in

which also the unsuccessful attempts count when calcu-

lating the statistic. The number of attempts is an unbiased

estimator for the ‘‘importance weights’’ precisely calcu-

lated by Zaman and Simberloff (2002). Theoretical

considerations suggest that estimating these values �
instead of calculating the precise value � introduces

more variance in the sampling distribution and hence

increases the number of successful swaps necessary to

calculate the p-value. Despite the expected higher var-

iance of the Mikos and Podani method, it is mathemati-

cally proven that both methods give valid results.

Our results demonstrate the importance of applying a

correction because there are published data sets for

which the original ‘‘sequential swap’’ indicates no

significant difference in the C-score while the frequency

corrected ‘‘sequential swap’’ do find such a difference

(Feeley 2003). The bias depends on the relative differ-

ences of the C-score (or number of checkerboards),

which are relatively low for large matrices like the

Vanuatu data set, with a C-score ranging from 9.7227

to 8.8279 (10%, see Results) and higher (25%) for small

matrices like the one in Box 1. However, in only 5 out of

291 matrices the bias had an influence on the signifi-

cance at the levels 0.01 and 0.05. Hence in most cases the

influence of other factors (e.g. overlooking a species at a

certain site, incorrect species identity or species status

determination) can be expected to influence the result

more than the bias of the ‘‘sequential swap’’ algorithm.

In most studies a histogram of the C-score is plotted

and the individual C-scores are stored for the signifi-

cance analysis. In this case the correction can be

performed afterwards without repeating the randomisa-

tion. The potential bias of other scores is unknown, it

may be smaller, but it can also be much higher without a

frequency correction. We therefore suggest using the

frequency correction for any metric.

So far the number of generated random matrices has

been chosen by experience, educated guess, or was

limited by the computing power. The estimation proce-

dure by Raftery and Lewis (1996) suggested using �/104

iterations for �/10% of the matrices, where 104 is the

number of iterations mostly used in the cited literature.

Based on our investigation we suggest to use 3�/104

iterations as a rule of thumb in case no estimation of the

required value can be performed. This value can be

expected to be sufficient for the vast majority of matrices

and can be realised with the EcoSim software (Gotelli

and Entsminger 1999).

Manly (1995, p. 1111) pointed out the difference

between global and conditional p-values and addresses

the problem that the swap algorithm without ‘‘burn in’’

incorporates the structure of the original matrix and is

hence biased towards the observation. On the other

hand, classical results from Markov chain theory show

that p(n), the estimated p-value after n steps, converge to

the correct global p-value independent of the starting

matrix (Zaman and Simberloff 2002). However, quanti-

tative versions of this convergence or error estimates

remain open in general. To our knowledge the procedure

of Raftery and Lewis (1996) is the best of what is

available to determine the minimum number of required

iterations. Calculating the minimum number of itera-

tions for any null model algorithm which can be

regarded as a Markov chain (‘‘sequential swap’’) is

computational easy because the authors implemented

their procedure in a program available for download (see

cited paper for details).

This study analyses the bias of the sequential swap

using the C-score. However, we are aware that there are

other null models and other metrics. The C-score

indicates only a deviation from randomness as it would

be expected in the presence of competition, it does not

indicate which factors structure the competitive inter-

actions. Using other statistics than the C-score, null

models are also applicable to answer more specific

ecological questions like ‘‘Which factors structure

competitive interactions (e.g. environmental conditions,

species traits)?’’. This more rewarding task has

been approached by the ‘‘fourth corner method’’ of

Legendre et al. (1997), a null model technique relating

habitat to species traits. In an analysis of a greenhouse

experiment (Lehsten 2005), we applied the ‘‘sequential

swap’’ to highlight the relationship between plant traits

and the treatment. To assure the validity of our analysis

we applied the frequency correction of Zaman and

Simberloff (2002).

Though the null model of retaining species diversity

and number of occurrences has been frequently used

before, we suggest to design a null model specific to the

ecological mechanism of interest and the available data.

In the optimal case, the design of the null model is done

in conjunction with the design of the experiment and the

sampling. This allows to make the best use of the

advantages of this technique, for instance, its ability to

deal with dependent data, or the lower amount of data

needed. The latter is a result of the fact that no standard

distribution has to be assumed (which can in itself be

problematic), instead the test distribution is calculated

from the recorded data.

Though we showed that in practice the bias of the

‘‘sequential swap’’ on the C-score may be low, as long as

the matrix is relatively large, we suggest using the

frequency correction by Zaman and Simberloff (2002)

and calculating the number of required swaps using the
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procedure of Raftery and Lewis (1996) to assure the

validity of the calculated deviation regardless of the

calculated metric.
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