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This paper examines the determinants of the spatial distribution of electric
vehicle charging infrastructure in Germany, a key element in the transition
to a low-carbon economy. Using postcode-level geographic data and regres-
sion analysis, we investigate how factors such as population density, road
networks, local amenities, the number of fuel stations, and electric grid in-
frastructure influence the placement of electric vehicle chargers. Our findings
indicate that population density, the number of fuel stations, and intersec-
tions of the electric grid significantly impact charger placement, with fast
chargers predominantly located along major transportation corridors. Ad-
ditionally, the availability of local amenities and electricity supply plays a
critical role in the placement of normal chargers. These findings highlight
the importance of well-planned urban charging networks, strategic placement
along transport routes, and strong public-private partnerships to enhance
electric vehicle adoption.
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1 Introduction

The growing urgency to combat climate change has heightened the need to reduce car-

bon emissions across all economic sectors, with the transportation sector being a critical

focus area. Since road transport contributes a substantial share of global CO2 emissions

– amounting to three-quarters of emissions from the transport sector – it is evident that

targeted interventions are necessary to curb this impact (Ritchie, 2020). For Germany,

a global leader in climate initiatives, the transportation sector has, however, not pro-

gressed sufficiently toward meeting the national climate objectives. This sector accounts

for about 21% of the country’s total greenhouse gas (GHG) emissions and remains a sig-

nificant challenge in achieving the goal of a 65% reduction in overall emissions by 2030

compared to 1990 levels (Die Bundesregierung, 2023). To bridge this gap, the German

government established a national climate law in 2019, which was updated in 2021 to

stipulate a 48% reduction in transport-related GHG emissions by 2030 (Bundesamt für

Justiz, 2019).

The electrification of the transportation sector, with a particular emphasis on adopting

Electric Vehicles (EVs), is central to Germany’s plan to meet its climate targets. The

country aims to decrease its dependency on fossil fuels and lower emissions from road

transport by encouraging EV use and expanding the necessary charging infrastructure.

However, the successful widespread adoption of EVs relies not just on advancements in

vehicle technology but also on the availability of a comprehensive, reliable, and easily

accessible charging network to accommodate the increasing number of EVs, overcome

range anxiety, and enable seamless long-distance travel (Guo et al., 2024; Mohammad

et al., 2024; Zeng et al., 2024).

Germany has outlined an ambitious plan to have 15 million EVs and approximately 1

million charging points by 2030 (BMVI, 2019). To achieve this, the government has in-

troduced various incentives, such as purchase subsidies, which have significantly boosted

EV sales. As a result, the number of battery electric vehicles has more than quadrupled

to over 1.4 million between 2021 and 2024. Similarly, hybrid vehicle numbers have also

more than tripled from 921,886 in 2021 to over 2.9 million in 2024 (Federal Environment

Agency, 2024). In terms of overall new vehicle registrations, fully electric vehicles reg-

istrations accounted for 18.4%, surpassing diesel cars as of 2023 (Federal Environment

Agency, 2024).

Despite the growing market share of EVs, internal combustion engine (ICE) vehicles
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still dominate new car registrations. Factors such as high upfront costs, limited driving

range, and insufficient charging infrastructure continue to hinder widespread EV adop-

tion, affect consumer choices and slow the transition to electric transportation. Existing

literature has consistently shown that the availability of charging infrastructure plays

a crucial role in influencing consumer decisions and adoption rates of EVs (Coffman et

al., 2017; Sierzchula et al., 2014). As of early 2024, Germany has established around

103,226 normal charging points and 25,291 fast charging stations (Bundesnetzagentur,

2024). Although considerable progress has been made, reaching the target of 1 million

public charging points remains a challenge. However, the growing use of workplace

charging and advancements in fast and ultra-fast charging technology may alleviate the

need for such a vast number of charging stations.

The uncertainty in achieving the 2030 target highlights the necessity of a strategy ap-

proach to placing and integrating EV chargers into everyday life. Effective integration of

charging infrastructure into consumers’ routines and ensuring the stability of the electric

grid are critical for maximizing the impact of EV adoption and reducing emissions in the

transportation sector. This paper explores the determinants that influence the distribu-

tion patterns of EV charging infrastructure. We use a geo-referenced dataset comprising

62,426 operational charging stations across Germany, combined with OpenStreetMap

(OSM) data, which includes information on population, road networks, electricity sup-

ply, and local amenities at the postcode level. Our hypothesis is that these micro-level

factors affect consumer demand and charging decisions, and ultimately shape how charg-

ing stations are spatially allocated across different areas. Our analysis shows that factors

such as population density, highway accessibility, availability of amenities, presence of

fuel stations, and local electric grid infrastructure significantly influence where charging

stations are located. By identifying these determinants, this paper seeks to support

evidence-based resource allocation and inform strategic interventions to advance the

transition to electric mobility.

The structure of the remainder of the paper is as follows: Section 2 reviews the existing

literature on the distribution of charging infrastructure and the integration of charging

stations into the electric grid. Section 3 details the data sources, variables, and the

empirical estimation strategy employed. The results are discussed in Section 4, and the

paper concludes with insights and implications in Section 5.
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2 Relevant Literature

This section reviews the relevant existing literature on factors influencing charging sta-

tion distribution, the integration of EV chargers into the power grid, and the approaches

used to optimize their placement.

2.1 EV Adoption and Distribution of Charging Infrastructure

The strategic placement and accessibility of EV charging infrastructure have been widely

recognized as critical factors that influence the adoption and use of electric vehicles.

While financial incentives, such as purchase grants and free complimentary home charger

installations, have been shown to positively impact EV uptake (Liu et al., 2023; Qadir

et al., 2024; Shang et al., 2024), the availability and distribution of charging stations are

considered even more decisive, as they directly impact user convenience and mitigate

range anxiety (Coffman et al., 2017; Fox, 2013; Hafezi & Morimoto, 2023; Hoffmann,

2018; Mersky et al., 2016; Sierzchula et al., 2014).

One of the main barriers to EV adoption is range anxiety, a psychological concern stem-

ming from the limited driving range of EVs and the potential unavailability of charging

facilities. Previous studies have shown that the presence of public charging infrastruc-

ture, especially fast chargers, significantly enhances the attractiveness of EVs by enabling

users to cover long distances efficiently (Needell et al., 2016; Neubauer & Wood, 2014).

The placement of charging stations at strategic locations, such as highways and urban

centers, has been shown to alleviate this concern, thereby facilitating a smoother transi-

tion to electric mobility (Neaimeh et al., 2017). Besides range anxiety, the power output

of chargers is also a crucial factor, with fast chargers drastically reducing charging times.

Meintz et al. (2017) note that modern charging points delivering up to 400 kW can

charge EVs for up to 320 km in just 10 minutes, nearing the refueling speed of ICE vehi-

cles. Therefore, optimizing charger placement, differentiating between fast and normal

chargers, and considering their impact on the electricity grid are vital steps in developing

a robust, user-friendly charging network that supports the broader adoption of electric

vehicles.

Several studies have used data-driven approaches to determine optimal charging station

locations. For example, Yun et al. (2019) analyzed charging behaviors in Shanghai using

GPS data from plug-in hybrid electric vehicles (PHEVs) and conclude that home and
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workplace charging were preferred over public charging stations. Choi (2020) developed

a clustering algorithm to identify high-demand areas for charging infrastructure on Jeju

Island, South Korea, concluding that proximity to tourist attractions and population

density increased the effectiveness of charging stations. Shahraki et al. (2015) also

utilized taxi driving data from Beijing to capture public charging demand and select the

locations of public charging stations that maximizes the electrification of vehicle-miles-

traveled, showing that the majority of optimal locations identified are situated in the

inner city.

Studies in Europe and the United States have also examined the spatial distribution and

utilization patterns of charging infrastructure. Dong et al. (2014) investigate EV charger

location problems by analyzing the impact of public charging infrastructure deployment

on increasing electric miles traveled. Utilizing a genetic algorithm based on GPS-based

travel survey data collected in the Seattle metropolitan area in the USA, the authors

show that electric miles and trips could be significantly increased by installing public

chargers at popular destinations. Juhász & Hochmair (2023) analyzed public charging

stations in the U.S., identifying economic activity, highway density, and local political

preferences as key factors influencing station placement. In Germany, Jochem et al.

(2016) focused on fast charger deployment along highways, finding that strategically

placed chargers could cover significant distances and reduce range anxiety. Similarly,

Hecht et al. (2020) conducted a comprehensive analysis of usage patterns, highlighting

variations in charger utilization based on time and location.

Despite valuable insights from previous studies, there remains a need for comprehensive

analyses that consider micro-level geographic data, such as population density, road

networks, and electricity supply. This paper builds on this existing body of literature

by utilizing detailed geo-referenced data to better understand the determinants of EV

charging infrastructure distribution across Germany.

2.2 Vehicle Grid Integration (VGI)

Beyond the determinants of charger placement, the integration of EVs into the power

grid, commonly referred to as Vehicle Grid Integration (VGI), presents both opportu-

nities and challenges. As the number of EVs increases, their collective impact on the

electricity grid becomes more pronounced, particularly during peak charging periods.

Uncoordinated charging can strain the grid, leading to voltage imbalances, increased
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power losses, and potential instability in the distribution network (Masoum et al., 2012).

Therefore, developing strategies to manage charging demand and integrate EVs effec-

tively into the grid is crucial.

One of the key approaches to addressing these challenges is coordinated or smart charg-

ing, which manages the timing and intensity of EV charging to minimize grid disruptions.

By shifting charging activities to off-peak hours, smart charging can reduce electricity

costs, alleviate pressure on transformers, and prevent voltage deviations (Fairley, 2010;

Masoum et al., 2012; Rangaraju et al., 2015). Moreover, advanced grid integration tech-

niques, such as Vehicle-to-Grid (V2G) systems, allow bidirectional energy flow between

EVs and the grid. This not only helps in balancing supply and demand but also pro-

vides ancillary services, such as frequency regulation and backup power (Richardson,

2013; Wu, 2013).

However, V2G integration is not without its drawbacks. Concerns include the poten-

tial for accelerated battery degradation and the need for substantial investments in grid

infrastructure to accommodate bidirectional energy flow. Additionally, the existing dis-

tribution networks may not be equipped to handle large-scale VGI without significant

upgrades (Das et al., 2020; Ul-Haq et al., 2015). As a result, careful planning and policy

support are essential to realize the full benefits of VGI while ensuring grid reliability and

stability.

Our analysis contributes to this area by examining the role of local electric grid infras-

tructure in the placement of EV charging stations. We investigate how grid character-

istics, such as power line density and the presence of substations, influence the spatial

distribution of charging infrastructure, thereby informing strategies for more effective

VGI.

3 Data and Methods

This section describes the data sources, variables, and regression model employed to

examine the factors that determine the placement of EV charging station at the postcode

level in Germany.
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3.1 Postcode and EV Charging Stations

To explore the factors influencing the placement of charging infrastructure at the post-

code level, we obtained detailed geographic polygon data for all postcodes in Germany,

along with corresponding population statistics. This data is essential for understanding

the spatial distribution and potential demand for EV chargers.1 In Germany, all pub-

lic charging points are registered, and with the provider’s consent, the geo-referenced

data on the charging station are made publicly available by the Federal Network Agency

(Bundesnetzagentur, 2024). The dataset is updated regularly and, as of March 1, 2024,

comprises 62, 426 chargers, accounting for approximately 49% of all public chargers in

Germany. The number of charging points available at these stations varies from a mini-

mum of 1 to a maximum of 6, with an average of 2 charging points across all chargers.

The dataset provides the location by coordinates, address (including postcode), provider,

commencement of operation date, exact charging power, and maximum connections per

charger. Chargers are categorized as normal with power output of 22 kW or less and fast

chargers with power output exceeding 22 kW. Whether chargers are publicly disclosed is

at the discretion of the provider; thus, the dataset does not entirely capture Germany’s

public charging infrastructure.

The dataset, spanning from 1992 to 2024, includes 50,899 normal charging stations and

11,527 fast charging stations, including Tesla superchargers. Given Tesla’s significant

market share in Germany (Kraftfahrt-Bundesamt, 2023) and its proprietary fast charg-

ing network (120 kW to 250 kW), these chargers are essential for a comprehensive analysis

of the charging landscape. While there is no official publicly available dataset encom-

passing Germany’s superchargers, we rely on a user-based website that aggregates all

Tesla’s superchargers across countries, and filter the chargers located in Germany.2 The

data shows that of the 194 Tesla superchargers in Germany, approximately 190 support

charging other electric vehicles. The Tesla superchargers are added to the fast chargers

in the Federal Network Agency dataset. While superchargers constitute merely a frac-

tion of the charging infrastructure in Germany, our analysis aims to comprehensively

cover the German charging landscape, which includes Tesla’s supercharger network.

Figure 1 illustrates the evolution of charger installations from 2010 to 2024, encompass-

ing both normal and fast chargers.3 The count of normal chargers exhibits a gradual
1This data is sourced from https://www.suche-postleitzahl.org/.
2See: https://supercharge.info/data
3Notably, between 1992 and 2009, only 55 operational charging stations are documented in the dataset.
Further note that the number of chargers in 2024 is only until March 1, 2024.
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Figure 1: Yearly Normal and Fast Chargers

Source: Author’s own illustration

increase, particularly from 2013 to 2016, surging to about 1, 130 chargers. The upward

trajectory persists, with about 42% average annual growth rate, leading to over 10, 000
normal chargers in 2023. Figure 1 also shows a steady increase in the number of fast

chargers, particularly noticeable from 2016 onwards, indicating a growing presence of

these types of chargers in Germany. Overall, the dataset reveals a consistent and expo-

nential expansion in charger installations, highlighting Germany’s advancement in EV

infrastructure. Figure 2 shows the spatial distribution of chargers, illustrating distinct

variations across postcode areas with some postcodes having over 200 chargers while

others have no public chargers.

3.2 OpenStreetMap (OSM) Data

Much of the data required for this research was sourced from the crowdsourced Open-

StreetMap (OSM), renowned for its highly detailed geographic data and global coverage.

We rely mostly on database dumps from Geofabrik, as these compressed data file for-

mats facilitate data utilization and eliminate the need to directly access OSM (Geofabrik,

2024). For data types that go beyond the pre-selected variables in the Geofabrik database

dumps, we rely on requests from the Overpass API.4 Based on these two data sources,
4https://wiki.openstreetmap.org/wiki/Overpass_API
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Figure 2: Distribution of chargers across postcode area

Source: Author’s own illustration
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we compute several variables that are utilized in the regression analysis.

Population and Road Density

We evaluate population density and road density at the postcode level to reflect the

degree of urbanization and infrastructure development. Population density is computed

as the population per postcode area divided by the square kilometers of the postcode

area. For road network representation, we calculate the density of two categories of roads:

motorway and other roads including primary, secondary, tertiary, and residential roads.

The road length per square kilometer is computed by aggregating the length of various

road types within the postcode areas and dividing it by the area. Postcode areas with

higher road density suggest higher demand for mobility and should generally feature a

greater number of charging stations. Postcode areas with higher population and road

densities indicate a heightened demand for charging infrastructure to adequately cover

the postcode area, implying a positive relationship between these factors. As depicted

in Figure 3, the spatial distribution of population and road density closely aligns, with

postcode areas of higher population density typically exhibiting greater road density.5

This trend is further reflected in the distribution of charging stations across Germany,

as shown in Figure 2, where postcode areas with higher population and road densities

tend to have more charging stations.

Amenity Variables

From the OSM data, we derive amenity variables that reflect how daily activities or

trips to various POIs influence the placement of charging stations. We construct four

groups of amenity variables to represent the diverse usage of different POIs. As the

POIs are obtained as geographical point features, they are assigned and aggregated

to their respective postcode areas using postcode borders. Table 4 in the Appendix

lists all included locations per variable. Locations are grouped by their OSM label and

classified into one of the four groups: Errands, Food and Beverages, Shopping, and Daily

Essentials.

The group, labeled Errands, encompasses destinations integral to daily life but requiring

minimal time, such as dropping off a package or using an ATM. Due to their short usage

duration, the impact of these destinations on charger demand may be minimal, as the

5The road density here includes all roads from residential to motorway road.
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dwelling time for EVs in these locations may be very brief. The Food and Beverages group

includes locations like cafes or restaurants that offer opportunities for longer parking

and charging periods from 20-30 minutes to several hours. Similarly, Shopping follows

a similar intuition since these locations permits both shorter visits and extended stays.

The last category comprises Daily Essentials, which carry significant importance as

they are indispensable for nearly everyone on a weekly basis. This category includes

supermarkets and pharmacies, which are frequently accessed via automobile.

Generally, longer stays in POIs should create more charging opportunities and render

such locations more attractive for potential charging points. In fact, previous studies

such as Hecht et al. (2020) have highlighted increased demand for fast chargers during

weekend recreational shopping. Utilizing time for daily activities or in between trips for

charging could, therefore, alleviate the inconvenience of the charging process, seamlessly

integrate EVs into users’ daily routines, and reduce the disparity compared to ICEs.

Figure 3 shows the distribution of all amenities across postcodes, with – as expected –

higher number of amenities in densely populated areas as well as areas with higher road

densities. Clearly, postcodes with higher amenities also have higher number of charging

infrastructure.
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Figure 3: Distribution of population and road densities and amenities per postcode area

(a) Population Density (b) Amenities (c) Road Density

Source: Author’s own illustration
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Infrastructure Variables

In addition to road densities, the presence of motorway links is considered crucial for

charging opportunities off the highway, such as at motorway rest areas, which are essen-

tial for longer journeys. To address this, a dummy variable is introduced for motorway

links, where a value of one signifies the presence of at least one motorway link within

the postcode area, and zero otherwise. This approach prevents the overestimation of

the influence of large motorway nodes and ensures that postcodes lacking links, and

thus charging opportunities, are negatively correlated with the number of charging sta-

tions. It is worth noting that the number of fast chargers in areas with motorway links

is expected to be higher, given their importance for longer journeys, as emphasized by

Neaimeh et al. (2017).

To capture other aspects of the public transport network, retail fuel stations at the post-

code level – often proposed as viable locations for EV chargers – are considered. These

stations are expected to play an increasingly critical role in the future, especially if man-

dated by regulations to provide charging facilities. With their nationwide coverage and

established usage patterns, such regulations could significantly facilitate the transition

from ICE vehicles to EVs. We obtain the geographic locations of all fuel stations in

Germany from Tankerkoenig6 and aggregate the number of fuel stations at the postcode

level.

Electric Grid Variables

It is worth mentioning that the robustness of EV charging infrastructure is reliant on

the availability of electricity. To represent electricity supply in our analysis, we include

variables that not only capture the number of power plants but also the number of

electric grid intersections as well as power line density at the postcode level. We acquire

data on power plants from the German public authority, which regularly updates this

dataset.7 This dataset encompasses power plants and renewable energy sources such as

wind parks. The count of power plants and renewable energy sources are aggregated per

postcode and used as a proxy for energy supply or availability, which is a pre-requisite

for building charging infrastructure.

6https://dev.azure.com/tankerkoenig/_git/tankerkoenig-data
7https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/Versorgungssicherheit/E
rzeugungskapazitaeten/Kraftwerksliste/start.html
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Data pertaining to the electric grid intersection is sourced from the OSM dataset. In-

tersections within the electrical grid are considered by tallying converter stations, sub-

stations, and transformers per postcode. This information denotes locations where elec-

tricity from high voltage transmission lines is redistributed to local distribution lines.

We suggest that these intersections are ideal locations for EV charging points due to

their ability to redistribute significant amounts of electricity, making them well-suited

for charging EVs. Additionally, these grid intersections are valuable for improving co-

ordinated charging and managing demand to prevent grid overload. To compute power

line density, we aggregate the length of power lines within the postcode area and divide

by the area’s square kilometers. Overall, these variables are constructed to reflect the

availability of electricity within a given postcode area.

3.3 Descriptive Statistics

Table 5 presents the descriptive statistics of the dataset. As highlighted in Section 3.1,

normal chargers exhibit significant variability in their numbers across postcodes, with

the highest overall average and per postcode area counts. Fast chargers are relatively

scarce in Germany, and Tesla’s superchargers constitute only a small fraction of the

nationwide charging grid. These descriptive statistics underscore the diversity of German

postcode areas, encompassing urban centers to remote rural regions. Note that the

different amenity variables (Errands, Food and Beverages, Shopping, Daily Essentials)

also vary considerably in their counts and reflect the diverse distribution of amenities

across different areas. Moreover, the presence of up to 38 power plants in one postcode

area is surprising, but this can potentially be explained by the inclusion of wind parks

and offshore facilities.

3.4 Estimation

Charging station counts can be influenced by various factors such as population density,

urbanization, infrastructure availability, and policy interventions. To investigate this re-

lationship, our analysis is performed at the postcode level, with all variables aggregated

accordingly to capture variations across cities or districts. We employ cross-sectional

regression analysis because most of the variables are time-invariant, making panel re-

gression analysis unnecessary.
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Given the discrete nature of charger counts, we use a count-data model for estimation,

specifically the negative binomial regression, which extends the Poisson regression model.

Count data, such as the number of charging stations in a geographic area, often exhibit

overdispersion, where the conditional variance exceeds the conditional mean. In such

cases, negative binomial regression introduces an additional parameter to account for

this overdispersion, making it a more suitable approach than Poisson regression, as it

tends to produce narrower confidence intervals.

Therefore, we utilize the negative binomial regression model to capture the relationships

between these determinants and the count of charging stations, while appropriately

accounting for overdispersion. In addition to the negative binomial estimation, we also

use traditional Ordinary Least Squares (OLS) estimation to assess the robustness of our

findings across different estimation methods. Our negative binomial regression model is

specified as follows:

ln(𝐶𝑖𝑗) = 𝛽1 ln(𝑃𝑖𝑗) + 𝛽3 ln(𝑀𝑖𝑗) + 𝛽2 ln(𝑅𝑖𝑗) + 𝛾1𝐴𝑖𝑗 +
6

∑
𝑙=1

𝜆𝑙𝑋𝑖𝑗 + 𝛼𝑗 + 𝜖𝑖𝑗 (1)

In this cross-section negative binomial regression equation, 𝐶𝑖𝑗 is the dependent variable

and denotes the expected count of charging stations in postcode area 𝑖 within the munic-

ipality area 𝑗. 𝑃𝑖𝑗 denotes the population density, 𝑀𝑖𝑗 is the motorway road density and

𝑅𝑖𝑗 denotes road density for all other roads apart from motorway road network. In our

baseline regression equation, 𝐴𝑖𝑗 represents the amenity variable, included as the sum

of all four variables, i.e., shopping, food and beverages, errands, and daily essentials.

In our subsequent specifications, the four different amenity variables are then included

separately in Table 2. 𝑋𝑖𝑗 denotes all other variables, 𝛼𝑗 represents municipality fixed

effects and all other residual variation is captured in the error term 𝜖𝑖𝑗.

We estimate different variants of the regression equation to capture the different variables

constructed. All specifications accounts for municipality-level unobserved heterogeneity

through the fixed effects 𝛼𝑗. These fixed effects control for all time-invariant differences

across municipalities, such as local policies, geographic features, or socio-economic fac-

tors that are constant within a municipality and also avoid omitted variable bias. To

account for correlations within municipalities and address potential heteroskedasticity,

we cluster standard errors at the municipality level. Our regression approach ensures a

comprehensive analysis of factors influencing charging station placement, including pop-

ulation density, infrastructure, the availability of amenities, and characteristics of the
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electric grid or energy supply. By utilizing a variety of data sources and applying robust

regression techniques, our analysis sheds light on the key determinants that influence

the spatial distribution of charging infrastructure across Germany.

4 Results

Table 1 presents the results of the baseline municipality-level fixed effects negative bi-

nomial regression specified in Equation 1. Across all specifications, the results indicate

significant over-dispersion, confirming the appropriateness of using the negative binomial

estimation approach. The first specification (column 1) includes three density variables

expressed in logarithmic form, to handle potential non-linear relationships. The coeffi-

cients or elasticities, which measure the percentage change in charger count in response

to a 1% change in these variables, are all statistically significant at the 5% level and show

the expected positive effects. Here, a 1% change in population density leads to 0.36%

change in the expected count of charging stations at the postcode level. Similarly, A

1% increase in road density corresponds to approximately 1.15% change in the expected

count of charging stations. The significant positive impacts of population and road den-

sities – both considered proxies for the degree of urbanization within a postcode area –

highlight the importance of charger placement in urban settings.

Road density generally serves as an indicator of infrastructure development, and areas

with higher road density often correspond with higher population densities or increased

urbanization. This suggests that urbanized areas are more likely to have greater demand

for EVs, and consequently, a greater need for public charging infrastructure. The signifi-

cant positive coefficient for motorway density suggests that areas with higher motorway

density are more likely to have a greater number of public charging stations. This finding

aligns with previous findings by of Jochem et al. (2016), highlighting the critical role of

motorway-based fast charging infrastructure in facilitating long-distance EV travel and

reducing range anxiety.

Note that motorway and other road densities lose their significance in subsequent speci-

fications when the number of amenities is included, likely due to the correlation between

amenities and road density (see Figure 3}). Nonetheless, the results consistently show a

positive and significant effect of population density on charger placement. This empha-

sizes population density’s critical role in the spatial distribution of charging stations, and

further highlight the importance of accessibility and convenience for EV users. Clearly,
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Table 1: Baseline Regression Results
(1) (2) (3) (4) (5) (6)

Log(Population Density) 0.359*** 0.159*** 0.183*** 0.138*** 0.139*** 0.139***
(0.070) (0.052) (0.049) (0.045) (0.046) (0.045)

Log(Motorway Density) 1.148*** 1.212*** 0.184 0.198 0.222 0.227
(0.169) (0.160) (0.241) (0.216) (0.213) (0.206)

Log(Other Road Density) 0.342** -0.216 -0.199 0.009 0.056 0.062
(0.166) (0.143) (0.138) (0.131) (0.130) (0.125)

Dispersion Parameter 1.441*** 1.865*** 1.934*** 2.283*** 2.317*** 2.338***
(0.059) (0.151) (0.159) (0.163) (0.166) (0.162)

Amenity 0.010*** 0.009*** 0.005*** 0.005*** 0.005***
(0.001) (0.001) (0.001) (0.001) (0.001)

Motorway Link Dummy 0.529*** 0.332*** 0.310*** 0.308***
(0.076) (0.070) (0.070) (0.066)

Fuel Stations 0.180*** 0.165*** 0.163***
(0.017) (0.015) (0.015)

log(Power Line Density) 0.025 -0.012
(0.065) (0.064)

Grid Intersections 0.002*** 0.002***
(0.000) (0.000)

Power Plants 0.048**
(0.021)

Neighbor Power Plant 0.005
(0.006)

Number of Postcode Areas 8170 8170 8170 8170 8170 8170
𝑅2

𝐴𝑑𝑗. 0.081 0.121 0.126 0.146 0.148 0.149
FE: Municipality Yes Yes Yes Yes Yes Yes

Notes: Constant term included but not shown. Robust standard errors are clustered at the municipality level and reported in parentheses.
The dependent variable is the log-count of all EV charging stations.
*: Significant at the 10% level. **: Significant at the 5% level. ***: Significant at the 1% level.

charger placement strategies should be attuned to patterns of urbanization and road net-

works to effectively serve the needs of EV users across diverse geographical contexts.

In specifications (2) to (6) of Table 1, the variable Amenity represents a composite

measure that captures the count of all four amenity categories: shopping, food and

beverages, errands, and daily essentials. This composite variable consistently shows a

positive and significant coefficient at the 1% level, emphasizing the importance of these

locations in influencing the placement of charging stations. Across these specifications,

the coefficient for Amenity suggests that a one-unit increase in the number of amenities

in a postcode area leads to a 0.005 to 0.010 increase in the log count of charging stations,

corresponding to an incidence rate ratio (IRR) between 1.005 and 1.010. This indicates

that each additional amenity in a postcode area is associated with a 0.5% to 1.0%

increase in the expected count of charging stations. The results suggest that the presence

of amenities in a postcode area – typically indicative of a well-developed, convenient,

and economically vibrant environment attractive to both residents and tourists – has

a significant impact on the placement of charging stations, and further highlight the

importance of considering local amenities in the planning and deployment of charging

infrastructure to adequately meet the needs of EV users.

Specifications (3) to (6) include the dummy variable for motorway links. The dummy
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has the value 1 if a postcode has at least 1 motorway link area, and 0 otherwise. On

average, postcodes with a motorway link have more chargers than those without, aligning

with findings from previous studies (Hecht et al., 2020; Jochem et al., 2016; Neaimeh

et al., 2017) that emphasize the importance of charging opportunities, especially fast

charging, for longer journeys. Motorway links typically lead to areas with higher traffic

and more active users, resulting in a greater number of chargers. Note, however, that

the magnitude of the coefficient for motorway links decreases when the number of fuel

stations in the postcode area is included (see, column (4)). Charging facilities close

to highways, such as those found in highway service areas, are often provided by fuel

stations to diversify their services to cater to the growing EV market. The positive

correlation between the two variables potentially leads to the diminished magnitude of

the motorway link dummy variable.

The results in Table 1 also show that the number of fuel stations in a postcode area is

positively associated with the number of charging stations. The results show that a one-

unit increase in the number of fuel stations in a postcode area increases the log count of

chargers by between 0.163 and 0.180, corresponding to a 17.7% to 19.7% increase in the

expected count of charging stations. This can be attributed to the fact that locations

with existing fuel stations are already recognized as convenient spots for vehicle services,

making them suitable candidates for hosting charging stations as well. Moreover, fuel

stations are often located in areas with high vehicle traffic or significant transportation

needs. With the increasing number of EVs, especially in urban and suburban areas, fuel

stations offer regulators the opportunity to incentivize or mandate the installation of EV

charging stations in conjunction with fuel stations as part of sustainability initiatives or

regulatory requirements. In such cases, the presence of fuel stations could indirectly

influence the proliferation of charging stations.

The influence of the electric grid or electricity supply on the placement of chargers is also

shown in Table 1. Power line density is used as a proxy for electricity availability and

accessibility within the postcode. Interestingly, the findings suggest that this variable is

statistically insignificant across all specifications. However, the number of intersections

such as converters, substations, and transformers within the electric grid appears to

induce more charger placement. These intersections are ideal locations for EV charging

points due to their strategic position where multiple transmission lines or distribution

networks converge. This convergence enables the redistribution of significant amounts

of electricity, making these sites particularly well-suited for supporting the high power
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demands of EV charging, including fast charging services.

Additionally, these grid intersections are valuable for enhancing coordinated charging and

demand-side management, allowing for better load monitoring and distribution, which

is crucial for preventing grid overload, especially during peak usage times. Overall, the

results show that these intersections appear to offer favorable opportunities for charger

placement in the postcode area. The results also show that the number of power plants

serving as electricity supply sources appears to stimulate charger infrastructure, although

the existence of power plants in a neighboring postcodes – Neighbor Power Plant –

appears to have a statistically insignificant effect. The highly significant coefficients

for the number of local grid intersection and power plants highlight the importance of

electricity supply – a prerequisite for charger installation – via the grid in determining

the placement of EV chargers.

In Table 2, we disaggregate amenity into its various components – Shopping, Food and

Beverages, Errands, and Daily Essentials and explore whether the expected log count

of the number of chargers increases more noticeably for some amenity variables than

others. From column (2) to (5), we include these variables individually and in column (6),

we incorporate all amenity variables. All Amenity variables in columns (2)-(5) exhibit

significance at the 1% level and demonstrate the expected positive influence. When

comparing the magnitude of the amenity variables, it is evident that the expected log

count of the number of chargers increases more noticeably for a unit increase in points

of interests – including supermarkets, greengrocers, pharmacies, butchery – categorized

as Daily Essentials compared to the other amenity variables.

Specifically, for a unit increase in the number of Daily Essentials, the expected log count

of the number of chargers rises by 0.046, suggesting that POIs that could offer longer

dwell time appear to have a larger effect on charger placement than other amenities. Ad-

ditionally, the Errands category also tends to increase the placement of EV chargers in

the postcode area more than the Shopping and Food and Beverages categories. Overall,

the findings highlight the importance of amenities as determinants of charging station

counts, and suggest that proximity to POIs that offer essential services and other ameni-

ties with regular usage stimulates demand for charging infrastructure. These results

suggest the need to incorporate local amenities and consumer behavior into charging in-

frastructure planning. Note that when all amenity variables are simultaneously included

in column (6), only the Errands and Daily Essentials – the amenities with the largest

coefficients in columns (2)-(5) – exhibit statistically significant positive effects at the
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Table 2: Regression Results: Amenity Variables
(1) (2) (3) (4) (5) (6)

Log(Population Density) 0.193*** 0.156*** 0.160*** 0.140*** 0.108** 0.121***
(0.049) (0.046) (0.047) (0.042) (0.045) (0.043)

Log(Motorway Density) 0.033 0.147 0.186 0.235 0.178 0.259
(0.195) (0.196) (0.210) (0.196) (0.205) (0.206)

Log(Other Road Density) 0.483*** 0.190 0.080 0.222* 0.282** 0.165
(0.135) (0.130) (0.132) (0.128) (0.122) (0.123)

Motorway Link Dummy 0.325*** 0.327*** 0.315*** 0.284*** 0.316*** 0.285***
(0.067) (0.066) (0.066) (0.067) (0.069) (0.067)

Fuel Stations 0.207*** 0.184*** 0.184*** 0.135*** 0.154*** 0.132***
(0.009) (0.010) (0.014) (0.011) (0.012) (0.010)

log(Power Line Density) -0.161** -0.083 -0.031 -0.009 -0.086 0.003
(0.063) (0.062) (0.068) (0.060) (0.062) (0.064)

Grid Intersections 0.003*** 0.003*** 0.003*** 0.001*** 0.002*** 0.001***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Power Plants 0.050** 0.053** 0.047** 0.046** 0.047** 0.045**
(0.022) (0.021) (0.021) (0.021) (0.022) (0.021)

Neighbor Power Plant 0.007 0.007 0.005 0.004 0.006 0.004
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

Dispersion Parameter 2.149*** 2.259*** 2.288*** 2.394*** 2.287*** 2.404***
(0.124) (0.141) (0.160) (0.152) (0.149) (0.159)

Shopping 0.016*** -0.004
(0.002) (0.004)

Food and Beverages 0.008*** 0.002
(0.002) (0.003)

Errands 0.024*** 0.018***
(0.002) (0.002)

Daily Essentials 0.046*** 0.015***
(0.006) (0.005)

Number of Postcode Areas 8170 8170 8170 8170 8170 8170
𝑅2

𝐴𝑑𝑗. 0.137 0.143 0.146 0.151 0.146 0.152
FE: Municipality Yes Yes Yes Yes Yes Yes

Notes: Constant term included but not shown. Robust standard errors are clustered at the municipality level and reported in parentheses.
The dependent variable is the log-count of all EV charging stations.
*: Significant at the 10% level. **: Significant at the 5% level. ***: Significant at the 1% level.
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1% level. This may be attributed to the positive correlation among the variables – see

Figure 5 in the Appendix for the correlation matrix.

Previous studies such as Flammini et al. (2019) and Hecht et al. (2020) reveal dis-

tinct demand and usage patterns of EV chargers depending on the power output of the

charger. Neaimeh et al. (2017) in particular, highlight the importance of fast chargers

for longer journeys, while Flammini et al. (2019) note that chargers with low power

output near highways are among the least utilized chargers. To explore the disparity in

the distribution as well as factors that influence the locations of different charger types,

we estimate a variant of Equation 1, where the dependent variable is categorized into

normal chargers (22 kW power output or less) and fast chargers (more than 22 kW power

output). Note that Tesla’s superchargers are included in the fast charger sample since a

large majority of these chargers can be used by other EVs.

Table 3 presents the estimates for normal and fast chargers, reflecting the distinct roles

these types of chargers play within the overall charging infrastructure. The dependent

variable in columns (1) through (5) is the count of normal chargers, while in columns

(6) through (10), it is the count of fast chargers in the postcode area. For columns (1)

and (6), amenities are incorporated as a composite variable, as done in Table 1.

In these specifications, the coefficients for both normal and fast chargers are significant

at the 1% level, although the magnitude is consistently larger for normal chargers. This

pattern persists even when the amenity variable is disaggregated into its sub-categories.

Specifically, while all coefficients for the amenity variables in both the normal and fast

charger regressions are positive and statistically significant at least at the 5% level, the

estimates indicate that the coefficients are consistently larger in the normal charger

regressions compared to the fast charger regressions.

This suggests that the presence of amenities in a postcode area has a stronger influence

on the placement of normal chargers than on fast chargers. One plausible explanation for

this difference is that normal chargers are more likely to be located in areas where people

spend more time, such as shopping centers or residential areas, where the convenience of

a slower charge is less of a concern. In contrast, fast chargers are often positioned along

highways or in transit hubs, where the primary need is for quick charging, making their

placement less dependent on the density of local amenities.

Regarding the other regressors, the results indicate that while the signs of the coefficients

across all specifications generally align with the benchmark results in Table 1, there are a
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Table 3: Regression Results: Normal vs. Fast Chargers
Normal Chargers Fast Chargers

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Log(Population Density) 0.127** 0.145*** 0.150*** 0.130*** 0.093* 0.267*** 0.281*** 0.281*** 0.254*** 0.243***

(0.049) (0.050) (0.052) (0.046) (0.049) (0.047) (0.049) (0.048) (0.048) (0.050)
Log(Motorway Density) 0.141 0.061 0.098 0.147 0.093 0.381 0.318 0.352 0.431* 0.358

(0.216) (0.211) (0.221) (0.208) (0.217) (0.235) (0.228) (0.235) (0.229) (0.233)
Log(Other Road Density) 0.022 0.154 0.046 0.198 0.249* 0.136 0.236* 0.158 0.166 0.242*

(0.137) (0.143) (0.144) (0.139) (0.134) (0.134) (0.132) (0.139) (0.131) (0.138)
Motorway Link Dummy 0.098 0.118 0.106 0.068 0.100 0.996*** 1.006*** 1.000*** 0.978*** 1.005***

(0.072) (0.072) (0.072) (0.072) (0.074) (0.078) (0.078) (0.078) (0.078) (0.078)
Fuel Stations 0.133*** 0.155*** 0.156*** 0.103*** 0.121*** 0.296*** 0.308*** 0.306*** 0.272*** 0.289***

(0.016) (0.010) (0.015) (0.012) (0.013) (0.018) (0.016) (0.017) (0.017) (0.017)
log(Power Line Density) -0.025 -0.105 -0.047 -0.025 -0.108 0.114 0.071 0.099 0.146 0.085

(0.071) (0.067) (0.076) (0.065) (0.067) (0.114) (0.114) (0.113) (0.115) (0.116)
Grid Intersections 0.002*** 0.003*** 0.003*** 0.001*** 0.002*** 0.003*** 0.003*** 0.003*** 0.002*** 0.003***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001)
Power Plants 0.054** 0.060*** 0.054** 0.053** 0.054** 0.010 0.012 0.010 0.009 0.009

(0.023) (0.023) (0.023) (0.022) (0.023) (0.012) (0.012) (0.012) (0.012) (0.012)
Neighbor Power Plant 0.005 0.008 0.006 0.004 0.007 -0.001 0.000 -0.001 -0.002 -0.000

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.007)
Amenity 0.005*** 0.002***

(0.001) (0.001)
Dispersion Parameter 2.182*** 2.105*** 2.127*** 2.237*** 2.141*** 0.837*** 0.832*** 0.834*** 0.847*** 0.834***

(0.165) (0.141) (0.161) (0.155) (0.152) (0.047) (0.047) (0.047) (0.048) (0.047)
Shopping 0.017*** 0.005***

(0.003) (0.002)
Food and Beverages 0.008*** 0.003**

(0.003) (0.001)
Errands 0.025*** 0.015***

(0.002) (0.002)
Daily Essentials 0.052*** 0.024***

(0.007) (0.006)
Number of Postcode Areas 8170 8170 8170 8170 8170 8170 8170 8170 8170 8170
𝑅2

𝐴𝑑𝑗. 0.146 0.140 0.143 0.148 0.143 0.123 0.122 0.123 0.125 0.123
FE: Municipality Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: Constant term included but not shown. Robust standard errors are clustered at the municipality level and reported in parentheses.
The dependent variable is the log-count of EV charging stations, i.e., Normal (columns 1-5) and Fast (columns 6-10).
*: Significant at the 10% level. **: Significant at the 5% level. ***: Significant at the 1% level.

few notable differences for certain variables. First, the Motorway Link Dummy remains

consistently insignificant when normal chargers are used as the dependent variable (see

columns (1) through (5)), but it is statistically significant at the 1% level in the case

of fast chargers as the dependent variable. This suggests that motorway links have a

significant impact on the placement of fast chargers, highlighting their strong association

with the highway network, where quick charging is essential. In contrast, the insignificant

effect of motorway links on normal chargers may be attributed to normal chargers being

commonly found in locations where users spend longer periods, such as residential areas

or commercial centers, rather than along major highways.

For electricity supply variables, the number of power plants is significant in the case

of normal chargers but not for fast chargers. This implies that the presence of power

plants in a postcode area is more likely to influence the placement of normal chargers.

One possible explanation is that normal chargers, which typically operate over longer

periods, may be more dependent on a stable and accessible electricity supply, making

proximity to power plants more relevant for their placement. In contrast, fast chargers,

which require high power for short bursts, may rely on specialized infrastructure or grid

connections that are not as closely tied to the number of nearby power plants.

Despite all regression results indicating significant overdispersion in the count of chargers

and justifying the use of the negative binomial estimation approach, we also conducted
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the analysis using the OLS estimation technique as a sensitivity check. The OLS results,

as shown in Table 6, are largely consistent with the negative binomial regression, with

only a few exceptions. Notably, population density remains statistically insignificant

across all specifications in the OLS models, contrasting with its significance in the nega-

tive binomial approach. This suggests that while population density may play a role in

the presence of overdispersion, which the OLS method might not capture effectively.

Motorway road density shows statistical significance only in the case of fast chargers,

reinforcing the idea that fast chargers are closely associated with major highways where

quick access is crucial. In contrast, other road density remains generally significant across

models, unlike the results in Table 1, suggesting its influence on charger placement when

overdispersion is not accounted for. Overall, the OLS results are largely consistent with

those from the negative binomial regression, indicating the robustness of the findings.

However, the few differences observed, such as the insignificance of population density in

the OLS models, highlight the importance of addressing overdispersion when analyzing

count data, as effectively done by the negative binomial model.

5 Conclusion

In the effort to decarbonize the economy and combat climate change, EVs have emerged

as a crucial component for reducing emissions in the transport sector. Yet, the successful

and widespread adoption of EVs depends heavily on the presence of a well-developed

charging infrastructure, which helps mitigate range anxiety and accommodates the in-

creasing number of EVs on the road. In this paper, we analyse the factors that affect the

spatial distribution of EV charging stations across all postcode areas in Germany. Our

results highlight the importance of population density, road networks, local amenities,

fuel stations, and electric grid infrastructure in influencing charger placement, empha-

sizing their essential role in strategic planning and policy formulation.

Our analysis shows a strong positive relationship between population density and the

number of charging stations, highlighting the importance of prioritizing infrastructure

development in urban areas, where demand is highest. This finding implies that urban

planners and policymakers should focus on densely populated regions when allocating

resources for charging infrastructure to ensure sufficient access for EV users. Further-

more, the strategic positioning of chargers along major transportation routes, such as

highways and motorway links, proves to be essential. Specifically, our results indicate
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that while proximity to major highways is especially relevant for fast chargers, it holds

less significance for normal chargers. This distinction underscores the need to place fast

chargers near highways to facilitate long-distance travel and reduce range anxiety.

The analysis also reveals the relationship between amenity variables and the distribution

of charging stations, highlighting how local amenities drive demand for charging infras-

tructure. Our findings show that the presence of amenities like shopping centers, food

and beverage outlets, and daily essentials have a positive impact on the placement of

chargers, particularly normal chargers. This suggests that policymakers should factor

in the proximity of essential services when planning charger placement, especially in

residential neighborhoods and areas with high consumer traffic. In this regard, collab-

orating with supermarkets, retail outlets, and fuel stations could increase accessibility

and convenience for EV users while offering potential revenue opportunities for these

businesses.

Furthermore, the statistically significant effect of electric grid infrastructure highlights

the necessity of ensuring local electricity availability and strong grid connectivity when

determining charger placement. Our findings suggest that while the presence of power

plants significantly influences the distribution of normal chargers, it does not have the

same impact on fast chargers. This indicates that proximity to power sources is more

critical for sustained, slower charging. Policymakers should tailor infrastructure devel-

opment to these differing needs: prioritizing normal chargers for overnight charging in

residential areas and focusing on fast charging infrastructure along major transportation

routes, where rapid, high-power charging is essential.

While our analysis offers insights into the factors that influence the placement of EV

charging infrastructure, we acknowledge certain limitations. First, our focus is primarily

on the determinants of existing charging infrastructure. The rapidly evolving nature

of EV adoption and advancements in charging technology may shift these factors over

time. Future research could investigate the impact of emerging technologies, such as

wireless charging or ultra-fast chargers, on infrastructure planning and explore how these

innovations might be seamlessly integrated into urban development strategies.

Second, although our analysis emphasizes variables like population density, road net-

works, amenities, and grid infrastructure, it does not fully address the behavioral dimen-

sions of EV users, such as their charging preferences and travel habits. Understanding

these behavioral patterns is vital for optimizing charger placement. Future research
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could incorporate survey-based insights or real-time usage data to provide a more nu-

anced understanding of user behavior. Lastly, our analysis reflects a policy landscape

that is subject to change, providing a snapshot based on current regulations and in-

centives. Future studies should account for how evolving policies might reshape the

accessibility and distribution of charging infrastructure. By addressing these limitations

to complement our analysis, policymakers and urban planners can more effectively sup-

port the transition to electric mobility and contribute to broader environmental and

sustainability goals.
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6 Appendix

Table 4: Amenities
Variable Included Amenities (OSM Labels)

Errands bakery, post_box, kiosk, atm, post office
Food and Beverages cafe, restaurant, beverages, biergarten, fast_food, pub, bar
Shopping mobile_phone, garden_centre, books, computer, toys, Florist, shoe, Bicycle,
- jeweller, sports_shop, department_store, optician
Daily Essentials greengrocer, pharmacy, butcher, supermarket

Table 5: Descriptive Statistics of Variables
Variables N Mean SD Min Max

Chargers: Total 8170 7.64 17.59 0 524
Chargers: Normal 8170 6.23 16.54 0 523
Chargers: Fast 8170 1.41 3.11 0 53
Density: Population 8170 923.6 2228 0 26646
Density: Other Roads 8170 0.73 0.93 0 11.77
Density: Motorway Roads 8170 0.11 0.24 0 2.6
Amenities: All 8170 54.54 70.1 0 1122
Amenities: Errands 8170 18.56 17.99 0 202
Amenities: Shopping 8170 23.14 37.5 0 778
Amenities: Food and Beverages 8170 7.01 13.15 0 162
Amenities: Daily Essentials 8170 5.82 6.67 0 61
Motorway Link 8170 0.27 0.45 0 1
Fuel Stations 8170 2.36 2.12 1 18
Power Line Density 8170 0.24 0.33 0 3.75
Grid Intersections 8170 41.79 53.9 0 625
Power Plants 8170 0.25 1.32 0 38
Neighbor Power Plants 8170 1.57 3.5 0 46
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Figure 5: Correlation among variables

Table 6: Regression Results: OLS Estimation – Normal vs. Fast Chargers
All Normal Chargers Fast Chargers

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Log(Population Density) 0.134 0.086 0.228 0.285 0.113 -0.220 0.048 0.062 0.063 0.035 0.040

(0.305) (0.279) (0.262) (0.280) (0.265) (0.310) (0.047) (0.047) (0.047) (0.047) (0.048)
Log(Motorway Density) 4.562 3.606 2.903 3.279 3.574 3.130 0.955** 0.896** 0.926** 0.999** 0.904**

(3.597) (3.536) (3.472) (3.549) (3.498) (3.494) (0.451) (0.447) (0.451) (0.450) (0.447)
Log(Other Road Density) 2.714* 2.243 2.956* 2.589* 3.634** 3.718** 0.471*** 0.548*** 0.510*** 0.513*** 0.598***

(1.515) (1.487) (1.536) (1.471) (1.657) (1.536) (0.178) (0.178) (0.174) (0.184) (0.184)
Motorway Link Dummy 1.474 0.285 0.446 0.362 0.072 0.348 1.188*** 1.200*** 1.194*** 1.163*** 1.195***

(1.024) (1.010) (1.008) (1.009) (1.014) (1.006) (0.134) (0.134) (0.134) (0.134) (0.134)
Fuel Stations 1.702*** 1.089*** 1.222*** 1.268*** 0.882*** 0.915*** 0.612*** 0.624*** 0.625*** 0.584*** 0.608***

(0.189) (0.178) (0.142) (0.165) (0.136) (0.159) (0.029) (0.028) (0.028) (0.029) (0.029)
log(Power Line Density) 0.235 0.205 -0.267 -0.002 0.126 -0.268 0.030 -0.011 0.010 0.055 -0.014

(0.774) (0.739) (0.702) (0.750) (0.713) (0.741) (0.152) (0.153) (0.151) (0.154) (0.153)
Grid Intersections 0.013** 0.010* 0.016*** 0.015*** 0.002 0.009* 0.002** 0.003*** 0.003*** 0.001 0.002**

(0.006) (0.006) (0.006) (0.006) (0.006) (0.005) (0.001) (0.001) (0.001) (0.001) (0.001)
Power Plants 0.994** 0.957** 0.998** 0.948** 0.955** 0.946** 0.036 0.039 0.036 0.036 0.036

(0.413) (0.400) (0.403) (0.400) (0.399) (0.399) (0.029) (0.029) (0.029) (0.029) (0.029)
Neighbor Power Plant -0.011 -0.011 0.005 -0.010 -0.016 -0.003 0.000 0.001 0.000 -0.001 0.001

(0.073) (0.070) (0.070) (0.070) (0.069) (0.070) (0.011) (0.011) (0.011) (0.011) (0.011)
Amenity 0.049*** 0.045*** 0.003***

(0.012) (0.011) (0.001)
Shopping 0.171*** 0.010***

(0.032) (0.004)
Food and Beverages 0.067*** 0.004***

(0.024) (0.002)
Errands 0.201*** 0.019***

(0.025) (0.004)
Daily Essentials 0.485*** 0.026**

(0.094) (0.010)
Number of Postcode Areas 8170 8170 8170 8170 8170 8170 8170 8170 8170 8170 8170
𝑅2

𝐴𝑑𝑗. 0.254 0.205 0.199 0.201 0.204 0.202 0.341 0.340 0.341 0.343 0.341
FE: Municipality Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: Constant term included but not shown. Robust standard errors are clustered at the municipality level and reported in parentheses.
The dependent variable is the log-count of EV charging stations, i.e., All (column 1), Normal (column 2-6), and Fast Chargers (column 7-11).
*: Significant at the 10% level. **: Significant at the 5% level. ***: Significant at the 1% level.
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