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Abstract

In this paper, we revisit the empirical observation that prices rise like rockets
when input costs increase but fall like feathers when input costs decrease. The
analysis draws on a novel dataset that include daily retail prices of gasoline and
diesel from virtually all fuel stations in Germany over the period from January
1, 2014 to December 31, 2018. Our findings from the national, state-specific and
station-level analyses based on an asymmetric error correction model indicate
that asymmetric pricing is the norm rather than exception. Specifically, we find
empirical evidence that points to a pervasive rockets-and-feathers pattern. We also
find that asymmetric pricing in the German retail fuel market might partly be
the consequence of tacit collusion among competitors as well as disparate search
intensity on the part of consumers. We further show that temporal aggregation of
station-level price data might lead to inaccurate inferences and could account for
the contradictory findings in the extant literature.
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1 Introduction

In this paper, we revisit the debate on the asymmetric response of retail fuel prices
to crude oil price changes. Retail fuel pricing remains an area of significant interest for
motorists, the media, and regulatory authorities in many countries including Germany.
There exists the widespread and persistent public perception that oil companies are quick
to adjust retail prices and hence profit margins in response to input cost increases rather
than decreases – a behavior characterized as the rockets-and-feathers phenomenon (Ba-
con, 1991).1 This affects the welfare of consumers as disparities regarding the speed of
adjustment of retail prices to input cost increases or decreases are indicative of the fact
that some market participants do not benefit fully from price changes possible under
symmetric adjustment conditions.

Consequently, the retail segments of gasoline and diesel markets, in particular, have
been the subject of regulatory and antitrust scrutiny in many countries, in some cases
resulting in charges, convictions and hefty fines.2 For Germany, the Federal Cartel Office
(FCO) conducted an inquiry in 2008 in response to consumer concerns and found the
existence of a dominant oligopoly. The oligopoly consists of five firms that not only have
a nationwide network of fuel stations but have significant access to refinery capacity that
further amplifies their collective dominance and market power (Bundeskartellamt, 2011).3

Competition and price setting behavior in gasoline and diesel retailing have also been
the subject of intensive research (see Eckert, 2013; Periguero-Garía, 2013). With respect to
the underlying causes, tacit collusion and the consumer search theory have been offered
to explain the asymmetric pass-through of input cost changes to retail prices. Earlier
studies such as Borenstein et al. (1997), for example, motivate the rockets-and-feathers
pattern with a stylized version of the “trigger price” model of oligopolistic coordination
(Green and Porter, 1984). That is, as retailers typically operate with thin margins, they
respond swiftly to significant input cost increases with less regard for the pricing behavior
of competitors. For a negative cost shock, on the other hand, the retail price in the
previous period serves as the benchmark for price coordination. The prior retail price is
maintained until one of the firms reneges on the tacit agreement and thereby triggers a
price war.4 Although rigorous theory underlying tacit collusion as a profit maximizing
strategy for retailers is limited, empirical evidence lends credence to this hypothesis and
is often cited as a determinant of asymmetric pricing (Verlinda, 2008; Lewis, 2011).

1See Trauthig (2014), Eckert (2016) and Siedenbiedel (2018) for examples of recent discussions in the
German media on the pass-through of crude oil price changes to consumers.

2A series of investigations in 2008, 2010 and 2012 by the Canadian Competition Bureau into a gasoline
price fixing conspiracy, for example, resulted in numerous guilty pleas, substantial fines of about $ 4 million
and the imprisonment of some individuals (Competition Bureau Canada, 2017).

3These are BP (Aral), ConocoPhilipps (Jet), ExxonMobil (Esso), Shell and Total.
4Asymmetric pricing due to tacit collusion has also been shown to exist in competitive markets (see

Balke et al., 1998).
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In a perfectly competitive market, however, firms earn zero profits and input cost
changes are transmitted to consumers symmetrically. The market outcome changes, on
the other hand, if consumers have imperfect information about market prices and if a
significant proportion of consumers have non-zero search costs. In this case, firms are
able to extract information rent from consumers. Asymmetric response of firms to input
cost changes, therefore, emerges naturally as a consequence of consumer search behavior.
The theoretical search-based models offer different predictions of how consumers’ search
efforts relate to asymmetric pricing by firms.

Yang and Ye (2008) and Tappata (2009), for example, suggest that searching activi-
ties by consumers can result in equilibrium asymmetric pricing if there is higher incentive
to search for better prices when input costs are low. Although consumers have an imper-
fect knowledge of the input costs of firms, they learn whether the input costs are high or
low by means of market search and by their purchasing decisions. At high input costs,
variability in prices reduces as firms have less flexibility in setting prices. In contrast, at
low input costs, retail prices are more dispersed and consumers with positive search costs
anticipate higher gains from increased search activities. The intensity of search therefore
increases when consumers perceive input costs to be low and vice versa. Consequently, at
high input costs with lower search activities due to less price dispersion, if an unexpected
negative cost shock occurs, firms may have less incentive to adjust retail prices to reflect
the cost changes. The asymmetric search intensity, thus, leads to consumers being less
knowledgeable about input cost decreases and enables firms to extract information rent
in the short-run.

The search model by Lewis (2011), on the other hand, shows that consumers’ ex-
pectations of price development are based on past realizations such that following an
input cost increase, consumers anticipate lower and more dispersed prices and vice versa.
In essence, consumers search more actively when prices are rising than when prices are
falling. The adaptive expectation of retail prices causes asymmetric search incentive on
the part of consumers and consequently leads to asymmetric pricing by firms. Cabral and
Gilbukh (2019) also show that consumers search more when prices are high or increasing.
Empirical evidence by Hastings and Shapiro (2013) has validated these findings by show-
ing the increased sensitivity of consumers to price increases. Asymmetric retail pricing
in equilibrium may therefore occur if consumers’ search intensity soars due to increased
price sensitivity.

Despite the increased traction of these two explanations in the literature, the empir-
ical findings are rather mixed both within the same as well as across different countries,
where evidence for and against asymmetric pricing has been shown (Periguero-Garía,
2013). Empirical studies on German data follow the trend in the broad empirical liter-
ature toward inconclusive findings. For example, while Kirchgässner and Kübler (1992)
reject the hypothesis of symmetric adjustment for the period 1972–1979, the authors find
symmetric adjustment of spot gasoline prices to retail prices between 1980 and 1989.
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Other studies find evidence of asymmetric adjustment of spot and retail gasoline prices
to crude oil price changes in datasets spanning a period from 1980 to the early 2000s (see
Lanza, 1991; Galeotti et al., 2003; Grasso and Manera, 2007).

Moreover, recent findings for Germany by Kristoufek and Lunackova (2015) using
weekly average national retail gasoline data from 1996 to 2014 find no statistically sig-
nificant asymmetric gasoline pricing. Asane-Otoo and Schneider (2015) find the rockets-
and-feathers pattern in the gasoline and diesel markets for the period 2003–2007. For the
period 2009–2013, on the other hand, the authors find symmetric and negative asymmet-
ric adjustment for diesel and gasoline, respectively.5 Although, Bagnai and Ospica (2016)
employ monthly average national retail gasoline data between 1999 and 2015, the results
point to a negative asymmetry, reflecting the findings of Asane-Otoo and Schneider (2015)
that retail prices adjust more swiftly to input cost decreases rather than increases.

As shown by the above-mentioned studies, the empirical findings specifically for
Germany are inconclusive. The diverse findings in the extant literature may partly be
attributed to the temporal and spatial aggregation of price data. Because station-level fuel
prices change frequently within a given day, low frequency price data do not adequately
reflects the frequency of price decisions at the station level or short-run input cost changes.
This implies that the frequency of adjustment to input cost shocks or daily price volatilities
cannot be detected using weekly or monthly data as is often done in the empirical literature
to date.

To the best of our knowledge, all studies that focus on Germany rely on price data
aggregated across fuel stations to obtain average prices at either the national level or
the city level. This form of spatial aggregation ignores obvious heterogeneity across fuel
stations such as differences in pricing strategy, locational competition environment and the
degree of price adjustments. Spatial differences among different regional or sub-regional
markets with respect to market structure might also be at odds with that of the aggregate
national market.

Spatial and temporal aggregation of data might therefore compromise the validity
of the estimations since time series of heterogeneous fuel stations might exhibit dynamics
that differ distinctly from cross-sectionally aggregated time series data (e.g. Granger,
1980; Pesaran and Smith, 1995; Pesaran and Chudik, 2014). Moreover, while rockets-and-
feathers empirical studies abound, none of the studies on Germany attempt to empirically
test the underlying cause of the observed pricing pattern. They also fail to focus on the
price effects of other factors such as local competition, as reflected in prices of neighboring
fuel stations, and weather conditions such as ambient temperature, precipitation and snow
depth. Most of the rockets-and-feathers literature relies solely on price data and largely
ignores the degree of local or spatial competition and the impact of weather conditions on
demand, even though such factors influence price changes and are inherent in the pricing

5Negative asymmetry is defined as the reverse of the rockets-and-feathers pattern.
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decisions at the station level.
While the lack of firm-level data limits the scope of previous studies in addressing

the issues mentioned above, our analysis draws on price data that spans virtually all fuel
stations in Germany. The advantage of using this novel dataset in a market without
price restrictions is twofold. First, the data allow us to include all individual stations and
conduct our analysis at the station level, where the pricing decision normally occurs. Thus,
in addition to providing a comprehensive view of retail market competition at the national
level, we are also able to examine differences in price adjustment across geographically
diverse fuel stations following crude oil price changes. Our analysis therefore provides a
complete representation of retail market competition and goes beyond the “representative
agent” assumption that is implicit in all the empirical studies that focus on the German
retail market.6

Second, it is worth noting that besides the five vertically integrated dominant oil
companies, there are other integrated oil companies as well as small-to-medium sized in-
dependent retailers with varied footprints in different regions. Hence, the dataset also
permits us to abstract regional market competition from nationwide competition since
spatial market competition might differ across regions due to differences in market struc-
ture. Moreover, we provide a comprehensive analysis of the two most important fuel types
– gasoline (E5) and diesel – that are vital for road transport in Germany.

The remainder of the paper is organized as follows. Section 2 provides a brief
description of the retail fuel market in Germany and the data used for the analysis.
Section 3 outlines the empirical strategy, Section 4 provides a summary of the findings
and Section 5 concludes.

2 Market and Data

2.1 German Fuel Market and Station-Level Data

Fuel prices and, more generally, the market for fuel in Germany, have long been a
subject of intense public debate, mostly because of their relevance to commuters. The
public discourse ranges from discussion of annual price increases during holiday and va-
cation seasons (especially summer), to suspicion of common and coordinated pricing, all
the way to a general skepticism about the composition of fuels or the ingredients used in
certain fuel types. While some of these concerns and accusations are aimed at the gov-
ernment, others are targeted at distributors of fuel (i.e., brands) and their respective fuel
stations. Gasoline and diesel are the main fuel types sold by fuel stations in Germany.7

6In effect, we are able to examine the effect of data aggregation on the parameters and the adjustment
process.

7Gasoline can be distinguished into “Super E5” – with up to 5% of ethanol – or “Super E10” – with
up to 10% ethanol. However, the market share of E10 fuel type has been rather low in comparison with
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A large share of the retail market is operated by only a small number of brands.
Our data show that 49.71% of the fuel stations in Germany are run by Aral (15.41%),
Shell (11.81%), Esso (6.87), Total (5.81%), AVIA (5.41%), or JET (4.40%). Another
22.37% of fuel stations are run by 9 other brands while the remaining 27.92% of fuel
stations are operated by 61 smaller or independent brands. This distribution reflects a
high concentration of market shares among the brand competitors and is indicative of an
oligopolistic market structure. It is worth noting that the market shares do not consider
station heterogeneity, e.g., in terms of sales quantity and revenues, number of pumps,
opening hours, location (e.g., near a motorway or major road), or other services such as
car washes. These characteristics might indeed contribute to further market concentration
(Haucap et al., 2017). The FCO, for example, reports that the combined share of the five
oligopolies in nationwide sales volume is more than 70% (Bundeskartellamt, 2011).

Gasoline and diesel products sold at the various fuel stations are fairly identical
and the high degree of product homogeneity signals the vital role of prices in the retail
industry. Station operators and brands are entirely responsible for all pricing decisions
and the degree and frequency of price changes are not regulated.8 In recent years, the
degree to which consumers can compare prices across fuel stations in a local market has
improved significantly due to the plethora of online platforms that offer such services.
Market transparency in the retail fuel market is therefore much higher than in other
markets, but at the cost of an increased frequency of price adjustment (BMWi, 2018).

The increased level of price transparency for both consumers and suppliers has been
facilitated by the establishment of the FCO’s market transparency unit (Markttransparen-
zstelle für Kraftstoffe, MTS-K). Since the end of 2013, all fuel stations are obliged to report
all price changes for Super E5, Super E10, and regular diesel fuel to the MTS-K prior to
an effective price change at the station-level. The price information is then transmitted
to all the information service providers or platforms. These service providers then make
the price information available to consumers on their websites or apps for free.9 The
MTS-K database and associated platforms offer an overview of the level and development
of fuel prices with the aims of enabling consumers to make informed decision and pro-
mote competition among fuel stations and fuel brands. These services have considerably
reduced the search cost for consumers and allowed consumers to access real-time prices.
On the other hand, they have also improved the capability of retailers to compare prices
of competitors, both within and outside their local market. Our analysis relies on this
comprehensive novel dataset that covers all fuel stations with exact time stamps for all
price quotes.

E5, which accounts for approximately 85% of fuel sales in Germany (BDBe, 2017)
8Unlike independent fuel stations, the pricing decision might be partly centralized for stations of major

brands, i.e., the individual stations may have a limited role in the pricing decision.
9e.g., https://www.clevertanken.de, https://www.spritmonitor.de, https://www.

bottledsoftware.de
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Figure 1: Spatial Distribution of Fuel Stations in Germany
Source: Own illustration based on shapefiles obtained from the Natural Earth Database

(http://www.naturalearthdata.com/downloads/10m-cultural-vectors/)
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Given that fuel stations face no restrictions on the frequency of intra-day price
changes, there may be multiple observations of a station per day. In order to assess price
changes on an inter-day basis, daily averages are therefore calculated. In our analysis,
average retail prices are nominal consumer prices at the pump in euros (cents) per liter.
The prices are gross of taxes and duties – that is, they include energy taxes, value-added
taxes, as well as a fee for the Petroleum Stockholding Association. Overall, we can
observe daily prices for 15, 228 distinct fuel stations in Germany for the period starting
from the January 1, 2014 to December 31, 2018.10 As illustrated in Figure 1, showing
the geographical distribution of all fuel stations in Germany, fuel stations are widely but
unevenly distributed across cities and regions in Germany. The map shows a clear gradient
between the east and west of Germany, and there is a high concentration of fuel stations
in densely populated areas as well as along the Bundesautobahn or highway network.

In addition to the retail price data, the MTS-K dataset also provides station-specific
data such as opening and closing hours, geographical coordinates, and brand affiliation
of all the fuel stations.11 To take into account the responsiveness of retail prices to
variations in input cost, we use daily spot Brent (Europe) crude oil price obtained from
the U.S. Energy Information Administration (EIA, 2019). The Brent crude oil prices (in
dollars/barrel) are converted to euros/barrel using the exchange rate data provided by
the International Monetary Fund.12

2.2 Neighbor Prices

The impact of local competition or neighborhood effect on station level pricing has
been investigated by other authors (Hosken et al., 2008; Atkinson, 2009). To account for
the role of local competition on price setting decisions at the station level, we include
the average fuel prices for neighboring fuel stations in our model specification. As sta-
tions adapt their prices to those of nearby competitors within a given range, we assume
that competition in the local market increases with geographic proximity. As a result,
we calculate the average price of neighboring fuel stations within a range of 2 and 5 km,
respectively. For all fuel stations, the complete address, as well as the georeferenced coor-
dinates are available, so that the exact location of each station is known. This information
makes it possible to compute the linear distance in kilometers between the stations using
the Haversine formula (1):

10The Markttransparenzstelle became operational as early as September 2013, but technical difficulties
in the early stage led to missing observations and incomplete data for December 2013 and earlier.

11About 70 distinct brands can be identified in the dataset.
12see, https://www.imf.org/external/np/fin/ert/GUI/Pages/CountryDataBase.aspx
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dij = 2R arctan
( √

θ√
1− θ

)
(1)

where θ = sin2
(
lati − latj

2

)
+ cos(lati) cos(latj) sin2

(
loni − lonj

2

)

The MTS-K database not only permits fuel stations to adjust their prices to reflect
the real-time prices in the local market, but also allows consumers to track price move-
ments. If significant price differences exist, it might be economical for the individual to
accept a detour. Of course, whether a detour is considered economical depends on various
factors, including the price difference per liter, the quantity of fuel needed, the mileage
of the car, or generally if there is pressure of time. Using the Haversine formula implies
considering the linear or “beeline” distance, i.e., a very simplified scenario. This approach
applies mainly to a priori distance filters on price comparison websites or apps. How-
ever, it does not necessarily portray the behavior of customers with local knowledge, who
are aware of actual driving routes and distances. That notwithstanding, linear distances
have been used widely in prior research, mostly because of their intuitiveness and easy
calculation.

We assume that fuel stations are influenced by other stations in a given radius κ,
regardless of the actual driving time or distance. In the standard setting, the radius or
threshold is set to κ = 5 km.13 The influence of competitors is assumed to be decreasing
with distance. The spatial weights matrix is then constructed according to the rule
described in equation (2), where δij is the pairwise weight assigned to stations i and
j. By definition, the distance from any station to itself is set to 0, so that all diagonal
elements of the matrix are equal to 0.

δij =


d−1

ij if 0 < dij ≤ κ

0 if dij > κ

0 if dij = 0, i.e., i = j

(2)

Multiplying the weight matrix by the price vector then yields the distance-weighted mean
of neighbor prices within a distance of 5 km, excluding the respective station under
consideration.

2.3 Public and School Holiday Data

A potential determinant of fuel price changes that is mentioned in the public dis-
cussions are public and school holidays. These periods are likely to affect fuel pricing

13Choosing a distance of 5 km reduces the number of fuel stations without neighbors. In this case, we
identify only 939 stations in the full sample that have no neighbor within 5 km. For further robustness
testing, other truncation distances (such as κ =2 km) are also considered.
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strategies as they cause changes in commuting and travel behavior. While there is a
perceived notion of increased traffic and congested roads, especially at the beginning of
the holiday season, other areas show a reduction in traffic counts (Cools et al., 2007; Jun,
2010). Either way, the seasons around holidays and vacations can be expected to have an
effect on the demand for fuel and overall fuel consumption. The German Federal Ministry
of the Interior (Bundesministerium des Innern) recognizes nine national public holidays
every year. Additionally, there are about eight other public holidays that are celebrated
in individual federal states (e.g., “Buß- und Bettag” in Saxony) or groups of federal states.
The beginning and the duration of school holidays (Christmas, winter, spring, summer,
and autumn holidays), on the other hand, are decided upon every year by the Standing
Conference of Ministers of Education and Cultural Affairs (Ständige Kultusministerkon-
ferenz) of the individual federal states. This is done to mitigate effects such as those on
traffic, demand for vehicular fuel, and leisure activities.

2.4 Weather Data

To understand the station-level pricing behavior, it is worth considering possible
determinants of fuel demand. Apart from reflecting seasonality, local weather conditions
play a pivotal role in the day-to-day choice of the mode of transportation. Böcker et al.
(2013) conclude that favorable weather conditions promote active modes of transportation
(e.g., walking or cycling), whereas, commuters tend to switch to motorized transportation
(e.g., individual driving or public services) when experiencing adverse weather conditions.
This is mainly for reasons of convenience and perceived safety. Several authors have
shown, for example, that adverse weather conditions such as rainfall or snow tend to
increase traffic and lead to increased travel times as a consequence of congested roads
(Koetse and Rietveld, 2009; Rakha et al., 2012; Tsapakis et al., 2013). It has also been
shown that individuals react to weather variability differently, mainly depending on their
commuter status. While local residents are inclined to switch to public transportation,
commuters strongly rely on independent mobility (Liu et al., 2015; Singhal et al., 2014).
For them, adverse weather implies the need for trip chaining, ultimately affecting the
number of kilometers traveled (Liu et al., 2016).

Daily data on weather conditions in Germany are collected as part of the Euro-
pean Climate Assessment and Dataset (ECA&D) (Klein Tank et al., 2002). In total,
the dataset contains information on 5,617 meteorological stations which record observa-
tions including mean ambient temperature, precipitation amount and snow depth. Data
availability for the different measures varies across stations, i.e., some stations have data
on all three measures, while others have data on fewer measures. For all meteorological
stations, the exact geographical coordinates are also given such that for each fuel station,
the corresponding weather station(s) can be assigned. To cope with missing data, the
information from the nearest 20 neighboring weather stations is averaged using inverse
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linear distances as weights to approximate the local weather conditions.14

3 Estimation

To investigate the response of retail prices at the fuel station level to crude oil price
changes, we first examine the degree of integration of the price series. Our retail price
dataset covers 15, 228 individual fuel stations that are observed over a total of 1, 825 days.
Of those, only stations with at least two years, i.e., 730 days of observation, are employed
in the regression sample to ensure a sufficient number of observations per station. This
leaves 20, 398, 279 data points, across a total of 11, 978 stations. We adopt two strategies
in testing the order of integration of the retail fuel prices. First, we apply the Augmented
Dickey-Fuller unit root test to the crude oil and the retail prices of the individual stations.
Optimal lag length are selected using the Akaike Information Criterion (AIC).

We find that the null hypothesis of non-stationarity cannot be rejected for the crude
oil price at the 1% significance level. Similarly, the results show that 98.58% of the
individual station-level retail prices, i.e., 11,808 stations, are I(1). Second, given that
our dataset can be differentiated across regions (federal states or Bundesländer), we also
exploit both the cross-sectional and time dimensions of the dataset and apply the Fisher-
type panel unit root test to verify the stationarity of the panel of retail prices for the whole
country as well as for all the 16 Bundesländer. The panel unit root test results again
show that the null hypothesis of non-stationarity cannot be rejected at all conventional
significance level for retail prices in Germany as a whole (see Table 7) as well as for all
the individual federal states.15

Having established the order of integration of the price series, we test whether the
underlying price series are cointegrated using the Engle-Granger residual-based cointe-
gration test (Granger and Engle, 1987). The long-run relationship between the retail and
the crude oil prices is first estimated as follows:

pist = σi + θwpt + δdit + ξist (3)

Here pist denotes the retail fuel price series, specific to station i in state s at time t.
σi denotes the time-invariant station-specific fixed effect which controls out unobserved
heterogeneity or time-invariant omitted variables that differ across individual fuel stations.
These include brand type, ownership type, station density (number of stations within the

14The number of 20 neighboring weather stations is chosen arbitrarily to ensure, on the one hand,
sufficient variation across stations and on the other hand, to attain robust averages of regional weather
conditions.

15Unit root tests for the crude oil price, station-level price series and the panel data are all specified
with a linear trend. All the station- and state-level unit root and residual-based cointegration tests are
available upon request.
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local market), associated facilities such as convenience or kiosk-type stores, car washes
etc. We are of the view that these station characteristics change little if at all over the
time period under consideration.

Estimating equation (3) with the station fixed-effects also allows us to account for
different long-run margins across the individual stations. wpt denotes the underlying
series of Brent crude oil prices while dit denotes state-specific dummy variables for public
holidays and start of school holidays (= 1 if a day is a holiday in state s and 0 otherwise).
It also captures a set of dummy variables that denote the specific days of the week. These
dummy variables are included to control for demand-side effects associated with specific
days of the week, and with public and school holidays. In equation (3), θ denotes the
cointegrating or pass-through coefficient and ξist is the residual, which captures the gap
between the retail price and its long-run equilibrium value.16

For the two price series to be linearly cointegrated, the estimated error term ξist

should be stationary. We apply the Augmented Dickey-Fuller unit root tests to the
residuals. With respect to the individual station-level time series estimation, we find that
the retail prices of about 99.82 % of the fuel stations in Germany are cointegrated with
the crude oil price series. For the panel estimations, we find that all the underlying retail
price series are cointegrated with the crude oil price (see Table 8 for the residual-based
cointegration tests for the German panel).

Since the underlying price series are I(1) and cointegrated, we can specify an error
correction model (ECM) to reflect both the long-run and short-run dynamics of retail fuel
prices (Granger and Engle, 1987) as follows:

4pist = αi + φξist−1 +
M∑

m=1
βm4pist−m +

N∑
n=o

λn4wpist−n + εist (4)

In equation (4), 4 is the first difference operator, M and N refer to the number of lags of
the underlying retail price and the crude oil price, respectively. The coefficients βm and
λn capture the respective short-run impacts of lagged changes in retail prices and current
and lagged changes in crude oil price. ξist−1 is the error correction term – the one-period
lagged residual derived from the cointegrating regression in equation (3). ξist−1 expresses
the prior disequilibrium from the long-run relationship (i.e., deviation from the long-run
equilibrium which occurred in the previous period). That is, if ξist−1 6= 0 in equation (3),
then the model is in disequilibrium and vice versa. The coefficient φ associated with the
error correction term is the long-run equilibrium adjustment parameter and reflects the
speed of convergence towards the equilibrium retail price level. Specifically, if pist−1, for
example, is above its long-run equilibrium (ξist−1 > 0), then it should adjust back to the
long-run equilibrium in the next period and vice versa.17 Consequently, the coefficient

16To control for the repeated sampling of the crude oil price, which is invariant across stations, the
standard errors are clustered at the station level.

17ξist−1 > 0 implies positive deviation and hence a decrease in crude oil price, whereas ξist−1<0 implies
otherwise.
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associated with the error correction term should be negative.
Following Granger and Lee (1989), the symmetric ECM in equation (4) can be ex-

tended to capture asymmetric adjustments by decomposing both the error correction term
and short-run dynamics into negative and positive variables. In this case, the asymmetric
error correction model can be specified as follows:

4pist = α + φ+ξ+
ist−1 + φ−ξ−ist−1 (5)

+
M∑

m=1

(
β+

m4p+
ist−m + β−m4p−ist−m

)

+
N∑

n=0

(
λ+

n4wp+
t−n + λ−n4wp−t−n

)
+ ψ4p(−i),st−1 + π′4W + γ′4H + δ′D + τt+ εist

ξist is the estimated error term from equation (3), ξ+
ist−1 = max{ξist−1, 0} and ξ−ist−1 =

min{ξist−1, 0}. For each variable v in equation (5): 4v+ = max{4v, 0} and 4v− =
min{4v, 0}.18 Note that a plus (minus) as superscript to a coefficient is indicative of
an increase (decrease) change in the associated variable. This approach allows us to
evaluate the presence of the rockets-and-feathers phenomenon – i.e., whether crude oil
price increases are transmitted more swiftly than a corresponding price decrease. The
coefficients (φ+ and φ−) associated with the error correction terms are therefore the long-
run adjustment parameters. They reflect the speed of the adjustment process towards the
long-run equilibrium. For example, positive deviations of retail prices from equilibrium
in the previous period ξ+

ist−1 – due to a decrease in crude oil price – should return to
the equilibrium in the current period at the rate of φ+. Therefore, if |φ+| < |φ−|, then
the mean reversion of retail prices to equilibrium is faster when retail prices are below
their long-run equilibrium level – implying a crude oil price increase – and slower when
otherwise.

The α and β coefficients reflect the short-run impact of crude oil prices (both current
and lagged) and lagged retail gasoline prices, respectively. M and N are the optimal lags,
which are selected using the AIC. Again, the specification allows us to test short-run
asymmetry. That is, an F-test can be used to test the null hypotheses of short-run
symmetry (i.e., |β+

m| = |β−m| or |λ+
n | = |λ−n |).

As indicated before, local weather conditions affect the mode of transportation and
hence demand for fuel. Moreover, public holidays also alter commuting behavior and
perhaps, price setting behavior of fuel stations. To account for these demand-side effects,
we include a vector (W ) of weather related variables (precipitation, snow depth and
mean ambient temperature), a vector (H) of holidays – particularly, the start of school

18Equation (5) is estimated for (i) the entire panel for Germany, (ii) for the individual panels of the 16
Bundesländer and (iii) for the time series of individual stations.
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holidays and public holidays – as well as day-of-the-week-specific dummies. We also
include a vector (D) of month and year dummy variables to control for seasonalities and
common year-specific effects, and a linear time trend (t) is also included to account for
changes in retail prices that extend over the period. Since local competition also plays
a vital role in how fuel stations set and adjust prices, we further include the day-to-day
changes in average prices (4p(−i)) of neighboring fuel stations within 5 km to reflect the
role of local market competition.19

4 Results

4.1 Main Results

Germany as a whole. In this subsection we report the estimates for the panel of
Germany as a whole. We report the estimated coefficients for the long-run adjustment
parameters, the day-specific dummies, holiday dummies, prices of neighbors and weather
variables. Additionally, we report the F-test statistics for the long-run symmetry and
short-run symmetry hypotheses.20 Table 1 shows the estimation results of the asymmet-
ric ECM in equation (5) for the complete sample of 11, 978 fuel stations in Germany.
Column (1) shows the coefficient estimates for the baseline specification. Here, dummies
for weekdays, an interaction of month and year dummies, as well as a linear time trend
are included in the specification. The coefficients associated with positive and negative
deviations from the long-run cointegrating relationship (φ+ and φ−), as well as the lags of
(the respective positive and negative) changes in retail and crude oil prices are included.
In the subsequent columns, we include the average price of neighbors, different holiday
dummies, and weather variables, sequentially.

Focusing first on the estimates for days of the week as shown in models (1)-(4), the
results point to an intra-week pricing pattern. The coefficients associated with the specific
days of the week show increasing retail prices throughout the week. Specifically, we find
increasing retail prices heading towards the weekend as illustrated by the magnitude of
the coefficients for Friday, Saturday, and Sunday. This finding points to the presence of a
weekend effect. With respect to the effect of local competition as reflected by the average
prices of neighbors in Column (2), the estimated coefficient is positive and significant at
the 1% level across all models. This indicates that rival fuel stations within a 5 km radius
adjust prices in response to average price changes within the local market.

To assess the demand-effect of school and public holidays, we include (partly) state-

19We further conduct all the analyses by reducing the radius of local market competition to 2 km and
by using the price spread (max - min) within a local market in addition to the average price. The results
are qualitatively consistent with the main results and are available upon request.

20To ensure parsimonious reporting of the estimates, we do not report the short-run coefficients, but
they are available upon request.
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specific public and school holidays in Column (3) and (4). As public holidays and the
start of school holidays may affect fuel demand and travel behavior, there is a public
perception that retail prices increase heading into the holiday period. Public holidays in
Germany are mostly single-day events, i.e., they do not span a period of several days.21

Accordingly, we include the dummy for the contemporaneous public holiday, as well as
one lagged and two leaded values to account for proactive and sustained pricing effects.

The coefficients indicate that two days before the public holiday are already associ-
ated with moderate increases in retail prices. However, there is a much stronger increase
in retail prices on the public holiday itself. We find an instantaneous price increase of
0.541 cents. The estimate also shows a significant price decrease (0.129 cents) a day after
the public holiday, but one that is much smaller than the initial increase. As school holi-
days are longer episodes (e.g., the summer holidays last six to seven weeks), their influence
tends to be seasonal. Consequently, we focus on the first day of the school holidays, as
this is usually the day, on which the so-called wave of vacationers begins. Again, one
lagged, two leaded and the contemporaneous dummies are included. All four estimated
coefficients are positive and significant at the 1% level. In terms of their magnitude, the
contemporaneous effect of the start of school holidays is smaller (approximately 0.045
cent) than that of public holidays. This is expected as school holidays apply only to
a fraction of the population unlike public holidays. Moreover, retail prices continue to
increase a day after the start of the school holiday period. Overall, our estimates indi-
cate that not only do retail prices increase on public holidays and at the start of school
holidays; the price increases also begin two days prior to the start of holidays.

In the final specification in Column (4), daily changes in local weather conditions are
included in the regression. The rationale is that adverse weather conditions cause changes
in gasoline demand and the transport costs for crude. These, in turn, affect retail prices.
The results at the national level show that the coefficients associated with changes in
rainfall as well as in snow depth are statistically insignificant. The result contradicts the
finding that rain and snow lead to commuters switching from active modes of transporta-
tion to driving by car or public transportation (Koetse and Rietveld, 2009; Böcker et al.,
2013), which is expected to entail positive price changes, due to increased fuel demand.
This insignificant effect might be related to the widely varying frequency and amount of
snow and precipitation across different states in Germany. Due to these variations, the
net average effect on demand and hence prices might be statistically insignificant. For
changes in average temperature, the opposite applies. Here, the coefficient is negative and
significant at the 1% level. That is, if the average temperature rises, commuters tend to
take the bicycle or walk to work, leading to less traffic and a decrease in demand for fuel,
and this ultimately exerts a decreasing effect on fuel prices.22

21The only public holidays spanning two consecutive days are Christmas and the day after Christmas.
22As shown in Table 1, all other results, including the various tests for symmetry, remain qualitatively

unchanged despite the step-wise inclusion of neighboring prices, holiday, weather variables.

15



Table 1: Regression Results: Gasoline (E5) – Germany
(1) (2) (3) (4)

Baseline Neighbor Holiday Weather
Specification Effects Effects Effects

Dependent Variable: 4 Retail Price of E5 Fuel
φ+ -0.061*** (0.000) -0.060*** (0.000) -0.059*** (0.000) -0.059*** (0.000)
φ− -0.116*** (0.001) -0.116*** (0.001) -0.116*** (0.001) -0.116*** (0.001)

Tuesday 0.061*** (0.002) 0.124*** (0.002) 0.148*** (0.002) 0.148*** (0.002)
Wednesday 0.053*** (0.002) 0.088*** (0.002) 0.107*** (0.002) 0.107*** (0.002)
Thursday 0.105*** (0.002) 0.139*** (0.002) 0.136*** (0.002) 0.137*** (0.002)
Friday 0.131*** (0.002) 0.161*** (0.002) 0.177*** (0.002) 0.177*** (0.002)
Saturday 0.263*** (0.003) 0.293*** (0.003) 0.328*** (0.004) 0.328*** (0.004)
Sunday 0.591*** (0.005) 0.613*** (0.005) 0.640*** (0.005) 0.640*** (0.005)

L1.4 Neighbor Prices (5km) 0.117*** (0.001) 0.116*** (0.001) 0.116*** (0.001)
Public Holiday

t+2 0.161*** (0.002) 0.161*** (0.002)
t+1 0.167*** (0.002) 0.167*** (0.002)
t 0.541*** (0.005) 0.541*** (0.005)
t-1 -0.129*** (0.002) -0.129*** (0.002)

School Holiday Start
t+2 0.074*** (0.002) 0.073*** (0.002)
t+1 0.038*** (0.002) 0.039*** (0.002)
t 0.045*** (0.002) 0.045*** (0.002)
t-1 0.110*** (0.002) 0.110*** (0.002)

4 Rainfall -0.000 (0.000)
4 Snow Depth 0.001 (0.001)
4 Average Temperature -0.016*** (0.001)

F-Tests for Symmetry
φ+ = φ− 5,267.80*** 6,220.68*** 6,619.16*** 6,610.55***
β+

m = β−m, m ∈ [1, 7] 621.09*** 603.45*** 581.82*** 582.08***
λ+

n = λ−n , n ∈ [0, 7] 6,821.18*** 6,741.15*** 5,543.63*** 5,552.37***

Cointegration Parameter 1.041*** 1.041*** 1.041*** 1.041***
Observations 20,398,729 20,398,729 20,398,729 20,398,729
R2 0.287 0.292 0.297 0.297
Number of Fuel Stations 11,978 11,978 11,978 11,978
Month/Year Fixed Effects Yes Yes Yes Yes

Notes: Constant term included but not shown. Standard errors, clustered with respect to fuel stations, are reported in parentheses.
*: Significant at the 10% level. **: Significant at the 5% level. ***: Significant at the 1% level. Public Holiday denotes whether the corresponding day is a
public holiday, some of which vary across German states. School Holiday Start refers to the first day of school holidays, which in Germany are individual to
the 16 federal states. Station Fixed Effects refer to a set of indicator variables that take a value of 1 for each individual fuel station. Month/Year Fixed Effects
refer to a set of control variables specific to each combination of month and year. See the main text for additional details on data construction and sources.
For F-Tests for Symmetry the following null hypotheses are tested: Long-run symmetry tests whether the coefficients of the ECM are equal, i.e., φ+ = φ−.
Short-run symmetry tests L(i).P+ = L(i).P− for all i ∈ [1, 7] with F (7, 12319) degrees of freedom and L(j).WP+ = L(j).WP− for all j ∈ [0, 7] with
F (8, 12319) degrees of freedom. The Cointegration Parameter refers to the pass-through coefficient (θ) for equation (3) and corresponds to the long-run
cointegrating relationship between the retail price (p) and the crude oil price(wp).

Across all specifications, the null hypothesis of short-run symmetry in retail (|β+
m| =

|β−m|) as well as crude oil (|λ+
n | = |λ−n |) price changes can be rejected. This is indicative

of an asymmetric response of retail prices in the short run. Focusing more on the long-
run adjustment of retail prices, the results as shown in models (1)-(4) show that long-
run retail prices in Germany respond asymmetrically to crude oil price changes. The
long-run adjustment coefficients for both positive and negative deviations are statistically
significant at the 1% level across all models. The estimates show that a day after a 1
cent change in the spot crude oil price, the corresponding adjustment of the retail price
is 0.059 cent in the case of crude oil price decrease and 0.116 cent in the case of a 1 cent
increase in crude oil price.

The test for equality of the long-run adjustment coefficients, i.e., |φ+| = |φ−|, shows
that the differences between the coefficients are statistically different from zero across all
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specifications. The speed of convergence towards the long-run equilibrium is therefore
faster for crude oil price increases than decreases. With respect to the half-life of a
deviation – the number of days required to reduce half of the deviation from the long-
run equilibrium – the estimates show that it takes approximately six days for half of a
negative deviation to be corrected. It, however, takes roughly twelve days in the case of
a positive deviation.23 This implies that fuel stations in the long-run adjust their retail
prices more swiftly when the margin is squeezed than when it is stretched and confirms
the rockets-and-feathers hypothesis.

As indicated earlier, tacit collusion among fuel stations and the extent to which
information rent can be extracted from consumers have gained traction in the extant lit-
erature as important determinants of the rockets-and-feathers pattern. Given the granular
nature of our data, we examine whether the asymmetric pricing pattern we find in the
German retail fuel market may be the consequence of collusion and/or consumer search
intensity.

Collusion and asymmetry. As to the former, the high market concentration coupled
with the ease with which individual stations within a local market can monitor neighbors’
prices make tacit agreement among fuel stations in a local market highly probable. Theory
and empirics suggest that the focal point for tacit collusion among fuel stations is the retail
price level in the previous period (Borenstein et al., 1997; Lewis, 2011; Verlinda, 2008).
Fuel stations that have reached such an agreement keep the price level from the previous
period when the input cost decreases. The agreement is maintained until one of the
fuel stations reneges by adjusting current prices to reflect input cost decreases, thereby
provoking a price war. Conversely, for input cost increases, fuel stations adjust retail
prices accordingly, not only to maintain profit margins but also to signal their compliance
with the agreement to their competitors. In effect, the speed of adjustment of retail prices
to input cost decreases is slower than for cost increases.

To examine whether asymmetric pricing in the German market is a consequence of
tacit or focal price collusion as a pricing strategy, we compute the average price of all fuel
stations within 5 km radius – weighted by the inverse distance to competitors. We then
use this weighted average price to identify fuel stations that frequently have retail prices
above or below the local market average. That is, we consider stations relatively expensive
(“high-priced”), if the frequency of daily prices above the local market average exceeds
75th percentile of the stations in the sample, and relatively inexpensive (“low-priced”)
stations if their price is below the 25th percentile of stations.

Consequently, we expect the extent of asymmetry to be significantly different for
high- and low-priced fuel stations. The emphasis here is on the speed of adjustment
following an input cost decrease. In this case, retail prices should adjust more slowly for

23The half-life is defined mathematically as: ln(2)/|φ|.
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high-priced stations than low-priced stations. As to input cost increase, it is difficult to
predict a priori since the rate of adjustment could be similar but the underlying motivation
might differ. For low-priced stations, it might be important to adjust prices accordingly
in order to maintain positive margins while for high-priced stations, the underlying reason
might just be to ensure compliance with the agreement.

In our analysis, we replicate the main results (Column (4) in Table 1) for these
two groups and compare the magnitude of the coefficients of interest, i.e., the long-run
adjustment parameters |φ+| and |φ−|. We find that the absolute value of the adjustment
coefficients for the low-priced fuel stations is larger than that of the high-priced group.
Comparison of the coefficients shows that the long-run adjustment parameters for the
two cases (φ+

P 25 = −0.066, φ−P 25 = −0.137 and φ+
P 75 = −0.055, φ−P 75 = −0.103) differ

significantly, i.e., the probability of the long-run adjustment parameters being equal for
high- and low-priced stations is less than 0.1%.24

Indeed for input cost decreases, the results show that the magnitude of the speed
of adjustment is significantly larger for low-priced stations than high-priced stations. One
explanation that may account for the speed of adjustment following an input cost increase
for low-priced stations being significantly larger than that of the high-priced stations is
that low-priced fuel stations have relatively thin profit margins. This implies the need to
swiftly pass on cost changes. In contrast, for high-priced fuel stations the, relatively high
prices serves as a buffer in the face of increasing costs. Accordingly, even with the smaller
rate of price adjustment, the fact that the prices in these stations are consistently above the
average market price enables them to maintain positive profit margins. This explanation is
further supported by the observation that high-priced fuel stations predominantly belong
to dominant brands – as illustrated in Figure 2 – that have the capacity to influence
market conditions as they hold significant refinery capacities, shares of stations and sales
volume.25 These results lend support to the notion that asymmetric pricing in the German
retail market might partly be due to price coordination among competitors.

Search cost and asymmetry. With respect to consumers’ search activities, we focus
on search-based theories that suggest that asymmetric search intensity reduces the in-
centive to pass on input cost decreases since consumers have less information about cost
decreases than increases (Yang and Ye, 2008; Tappata, 2009). These theoretical models
suggest that when input costs are low, there is higher price dispersion, and this leads to
higher search intensity since consumers have an incentive to compare prices across stations
if their search costs do not exceed the payoff. There is therefore less price asymmetry as
individual retailers are less able to extract the informational rent from consumers.

24Pr(|φ+
P 25| = |φ+

P 75|) < 0.1% and Pr(|φ−P 25| = |φ−P 75|) < 0.1% — Full results are available upon
request.

25The brands listed are those, for which more than 500 fuel stations are listed in Germany. All others,
including those assigned to no brand, are listed as other.
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Figure 2: High and Low Price Fuel Stations by Brands

To empirically investigate whether high price dispersion and intensive searching on
the part of the consumer base lead to less asymmetric pricing in the German retail market,
we identify the maximum and minimum prices within a local market – again 5 km radius
– to which each fuel station belongs. We calculate the price range, which is the difference
between the maximum and minimum price. The range denotes the maximum gross gain
a consumer can attain within the local market following a complete search across all
fuel stations. We then categorize fuel stations into ”low-” and ”high-dispersion” groups
based on the distribution of the price range. That is, the low-dispersion group falls below
the 25th percentile of stations while those above the 75th percentile are denoted as the
high-dispersion group.

We again replicate the main results (Column (4) in Table 1) for these two groups.
Since low price dispersion is associated with low payoff from price comparison, fuel stations
in this group are expected to pass cost increases to consumers more easily. Hence, we
expect the magnitude of the adjustment coefficient for cost increases φ− in the case of
low-dispersion group to be significantly larger than that of the high-dispersion group. The
estimates for the long-run adjustments show that the low-dispersion long-run adjustment
coefficients significantly exceed their high-dispersion counterparts in terms of magnitude
(φ+

P 25 = −0.057, φ−P 25 = −0.121 and φ+
P 75 = −0.054, φ−P 75 = −0.102). The probability of

the long-run adjustment parameters being equal for high- and low-dispersion stations is
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less than 0.1%.26 For cost increases, the estimates are consistent with search theory and
point to a negative correlation between the degree of price dispersion and asymmetry. For
cost decreases, on the other hand, the estimates are not consistent with the theory since
|φ+

P 25| is greater than |φ+
P 75| and significant at all conventional levels.

Individual federal states. It is worth noting that the distribution of fuel stations, the
footprint of different brands as well as sub-regional market structure vary across federal
states. In terms of the density of fuel stations, for example, the state of North Rhine-
Westphalia has 2,753 fuel stations in our sample, while Bremen as a federal city state has
only 92 fuel stations. It is, therefore, possible that the asymmetry shown in Table 1 may
be driven by a few individual federal states. To rule out this possibility, we conduct the
prior analysis for subsamples consisting of all the 16 individual German federal states.

Table 2 shows the results for five federal states, selected based on special features,
such as area, population, or status as federal city state. We do this to show the sensitivity
of the results to different characteristics of the individual states.27 Column (1) shows the
results for Bavaria – the federal state with the largest area. In Column (2), the result
for Berlin, which is both the capital city as well as one of the three federal city states is
presented. The result for Bremen is shown in Column (3). Bremen is the federal state
with the smallest population, area, and the lowest number of fuel stations. Column (4)
presents the estimates for Hamburg, a federal city state that hosts one of the main ports
in Germany. Last but not least, Column (5) shows the results for North Rhine Westphalia
(NRW) – the state with the largest population and the highest number of fuel stations.

From the results in Table 2, we can conclude that the state-specific findings are
fairly identical to the main findings presented in Table 1. With respect to the long-
run adjustment coefficients, we find that both are significant at the 1% level but the
magnitude differs across states, albeit without any distinctive pattern. We find a larger
magnitude for the respective long-run adjustment parameters for Hamburg, while the
estimates for Bavaria are smaller as compared to all other states. Across all states, the
estimates show that the speed of convergence toward the long-run equilibrium is faster
for negative deviations of retail prices from equilibrium – implying increasing crude oil
price – than positive deviations. Moreover, the null hypothesis of symmetric long-run
adjustment is rejected at the 1% level in all states. Accordingly, deviations from the
long-run equilibrium margin are rapidly corrected when the margin shrinks than when it
stretches which is consistent with the widespread public perception. The state-specific and
national estimates underscore the pervasiveness of the rockets-and-feathers phenomenon
in Germany.

26Pr(|φ+
P 25| = |φ+

P 75|) < 0.1% and Pr(|φ−P 25| = |φ−P 75|) < 0.1% — Full results are available upon
request.

27The estimates for the remaining states are shown in Table 11 the Appendix.
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Table 2: Regression Results: Gasoline (E5) – Federal States
(1) (2) (3) (4) (5)

Bavaria Berlin Bremen Hamburg North Rhine Westphalia
(largest area) (Federal city state) (smallest area) (Federal city state) (largest population)

Dependent Variable: 4 Retail Price of E5 Fuel
φ+ -0.076*** 0.001 -0.106*** 0.003 -0.087*** 0.005 -0.114*** (0.009) -0.102*** (0.002)
φ− -0.114*** 0.002 -0.148*** 0.003 -0.124*** 0.005 -0.170*** (0.005) -0.138*** (0.002)

Tuesday 0.186*** (0.005) 0.285*** (0.008) 0.361*** (0.015) 0.293*** (0.009) 0.114*** (0.004)
Wednesday 0.140*** (0.005) 0.216*** (0.008) 0.302*** (0.016) 0.255*** (0.010) 0.069*** (0.004)
Thursday 0.175*** (0.005) 0.174*** (0.009) 0.307*** (0.016) 0.304*** (0.012) 0.127*** (0.004)
Friday 0.223*** (0.006) 0.228*** (0.010) 0.412*** (0.018) 0.363*** (0.012) 0.164*** (0.005)
Saturday 0.402*** (0.010) 0.562*** (0.019) 0.469*** (0.034) 0.509*** (0.021) 0.310*** (0.007)
Sunday 0.700*** (0.015) 0.676*** (0.018) 0.894*** (0.032) 0.831*** (0.026) 0.635*** (0.011)

L1.4 Neighbor Prices (5km) 0.099*** 0.003 0.235*** (0.008) 0.175*** (0.008) 0.194*** (0.012) 0.118*** (0.003)
Public Holiday

t+ 2 0.155*** (0.004) 0.120*** (0.010) 0.157*** (0.021) 0.112*** (0.013) 0.180*** (0.003)
t+ 1 0.103*** (0.005) 0.138*** (0.010) 0.076*** (0.020) 0.138*** (0.013) 0.279*** (0.004)
t 0.547*** (0.013) 0.766*** (0.018) 0.866*** (0.039) 0.632*** (0.036) 0.509*** (0.011)
t− 1 -0.158*** (0.006) -0.248*** (0.010) -0.363*** (0.026) -0.246*** (0.013) -0.155*** (0.005)

School Holiday Start
t+ 2 (before) 0.124*** (0.006) -0.123*** (0.010) 0.017 (0.026) -0.085*** (0.012) 0.065*** (0.005)
t+ 1 0.060*** (0.006) 0.033*** (0.008) 0.202*** (0.024) -0.067*** (0.017) 0.082*** (0.006)
t 0.063*** (0.005) 0.042*** (0.010) 0.006 (0.016) -0.067*** (0.011) 0.013** (0.005)
t− 1 (after) 0.103*** (0.007) 0.079*** (0.009) 0.008 (0.021) 0.094*** (0.015) 0.130*** (0.005)

4 Rainfall -0.002*** (0.001) 0.006*** (0.001) 0.016*** (0.004) 0.014*** (0.002) -0.001** (0.000)
4 Snow Depth 0.002 (0.001) 0.060*** (0.006) -0.044** (0.015) -0.045*** (0.010) -0.019*** (0.002)
4 Average Temperature -0.030*** (0.002) -0.060*** (0.004) -0.076*** (0.009) -0.019*** (0.005) 0.005** (0.002)

F-Tests for Symmetry
φ+ = φ− 408.14*** 225.13*** 38.21*** 39.81*** 629.95***
β+

m = β−m, m ∈ [1, 7] 127.29*** 37.39*** 30.60*** 41.49*** 165.66***
λ+

n = λ−n , n ∈ [0, 7] 847.69*** 381.50*** 100.50*** 103.79*** 2,069.75***

Cointegration Parameter 1.073*** 1.026*** 0.966*** 1.025*** 1.033***
Observations 2,961,268 509,849 161,300 371,231 4,731,795
R2 0.306 0.290 0.324 0.334 0.313
Number of Fuel Stations 1,773 290 92 212 2,753
Month/Year Fixed Effects Yes Yes Yes Yes Yes

Notes: Constant term included but not shown. Standard errors, clustered with respect to fuel stations, are reported in parentheses. *: Significant at the 10% level. **: Significant at the 5%
level. ***: Significant at the 1% level. Public Holiday denotes whether the corresponding day is a public holiday, which partly vary across German states. School Holiday Start refers to the
first day of school holidays, which in Germany are individual to the 16 federal states. Station Fixed Effects refer to a set of indicator variables that take a value of 1 for each individual fuel
station. Month/Year Fixed Effects refer to a set of control variables specific to each combination of month and year. See the main text for additional details on data construction and sources.
For F-Tests for Symmetry the following null hypotheses are tested: Long-run symmetry tests whether the coefficients of the ECM are equal, i.e., φ+ = φ−. Short-run symmetry tests
L(i).P+ = L(i).P− for all i ∈ [1, 7] with F (7, 12319) degrees of freedom and L(j).WP+ = L(j).WP− for all j ∈ [0, 7] with F (8, 12319) degrees of freedom. The Cointegration Parameter
refers to the pass-through coefficient (θ) for equation (3) and corresponds to the long-run cointegrating relationship between the retail price (p) and the crude oil price(wp).

We also note that the weekly patterns of price movements are approximately iden-
tical across states, i.e., with prices peaking on the weekend. This pattern is consistent
with the nation-wide trend. The estimates further show that the effect of price changes
in neighboring fuel stations is more pronounced in federal city states (or smaller states
in general). For example, the estimates for Berlin (0.235), Bremen (0.179), or Hamburg
(0.194) are considerably larger than those of Bavaria (0.098) or North Rhine-Westphalia
(0.118). The public holiday effect is qualitatively identical across federal states, with the
contemporaneous effect being stronger.

In the case of the start of school holidays, the pattern varies slightly across federal
states and there are differences when compared to the national pattern in terms of the
direction of the effect. In Bremen in particular, significant retail price changes occur only
one day before the start of school holidays. In Hamburg, retail prices start to decline
two days before the start of school holidays and increase a day after. In Berlin, retail
prices decrease significantly two days before the start of school holidays. The retail price
then increases from the day before until the day after the start of the school holiday. The
estimates for Bavaria and North Rhine-Westphalia, on the other hand, follow the national
trend.

Additionally, the impact of the daily changes in local weather conditions do not
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appear to have a uniform effect across all states. While the national estimates for rain
and snow are statistically insignificant, they are either negative or positive and significant
in most cases. For the federal city states, the effect of changes in rainfall is positive
and significant at the 1% level while for the large states with a high density of stations,
the effect is negative. The effects of snow on retail price changes across the different
states are mixed but generally points to an inverse relationship. The estimates also show
that except for the state of NRW, the negative effect of increasing temperature on price
changes is consistent with the national estimates. Note, however, that the effect of changes
in weather conditions on fuel price changes might differ across states because of differences
in modes of transportation and transport infrastructural networks.28 The results should,
therefore, be interpreted with caution, as they are most likely confounded by state-specific
geographic or other local features not accounted for in our model.

Individual station-level time series. The use of weekly or monthly time series data at
the national level is a common practice in the extant literature, particularly in studies that
relate to the retail fuel market in Germany. This is perhaps due to difficulties associated
with obtaining station-level data. Notwithstanding, it is obvious that even for established
brands with a nationwide network of fuel stations, the pricing decision is partly made at
the station level taking into account local market conditions. As compared to previous
studies, our analysis reflects station-level pricing decisions by drawing on station-level
data instead of aggregate data. We have so far conducted our panel data analysis for the
whole of Germany and all the 16 federal states in Germany. Since the response of retail
prices to input cost changes at the station level could differ from the average response
across a panel of stations, we further exploit our granular and extensive station-level
dataset to investigate whether the average long-run asymmetric responses at the national
and state levels also exist at the station level. To do this, we estimate a variant of the
asymmetric error correction model in equation (5) for all the individual fuel stations in
our sample.29

Focusing on just the long-run adjustment coefficients, we find that for 95.01% of
the 11,787 fuel stations in our sample, retail gasoline prices respond asymmetrically in
the long run to crude oil price changes. In contrast to the panel estimates in Tables 1–2,
the type of asymmetry differs across the fuel stations. Specifically, the estimates show

28Our estimation approach only partially controls out unique state-specific characteristics. There might
therefore still be some other state-specific features related to the transport network that are not captured
by our specification.

29For all 11,978 individual fuel stations that we consider in our sample, ADF unit root tests for the
station-level retail price series show that the retail prices for only 170 fuel stations are stationary. These
stations are excluded from this analysis. Out of the remaining 11,808 fuel stations, the residual-based
cointegration test shows that for 99.87 % of the 11,808 fuel stations, the retail fuel prices are cointegrated
with the crude oil price. We exclude the 21 fuel stations where the null hypothesis of no cointegration
could not be rejected.
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that for 88.42% of all the fuel stations, the response of retail prices to crude oil price
changes follows the rockets-and-feathers pricing pattern. For the remainder of the fuel
stations, we find either symmetric or negative asymmetric response. Since only a small
proportion of stations exhibits a pricing pattern that signifies a high level of competition,
i.e., symmetric or negative asymmetric adjustments, our analysis at the individual station
level confirms the prevalence of the rockets-and-feathers phenomenon.

Table 3: Regression Results: Gasoline (E5) – Individual Stations (by brand)
(1) (2) (3) (4)

Brand Name Type of Adjustment? (%)
Negative asymmetry Rockets & Feathers Symmetry Σ

Aral 12.97 78.78 8.26 100
(267) (1,622) (170) (2,059)

Esso 1.71 95.73 2.56 100
(16) (896) (24) (936)

JET 4.22 92.21 3.57 100
(26) (568) (22) (616)

Shell 5.32 89.74 4.94 100
(85) (1,434) (79) (1,598)

Total 8.98 85.12 5.9 100
(67) (635) (44) (746)

bft 7.29 86.79 5.92 100
(32) (381) (26) (439)

star 3.64 93.13 3.23 100
(18) (461) (16) (495)

other 5.35 90.42 4.23 100
(262) (4,429) (207) (4,898)

Σ 6.56 88.45 4.99 100
(773) (10,426) (588) (11,787)

Notes:
The table shows the percentage of individual fuel station time series depending on whether |φ+| > |φ−| (negative asymme-
try), |φ+| = |φ−| (symmetric adjustment) or |φ+| < |φ−| (rockets and feathers). The absolute number of fuel stations is
shown in parentheses.
The brands listed are those for which more than 500 fuel stations are listed in Germany. All others, including those assigned
to no brand, are listed as other.

The results as shown in Tables 3 – 4 also depict differences in retail price response to
input cost changes across different brands and federal states. Again, the results confirm
the widespread existence of the rockets-and-feathers phenomenon across all branded and
unbranded fuel stations. Particularly, we find that for major brands such as Esso, Star,
and Jet, more than 90% of their respective fuel stations pass on input cost increases
at a faster rate than input cost decreases. Compared to other brands, retail pricing
appears to be more competitive for a significant proportion of fuel stations that belong to
major brands such as Total, Aral and bft. For the individual federal states (see Table 4),
the estimates also show that the rockets-and-feathers pricing pattern is more prevalent
in the states of Saarland, Rhineland-Palatinate, and Baden-Württemberg. In the state
of Thuringia and the three city-states – Berlin, Hamburg, and Bremen – on the other
hand – we find a higher share of fuel stations with negative asymmetric adjustment or
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Table 4: Regression Results: Gasoline (E5) – Individual Stations (by Federal State)
(1) (2) (3) (4)

Federal State Adjustment? (%)
Negative asymmetry Rockets & Feathers Symmetry Σ

Baden-Württemberg 2.96 93.52 3.52 100
(47) (1,487) (56) (1,590)

Bavaria 3.56 92.82 3.62 100
(62) (1,615) (63) (1,740)

Berlin 10.69 83.79 5.52 100
(31) (243) (16) (290)

Brandenburg 7.65 85.63 6.73 100
(25) (280) (22) (327)

Bremen 10.87 83.70 5.43 100
(10) (77) (5) (92)

Hamburg 10 84.76 5.24 100
(21) (178) (11) (210)

Hesse 6.77 89.53 3.70 100
(64) (847) (35) (946)

Mecklenburg-Vorpommern 4.05 89.88 6.07 100
(10) (222) (15) (247)

Lower Saxony 6.64 87.6 5.76 100
(91) (1,201) (79) (1,371)

North Rhine-Westphalia 7.08 86.20 6.71 100
(191) (2,324) (181) (2,696)

Rhineland-Palatinate 2.48 95.05 2.48 100
(15) (576) (15) (606)

Saarland 2.13 96.45 1.42 100
(3) (136) (2) (141)

Saxony 6.75 87.58 5.66 100
(31) (402) (26) (459)

Saxony-Anhalt 8.76 86.50 4.74 100
(24) (237) (13) (274)

Schleswig-Holstein 9.63 85.27 5.11 100
(49) (434) (26) (509)

Thuringia 34.26 57.79 7.96 100
(99) (167) (23) (289)

Σ 6.56 88.45 4.99 100
(773) (10,426) (588) (11,787)

Notes:
The table shows the percentage of individual fuel station time series depending on whether |φ+| > |φ−| (negative asym-
metry), |φ+| = |φ−| (symmetric adjustment) or |φ+| < |φ−| (rockets and feathers). The absolute number of fuel stations
is shown in parentheses.

symmetric response to input cost changes than all the other states. This could be due
to the close proximity of fuel stations from one another, thereby increasing the degree of
local competition.

4.2 Further Analyses

Aggregation over space: State-level time series. Since the dynamics of time se-
ries of heterogeneous fuel stations might be markedly different from those derived from
spatially aggregated data, we ascertain whether the average adjustment process in Tables
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1–2 are sensitive to spatial data aggregation. We calculate daily average prices for the
whole of Germany and for the respective federal states and present the nationwide and
state-level time series estimates in Columns (1) to (3) of Table 5.30

Table 5: Further Results: Gasoline (E5) – Spatial and Temporal Aggregation
Spatial Temporal

(1) (2) (3) (4) (5) (6) (7)
State φ+ φ− |φ+| = |φ−| φ+ φ− |φ+| = |φ−| N

Whole Country -0.043*** -0.106*** 12.19*** -0.322*** -0.309*** 174.24*** 2,865,990
Baden-Württemberg -0.046*** -0.121*** 12.95*** -0.407*** -0.384*** 74.41*** 387,504
Bavaria -0.050*** -0.099*** 7.21*** -0.408*** -0.372*** 207.02*** 432,141
Berlin -0.097*** -0.141*** 2.68 -0.353*** -0.395*** 49.65*** 69,047
Brandenburg -0.074*** -0.132*** 5.31** -0.350*** -0.366*** 5.24** 80,125
Bremen -0.114*** -0.199*** 5.60** -0.353*** -0.380*** 7.95*** 22,464
Hamburg -0.122*** -0.156*** 1.41 -0.443*** -0.399*** 10.66*** 50,047
Hesse -0.037** -0.125*** 15.86*** -0.429*** -0.422*** 2.72* 229,603
Mecklenburg-Vorpommern -0.110*** -0.193*** 8.32*** -0.463*** -0.441*** 5.22** 58,719
Lower Saxony -0.060*** -0.139*** 12.75*** -0.433*** -0.412*** 30.93*** 331,685
North Rhine-Westphalia -0.060*** -0.123*** 9.52*** -0.467*** -0.460*** 3.54* 651,889
Rhineland-Palatinate -0.035** -0.118*** 17.00*** -0.430*** -0.426*** 0.40 151,596
Saarland -0.052*** -0.125*** 10.49*** -0.416*** -0.404*** 1.84 35,121
Saxony -0.071*** -0.160*** 14.81*** -0.466*** -0.458*** 1.07 115,230
Saxony-Anhalt -0.110*** -0.188*** 7.28*** -0.424*** -0.433*** 0.74 61,826
Schleswig-Holstein -0.088*** -0.161*** 8.29*** -0.431*** -0.403*** 15.56*** 118,661
Thuringia -0.077*** -0.113*** 2.94* -0.475*** -0.452*** 14.71*** 70,332

Notes: *: Significant at the 10% level. **: Significant at the 5% level. ***: Significant at the 1% level. The number of observations for the spatial aggregation estimation is 1825 in all cases.

In Table 5, we show the long-run adjustment coefficients φ+ and φ− in Columns (1)
and (2), and the F statistic for the null hypothesis of long-run symmetric adjustment is
reported in Column (3). The long-run adjustment coefficients for Germany and the 16
individual federal states show that the absolute value of φ− exceeds that of φ+. The test
for symmetric adjustment also shows that the difference between the two coefficients is
statistically different from zero in 15 out of the 17 cases. That is, the only states in which
the null hypothesis of symmetric adjustment cannot be rejected are Berlin and Hamburg.
The rejection of the symmetric adjustment for the whole of Germany and 14 states is
consistent with the results from the panel data and station-specific time series analyses.
The results show that crude oil price changes that shrink the retail margin are passed on
to consumers more swiftly than a corresponding price change that increases the margin.
The findings show that the long-run rockets-and-feathers phenomenon is not sensitive to
spatial data aggregation and holds for daily national or state-specific time series.

Aggregation over time: Average weekly prices across stations. We also examine
whether temporal aggregation of station-level data matters with respect to the long-run
adjustment of retail price response to input cost changes. To illustrate the sensitivity
of the results to temporal data aggregation, we aggregate the daily station-level retail

30Note that daily country- and state-level time series are non-stationary and cointegrated with the spot
crude oil prices – results for unit root and cointegration tests are available upon request.
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prices to station-level weekly prices. The results are presented in Table 5 (Columns 4-
7). Focusing on the long-run speed of convergence, the findings differ from the previous
results obtained by using daily data. In contrast to the national estimates in Table 1
and Columns 1-3 of Table 5, we find that the absolute value of the average long-run
adjustment parameter for positive deviations is larger than that of negative deviations.
The coefficients are also statistically different at the 1% level. This indicates that retail
prices adjust more swiftly to crude oil price decreases than to crude oil price increases.
For the state-specific estimates, symmetric adjustment towards the long-run equilibrium
is rejected in 12 out of 16 cases. Out of the 12 states with asymmetric adjustments, the
speed of adjustment towards the long-run equilibrium is faster for crude oil price decreases
than price increases in 10 cases. We also find symmetric adjustment in 4 out of the 16
cases and the rockets-and-feathers pattern in only two states.

The results using station-level weekly panel data point primarily to a high degree
of competition in the retail market and are consistent with recent findings in the em-
pirical literature on the German market (Kristoufek and Lunackova, 2015; Asane-Otoo
and Schneider, 2015; Bagnai and Ospica, 2016). The long-run speed of adjustments from
the weekly data, however, diverge from those obtained using the daily station-level data.
Our findings suggest that temporal data aggregation or the use of low frequency data
are critical to the accurate assessment of the type of adjustment towards the long-run
equilibrium.

4.3 Analysis for Diesel

Since gasoline and diesel are the main transport fuel types in Germany, we also
repeated the analysis for diesel.31 With respect to the national estimates in Table 9, the
results for the long-run speed of convergence are consistent with the findings for gasoline
(E5). In general, the rockets-and-feathers phenomenon is also confirmed in the case of
diesel. The day-of-week, holiday, and neighboring price effects are all consistent with
the findings for gasoline. Again, as evidenced by the estimates of the weather variables,
the results for diesel also show that retail prices are influenced by changes in weather
conditions but the effects –as in the case of gasoline – also differ across different states
(see Table 10).

5 Conclusions

In this paper, we reexamine the perception that retail fuel prices respond more
swiftly to crude oil price increases than decreases – a pricing pattern characterized as
the rockets-and-feathers phenomenon. This is often associated with market inefficiencies

31The main results are presented in Tables 9 - 10 in the Appendix and the remaining results are
available upon request.
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(e.g., collusion among retailers) and/or disparities in consumer search intensity following
input cost changes. Our analyses explore the adjustment of retail fuel prices to crude
oil price changes using a novel dataset of station-level daily retail prices for 11,978 fuel
stations spanning the period January 1, 2014 to December 31, 2018. To the best of
our knowledge, none of the previous studies in the rockets-and-feathers literature has
examined the phenomenon using daily prices from virtually all geographically diverse fuel
stations in a major OECD country. In addition to using these extensive and granular
station-level retail price data, our analysis also accounts for the demand-side effects of
changes in weather conditions, intra-week pricing patterns, holiday effects, as well as
pricing decisions of neighboring fuel stations.

Contrary to recent findings for Germany, we find that asymmetric pricing is the
norm rather than exception and the rockets-and-feathers phenomenon is very prevalent in
the German retail fuel market. Specifically, we find evidence in support of the perception
that input cost changes that squeeze the retail margin are passed on more swiftly to
consumers than equivalent input cost change that increase firms’ retail margins. On the
one hand, this finding is surprising given the high level of market transparency and the
reduced search cost for consumers since they can easily obtain price information across
fuel stations in real time. On the other hand, the transparent nature of the retail market
and the low search cost benefit not only consumers, but also firms, that can effortlessly
compare prices both within and outside their local markets and adjust prices accordingly
– making the potential for tacit collusion or price coordination more likely. In fact, our
analysis shows not only that the pervasiveness of the rockets-and-feathers pattern might
partly be due to disparities in search intensity, but also that price coordination among
retailers might play a role.

Our findings also suggest that temporal aggregation of station-level data matters in
assessing the type of long-run adjustment as there are substantial differences with respect
to the type of adjustment exhibited by low- and high-frequency data. In essence, temporal
aggregation obscures the nature of adjustment and can lead to inaccurate inferences. This
might explain the diverse findings in the extant literature as well as why our results differ
from recent findings, particularly for Germany. Overall, the granular and extensive nature
of the data used in the empirical analysis permits a comprehensive analysis of the entire
retail fuel market, including both rural and urban areas. This affords the opportunity to
generalize our findings to typical national retail fuel markets.
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Appendix

Table 6: Descriptive Statistics
Variable Stations N.Obs. Mean S.D. Min. Max.

Regression Sample
p 11,978 20,398,729 140.912 10.171 88.800 194.900
wp 11,978 20,398,729 33.544 8.609 14.998 53.191
4p 11,978 20,398,729 -0.007 1.470 -55.417 40.600
4wp 11,978 20,398,729 -0.011 0.533 -2.773 2.584
4 Neighbor Prices (5km) 11,978 20,398,729 -0.009 1.245 -30.667 56.900
Public Holiday 11,978 20,398,729 0.030 0.169 0 1
School Holiday Start 11,978 20,398,729 0.015 0.122 0 1
4 Rainfall 11,978 20,398,729 0 1.210 -38.033 40.191
4 Snow Depth 11,978 20,398,729 0 0.494 -357.188 357.188
4 Average Temperature 11,978 20,398,729 0 0.307 -2.987 5.549

Reduced Sample: Stations for which p is I(1) and cointegrated with wp
p 11,787 20,179,154 140.924 10.173 88.800 194.900
wp 11,787 20,179,154 33.569 8.623 14.998 53.191
4p 11,787 20,179,154 -0.007 1.466 -55.417 40.600
4wp 11,787 20,179,154 -0.011 0.533 -2.773 2.584
4 Neighbor Prices (5km) 11,787 20,179,154 -0.009 1.243 -30.667 33.000
Public Holiday 11,787 20,179,154 0.030 0.169 0 1
School Holiday Start 11,787 20,179,154 0.015 0.122 0 1
4 Rainfall 11,787 20,179,154 0 1.210 -38.033 40.191
4 Snow Depth 11,787 20,179,154 0 0.496 -357.188 357.188
4 Average Temperature 11,787 20,179,154 0 0.307 -2.987 5.549
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Table 7: Panel Unit Root Test for Retail Price
H0: All panels contain unit roots
Ha: At least one panel is stationary

Number of Panels 11,978
Number of Periods min 722

mean 1,695
max 1,813

Statistic p-Value
Inverse Normal Z 67.18 1.000
Inverse Logit t() L∗ 60.60 1.000

Table 8: Panel Unit Root Test for Residuals from Cointegration Equation
H0: All panels contain unit roots
Ha: At least one panel is stationary

Number of Panels: 11,978
Number of Periods: min 722

mean 1,696
max 1,812

Statistic p-Value
Inverse Normal Z -349.37 0.000
Inverse Logit t() L∗ -445.79 0.000
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Table 9: Regression Results: Diesel – Germany
(1) (2) (3) (4)

Baseline Neighbor Holiday Weather
Specification Effects Effects Effects

Dependent Variable: 4 Retail Price of Diesel Fuel
φ+ -0.056*** (0.001) -0.055*** (0.001) -0.055*** (0.001) -0.055*** (0.001)
φ− -0.122*** (0.001) -0.122*** (0.001) -0.121*** (0.001) -0.121*** (0.001)

Tuesday 0.061*** (0.001) 0.124*** (0.002) 0.150*** (0.002) 0.150*** (0.002)
Wednesday 0.061*** (0.002) 0.096*** (0.002) 0.115*** (0.002) 0.115*** (0.002)
Thursday 0.130*** (0.002) 0.162*** (0.002) 0.159*** (0.002) 0.159*** (0.002)
Friday 0.167*** (0.002) 0.195*** (0.002) 0.212*** (0.002) 0.211*** (0.002)
Saturday 0.292*** (0.004) 0.320*** (0.004) 0.357*** (0.004) 0.356*** (0.004)
Sunday 0.603*** (0.005) 0.623*** (0.005) 0.653*** (0.006) 0.653*** (0.006)

L1.4 Neighbor Prices (5km) 0.111*** (0.001) 0.111*** (0.001) 0.111*** (0.001)
Public Holiday

t+2 0.187*** (0.002) 0.187*** (0.002)
t+1 0.169*** (0.002) 0.169*** (0.002)
t 0.570*** (0.005) 0.569*** (0.005)
t-1 -0.147*** (0.002) -0.147*** (0.002)

School Holiday Start
t+2 0.052*** (0.002) 0.051*** (0.002)
t+1 0.007** (0.002) 0.008*** (0.002)
t 0.036*** (0.002) 0.036*** (0.002)
t-1 0.074*** (0.002) 0.074*** (0.002)

4 Rainfall -0.001*** (0.000)
4 Snow Depth 0.002** (0.001)
4 Average Temperature -0.024*** (0.001)

F-Tests for Symmetry
φ+ = φ− 6,043.30*** 7,021.63*** 6,959.91*** 6,957.61***
β+

m = β−m, m ∈ [1, 7] 621.79*** 618.31*** 599.77*** 599.48***
λ+

n = λ−n , n ∈ [0, 7] 4,164.28*** 4,135.33*** 3,144.11*** 3,150.18***

Cointegration Parameter 1.246*** 1.246*** 1.246*** 1.246***
Observations 20,428,731 20,428,731 20,428,731 20,428,731
R2 0.304 0.309 0.314 0.314
Number of Fuel Stations 11,984 11,984 11,984 11,984
Month/Year Fixed Effects Yes Yes Yes Yes

Notes: Constant term included but not shown. Standard errors, clustered with respect to fuel stations, are reported in parentheses.
*: Significant at the 10% level. **: Significant at the 5% level. ***: Significant at the 1% level. Public Holiday denotes whether the corresponding day is a
public holiday, which vary to some extent across German states. School Holiday Start refers to the first day of school holidays, which in Germany are specific
to the 16 federal states. Station Fixed Effects refer to a set of indicator variables that take a value of 1 for each individual fuel station. Month/Year Fixed
Effects refer to a set of control variables specific to each combination of month and year. See the main text for additional details on data construction and
sources.
For F-Tests for Effect Symmetry the following null hypotheses are tested: Long-Run Symmetry tests whether the coefficients of the ECM are equal, i.e.,
φ+ = φ−. Short-Run Symmetry tests L(i).P+ = L(i).P− for all i ∈ [1, 7] with F (7, 12319) degrees of freedom and L(j).WP+ = L(j).WP− for all j ∈ [0, 7]
with F (8, 12319) df .
The Cointegration Parameter refers to the coefficient estimate of θ for equation (3) and corresponds to the long-run cointegrating relationship between p and
wp.
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Table 10: Regression Results: Diesel – Federal States
(1) (2) (3) (4) (5)

Bavaria Berlin Bremen Hamburg North Rhine Westphalia
(largest area) (Federal city state) (smallest area) (Federal city state) (largest population)

Dependent Variable: 4 Retail Price of Diesel Fuel
φ+ -0.075*** (0.002) -0.136*** (0.004) -0.150*** (0.009) -0.120*** (0.015) -0.088*** 0.002
φ− -0.121*** (0.002) -0.156*** (0.004) -0.100*** (0.005) -0.175*** (0.007) -0.137*** 0.002

Tuesday 0.199*** (0.005) 0.259*** (0.008) 0.333*** (0.015) 0.218*** (0.008) 0.113*** 0.004
Wednesday 0.157*** (0.005) 0.218*** (0.008) 0.284*** (0.016) 0.209*** (0.010) 0.091*** 0.004
Thursday 0.197*** (0.005) 0.190*** (0.009) 0.313*** (0.017) 0.314*** (0.012) 0.159*** 0.004
Friday 0.255*** (0.006) 0.298*** (0.010) 0.387*** (0.018) 0.324*** (0.013) 0.198*** 0.005
Saturday 0.439*** (0.010) 0.529*** (0.021) 0.443*** (0.037) 0.471*** (0.023) 0.336*** 0.007
Sunday 0.715*** (0.015) 0.654*** (0.019) 0.857*** (0.035) 0.857*** (0.025) 0.655*** 0.011

L1.4 Neighbor Prices (5km) 0.094*** (0.003) 0.217*** (0.009) 0.184*** (0.009) 0.135*** (0.013) 0.110*** 0.003
Public Holiday

t+ 2 0.194*** (0.004) 0.081*** (0.008) 0.127*** (0.019) 0.120*** (0.014) 0.179*** 0.003
t+ 1 0.101*** (0.004) 0.207*** (0.014) 0.144*** (0.017) 0.134*** (0.013) 0.244*** 0.004
t 0.538*** (0.013) 0.785*** (0.023) 0.921*** (0.044) 0.649*** (0.038) 0.549*** 0.011
t− 1 -0.167*** (0.005) -0.265*** (0.010) -0.310*** (0.031) -0.240*** (0.012) -0.195*** 0.005

School Holiday Start
t+ 2 0.092*** (0.006) -0.098*** (0.012) -0.009 (0.019) -0.089*** (0.013) 0.046*** 0.005
t+ 1 0.023*** (0.005) -0.124*** (0.011) 0.090*** (0.023) -0.080*** (0.017) 0.046*** 0.006
t 0.028*** (0.006) 0.010 (0.008) -0.095*** (0.017) 0.034** (0.012) -0.024*** 0.004
t− 1 -0.088*** (0.006) 0.179*** (0.009) 0.070** (0.021) 0.182*** (0.013) 0.066*** 0.005

4 Rainfall -0.004*** (0.001) 0.008*** (0.001) 0.000 (0.004) 0.010*** (0.002) -0.002*** 0.000
4 Snow Depth 0.006*** (0.002) 0.103*** (0.006) -0.072*** (0.015) -0.014 (0.010) -0.017*** 0.002
4 Average Temperature -0.021*** (0.002) -0.048*** (0.006) -0.102*** (0.010) -0.058*** (0.006) -0.017*** 0.002

F-Tests for Effect Symmetry
φ+ = φ− 534.46*** 31.08*** 28.52*** 12.95*** 783.36***
β+

m = β−m, m ∈ [1, 7] 139.92*** 48.44*** 18.02*** 28.74*** 188.67***
λ+

n = λ−n , n ∈ [0, 7] 509.94*** 175.76*** 64.05*** 78.44*** 869.72***

Cointegration Parameter 1.271*** 1.230*** 1.172*** 1.251*** 1.240***
Observations 2,968,641 510,058 161,619 371,050 4,732,928
R2 0.320 0.309 0.335 0.372 0.333
Number of Fuel Stations 1,777 290 92 212 2,752
Month/Year Fixed Effects Yes Yes Yes Yes Yes

Notes: Constant term included but not shown. Standard errors, clustered with respect to fuel stations, are reported in parentheses. *: Significant at the 10% level. **: Significant at the 5%
level. ***: Significant at the 1% level. Public Holiday denotes whether the corresponding day is a public holiday, which vary to some extent across German states. School Holiday Start refers
to the first day of school holidays, which in Germany are specific to the 16 federal states. Station Fixed Effects refer to a set of indicator variables that take a value of 1 for each individual
fuel station. Month/Year Fixed Effects refer to a set of control variables specific to each combination of month and year. See the main text for additional details on data construction and
sources.
For F-Tests for Effect Symmetry the following null hypotheses are tested: Long-Run Symmetry tests whether the coefficients of the ECM are equal, i.e., φ+ = φ−. Short-Run Symmetry tests
L(i).P+ = L(i).P− for all i ∈ [1, 7] with F (7, 12319) degrees of freedom and L(j).WP+ = L(j).WP− for all j ∈ [0, 7] with F (8, 12319) df .
The Cointegration Parameter refers to the coefficient estimate of θ for equation (3) and corresponds to the long-run cointegrating relationship between p and wp.
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