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Abstract

Most electricity systems face contractual fixed consumer prices in the short term, that is, load and price
are fixed before the random supply of renewables like wind or solar realizes. Steam power plants also make
production decisions before such a random supply realizes. These capacities cannot react instantly, which
creates a demand for gas turbines to balance renewables. We approach these dynamics by considering
different types of dispatchability in a more general framework of peak-load pricing and contribute to the
debate on market design and capacity payments. Steam power always recovers costs, gas turbines never
do so, and renewables might. We describe possible transfer schemes to overcome this problem and provide
a more market-oriented solution. However, consumers must always be compensated for lost load.

Keywords: renewable energies, peak-load pricing, electricity market design; missing market; missing
money; capacity payments

JEL Classification: Q21, Q41, Q42, Q48, L94, L98

1 Introduction

Electricity markets often provide day-ahead or contractual fixed consumer prices so that load is
steady. For steam power, such a price signal is sufficient to recover costs, but it continues to
be unclear whether or not gas turbines recover costs. Rising shares of renewables that come at
zero marginal costs—which places them at the head of the merit order—substitute for a part
of steam power production but require additional gas turbine capacity. In times of low or even
zero availability of wind and solar (dark doldrums), steam power and gas turbines can continue
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to produce at full capacity, whereas a higher availability of wind and solar will squeeze out both
technologies. This diminishes their capability to recover costs and leads to questions about capacity
payments for conventional generators. However, the availability of renewables does not simply
fluctuate but is, indeed, uncertain and, thus, only perfectly dispatchable generators like gas turbines
are capable of dealing with the stochastic element of renewables. In turn, steam power must be
scheduled a certain time ahead of actual production since ramping is either not possible in the
necessary time frame or too costly. This brings into doubt whether steam power and renewables
are compatible and leads to complications in designing markets to incentivize the necessary gas
turbine capacity required to provide resource adequacy.

We contribute to the peak-load pricing literature by raising questions of costs recovery and
market design.1 In particular, we derive policy implications for a regulator who tries to decentralize
the efficient capacity mix. We show that steam power and renewables should never be installed
together. Steam power can recover costs, gas turbines cannot, and renewables might. The efficient
solution could be decentralized by transfers without capacity payments. Transfers could be avoided
either by supporting a well-working retail market that balances the real-time supply of producers
with consumer load or by a market for imbalance energy. However, the efficient outcome is possible
only if consumers are compensated for lost load.

The theoretical model described in this paper introduces three technologies: steam power,
renewables, and gas turbines. We cover three technological challenges of electricity systems: (1)
stochastic supply of renewable energies, (2) steam power cannot react to the stochastic element of
renewables, whereas gas turbines can, and (3) load is steady due to day-ahead or contractual fixed
consumer prices (uniform ex-ante price). If production is not sufficient to meet load, consumers
suffer surplus losses and disruption costs, for which they need to be compensated. If load would be
sufficiently responsive, the market would always clear and consumers would never suffer involuntary
rationing (Cramton et al., 2013). However, most electricity markets face low load flexibility (see,
e.g., Joskow and Tirole, 2006, 2007), in particular, in real-time (Joskow, 2011).2

All technologies face constant marginal production and capacity costs. Marginal disruption
costs are assumed to be constant as well, where surplus losses depend on a utility function that
fulfills Inada conditions.3 This paper does not analyze the environmental impact of the three
capacities. Environmental externalities are internalized in production costs by a Pigouvian tax
and we abstract from less pronounced issue regarding welfare as induced technological change.4

Subsidies and taxes are implemented only to decentralize the efficient solution.
Our paper builds on the seminal contribution of Eisenack and Mier (2018), who abstract from

load issues and focus on supply uncertainty with two polar cases: marginal generating units of one
technology are either independent of each other (independence case) or perfectly correlated (perfect

1 It is questionable whether current market designs are appropriate with high shares of renewables, see, e.g.,
Fabra et al. (2011); Henriot and Glachant (2013).

2 There is another factor that drives inelasticities: retail prices and wholesale prices are hugely disconnected since
the price that consumers face is largely based on taxes, levies, and network costs. For example, wholesale prices are
often only one-fifth of household prices.

3 The assumption of constant disruption costs is somehow unrealistic but provides (on average) at least the right
incentives for resource adequacy.

4 Benefits from internalizing the (negative) environmental externality are higher than benefits from internalizing
the (positive) externality from induced technological change (see, e.g., Parry et al., 2003; Fischer and Newell, 2008).
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correlation case). The authors assume that production of different technologies can be adjusted at
different speeds. In contrast to the established literature, where all production decisions are made
after the random variable realizes, they also account for technologies that need to make production
decisions before the random variable realizes. Their main result is that the competition between
technologies is much fiercer than in the established peak-load pricing literature.

The idea of peak-load pricing was developed by Bye (1926, 1929); Boiteux (1949); Steiner
(1957).5 Consumers should be charged based on production costs in off-peak periods but based on
production and capacity costs in peak periods. The introduction of a more diverse technology mix
enhances welfare by smoothing price volatility (see, e.g., Crew and Kleindorfer, 1971). Determin-
istic models solve the peak-load problem and provide sufficient rules for efficient capacity choices
from a regulator’s perspective.6 The literature tends to focus on different rationing schemes as soon
as demand uncertainty enters the picture. Brown and Johnson (1969) assume that consumers are
served regarding their willingness-to-pay (WTP) without additional costs (perfect load shedding).
Visscher (1973) describes two alternative approaches with higher surplus losses from lost load. Ei-
ther consumers are served randomly or consumers with the lowest WTP are served first. Crew and
Kleindorfer (1976) assume that perfect load shedding causes additional rationing costs. Turvey and
Anderson (1977) implement constant marginal costs of lost load and abstract from surplus losses
due to lost load. Chao (1983) chooses the same setup but additionally assumes that generating
units are subject to random failures that are stochastically independent of each other. Kleindor-
fer and Fernando (1993) model supply uncertainty in the same way but additionally account for
surplus losses from lost load and distinguish between rationing and disruption costs. Rationing
costs are dedicated to the system operator to obtain perfect load shedding. Disruption costs are
dedicated to consumers and reflect that willingness-to-pay is not equal to willingness-to-lose. Our
model and that of Eisenack and Mier (2018) choose the same specification of supply uncertainty
but relax the assumption of independently distributed marginal generating units. Eisenack and
Mier (2018) opt for Chao’s rationing approach, whereas we use the Kleindorfer and Fernando
formulation but dedicate all costs to consumers.

Whether these efficient pricing rules lead to cost recovery has not been much studied to date.
In all deterministic setups, firms could recover costs, but for the stochastic models the outcome is
diverse. Perfect load shedding with zero rationing costs as well as random rationing with additive
demand uncertainty lead to prices below long-run marginal costs (LRMC) so that costs recovery is
not possible. Carlton (1977) shows that random rationing with multiplicative demand uncertainty
would permit cost recovery. Serving consumers with the lowest WTP first would even lead to
prices above LRMC and profits are possible.

Chao (1983) distinguishes between two polar cases: marginal demand that is independent from
total demand and marginal demand that is perfectly correlated to demand. Prices are too low to
recover costs for the independence case. For the correlation case, results are inconclusive. The
most comprehensive analysis of efficient pricing is by Kleindorfer and Fernando (1993). Additive
demand uncertainty will lead to a price weakly lower than LRMC, whereas multiplicative demand

5 Crew et al. (1995) provide an excellent survey.
6 See also Houthakker, 1951; Hirshleifer, 1958; Williamson, 1966; Turvey, 1968.
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uncertainty might lead to a price above LRMC. It is difficult to conclude whether cost recovery is
possible. However, we can conclude that for additive uncertainty, profits are not possible, whereas
they are likely for the multiplicative case. The results of Chao (1983) and Kleindorfer and Fernando
(1993) coincide with those of Eisenack and Mier (2018), although the latter’s uncertainty is on the
supply side only. One of their three technologies always recovers costs, whereas another will never
do so. The random technology never recover costs for their independence case, whereas it might
recover costs for the other polar case.

How to actually implement these rules is not touched upon in the peak-load pricing literature.
Borenstein (2016) suggests different approaches for price setting that would allow firms to recover
costs. He summarizes that economic efficiency requires pricing equal to short-run marginal costs.
The outcome is not efficient when there are externalities or market power or if firms fail to recover
costs when price is equal to marginal costs; the latter situation is applicable for our model. However,
our focus is different and is not aimed at distorting prices but on using transfers to ensure that
short-run marginal cost pricing leads to the efficient outcome.

Chao (2011) links the peak-load pricing literature to the literature on the economics of electricity
markets with renewable energies. He considers fossil fuels and one renewables technology, whose
(uncertain) supply is inversely correlated with demand, which is a key difference from our paper
regarding theoretical modeling. Considering both the independence and the correlation cases is
crucial for our results regarding costs recovery, transfer schemes, and market design. Chao (2011)
derives efficient pricing and capacity rules under dynamic pricing and uniform ex-ante pricing.
He considers surplus losses and rationing/disruption costs in the theoretical part of his work, but
abstracts from them to derive results using a numerical simulation with wind power, gas turbines,
and combined-cycle power plants. He finds that renewables reduce average market prices and that
uniform ex-ante pricing leads to higher average market prices and more investment in renewables.
Chao’s model is more comprehensive than ours, but he has to rely on the numerical simulation to
obtain interpretable results, whereas we can derive policy implications directly from the theoretical
model.

Ambec and Crampes (2012) provide a model with a fossil and a renewables technology, whose
deterministic availability is either 0 or 1. A uniform ex-ante price for nonreactive consumers leads
to overinvestment and no profit in the fossil technology, but underinvestment and profit in the
renewables technology, whereas the technology we investigate that is most similar to their fossil
one cannot recover costs. Ambec and Crampes (2012) also derive policy implications, but do not
contribute to the debate over capacity payments. In contrast to our paper, they assume that
reliable capacity must be sufficient to meet load. The same assumption is made by Helm and Mier
(2018), who allow the renewables technology to take any value between 0 and 1. They combine
reactive consumers that are subject to dynamic pricing and nonreactive consumers that face a
uniform ex-ante price. In their model, the efficient solution could be decentralized. In particular,
they identified a capacity payment for fossil generators provided through the market. However,
their focus is on the efficient diffusion pattern of renewable energies and policy implications are
considered only in the case of a price cap. Since dynamic pricing is possible in their setup, they
abstract from the core issues of this paper: capacity payments and market design, namely, missing
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money and missing market. The general issue is that an energy-only market (as in our model)
could lead to under-procurement of capacity. Thus, our paper contributes to the discussion on
whether capacity payments—as lately implemented by, for example, Great Britain, France, and
Australia—are necessary. Newbery (2016) argues that short-term resource adequacy should be
ensured by the system operator, whereas long-term resource adequacy is a regulatory and political
issue. Investors need a price signal that enables the recovery of costs, where missing money occurs
if the price signal is not sufficient. He concludes that missing money problems arise when ancillary
services such as balancing, black start capability, and flexibility are insufficiently priced. If the
price signal is potentially adequate to recover costs but not perceived either because risks cannot
be efficiently allocated or externalities are not properly priced, then we have a missing market
problem (Newbery, 2016). However, the border between missing money and missing market is
not clear since one might argue that there is a missing market when flexibility is not priced at all
or a market for ancillary services is inappropriately designed. Furthermore, one might argue that
providing flexibility could be a positive externality, whereas random supply of renewables is the
countervailing negative externality.

None of papers just discussed, with the exception of Eisenack and Mier (2018), accounts for
different levels of dispatchability; although the topic is highly relevant for the integration of large
shares of renewables (see Schill et al., 2017 for start-up costs of thermal power plants), it is
only addressed by engineering dispatch models (see, e.g., Wang and Shahidehpour, 1995; Han
et al., 2001; Kumano, 2011). Perhaps the theoretical model that comes closest to this topic is
that of Green and Léautier (2017) who study inflexibilities—modeled by minimum production
levels—of renewables and of conventional capacity. In a numerical simulation they find that higher
wind turbine capacities squeeze out inflexible more quickly than flexible nuclear generators, which
mirrors our result that the competition between existing technologies is much fiercer than in the
established peak-load pricing literature without different dispatchability levels.

Building on Eisenack and Mier’s 2018 model, but accounting for surplus losses due to lost load,
we find that the exclusion result—steam power and renewables cancel each other in the efficient
solution—is even stronger. This result is based on the first two technological challenges covered
by our model: (1) random supply of renewables and (2) limited dispatchability of steam power,
where the following results are mainly driven by (3) the inflexible load assumption and inability
to provide a value-adequate price signal. Steam power always recovers costs; gas turbines never
recover costs. In the independence case, renewables will not recover costs since the price is equal
to their LRMC but renewables are not fully used for all states. In the correlation case, price is
higher by a markup that could be sufficient to recover costs; in fact, under specific distribution
assumptions, the mark-up is always sufficient. As soon as renewables enter the market, consumers
suffer (involuntary) load management and must be compensated for it. We can implement a
value-adequate price signal by employing a specific transfer scheme, including compensation for
consumers, without any capacity payments. Combining a real-time wholesale market with a retail
market or by supporting a market for imbalance energy would lead to a value-adequate price signal
as well. As soon as marginal generating units are not perfectly correlated, even a value-adequate
price signal is no longer sufficient to decentralize the efficient solution.
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Different levels of dispatchability are reflected by a sequential dispatch decision model. Long-
term capacity decisions are made years ahead of actual delivery (Stage 1). At least one day-ahead
load is fixed due to contractual fixed consumer prices (Stage 2). In Stages 3 to 5, technologies
need to make production decisions. First, production of steam power must be scheduled hours
ahead of actual production (Stage 3). Then, minutes to seconds before actual delivery, the random
availability realizes and renewables could be dispatched within their capacity constraint in Stage
4. Finally, in Stage 5, gas turbine production is decided in real-time and it might be that lost
load occurs if total production is not sufficient to serve load. We use this multi-stage process
to determine the efficient solution and a decentralized day-ahead market solution under different
levels of enforcement by a benevolent regulator. Even under the benchmark assumption of per-
fectly competitive markets, the efficient and the day-ahead market outcomes are not equivalent.
Consequently, we determine necessary capacity, production, and lump-sum transfers for firms so
as to decentralize production and capacity decisions as well as provide for any necessary con-
sumer compensation to decentralize load decisions. We describe one transfer scheme that creates a
value-adequate price signal and show how such a price signal could be implemented even without
transfers by well-designed markets.

Section 2 introduces the model. Section 3 describes the efficient solution: production, load,
and capacities. Section 4 shows describes costs recovery in a day-ahead market. Section 5 devel-
ops transfer schemes to decentralize capacity and production decisions. Section 6 derives policy
implications that arise from the further analysis. Section 7 concludes.

2 The Model

We consider three types of technologies, j = r, s, g. r are renewables technologies like wind turbines
and solar PV with random supply. s are steam power technologies. Scheduling steam power
requires planning a certain time ahead of actual production (limited dispatchable). g are gas
turbines, which are perfectly dispatchable since they can adjust production instantly. Capacity
is kj and production xj . Steam power and gas turbine production are restricted by capacity,
xs ≤ ks, xg ≤ kg, whereas renewables production is restricted by randomly available capacity,
xr ≤ x̃r. Load is D and xu = max

{
D −

∑
j xj , 0

}
is lost load. Consumers obtain utility U

from load D but suffer utility losses and disruption costs from lost load. Utility is not further
specified but fulfills the Inada conditions. In particular, U is concave, i.e., U

′
> 0, U

′′
< 0. Note

that we consider only one investment and one production cycle. Suppose that x̃r is a continuous
and continuously differentiable random variable and define it as x̃r :=

´ kr
0
ω (z) dz, i.e., x̃r is

conceived as a continuum of marginal generating units z with random availabilities ω (z) ∈ [0, 1].
These are stochastically identically distributed random variables. Regarding the correlation of
availabilities ω (z), we consider two extreme cases. The independence case is when the availabilities
of marginal generating units realize stochastically independently, which we denote ind. In the
perfect correlation case, denoted corr, the availabilities of marginal generating units are perfectly
correlated.

If weather conditions are the same for each generating unit, we are in the case of perfect corre-
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lation. If weather conditions are independent from each other, we are in the case of independence.
Of course, these cases are extremes and the reality is in between. However, considering these two
extreme cases allow us the derive policy implications applicable to more real-world settings that
are neither ind nor corr.7

Assume that a = E [x̃r] /kr ∈ (0, 1) is the availability factor of renewables capacity, where
E is the expectation operator and E [x̃r] expected availability of renewables capacity. Note that
Ω = [0, kN ] is the sample space of x̃r. For any interval Ωc ⊆ Ω, the events x̃r ∈ Ωc realize with
probability Prc. Call ac = E [x̃r|Ωc] /kr the conditional availability, where E [x̃r|Ωc] is expected
availability of renewables capacity conditional that Ωc realizes. To avoid having to show each
equation for both extreme cases, we use the dummy ac := a for ind and ac := ac for corr.

Marginal production costs cj and marginal capacity costs bj are constant. Based in a regular
merit-order curve, we assume that renewables have the lowest or even zero marginal production
costs, whereas gas turbines have the highest, i.e., 0 ≤ cr < cs < cg. To reflect existing structures
and to exclude that steam power capacity obviously dominates gas turbine capacity, we have
0 < bg < bs. We assume that long-run marginal costs (LRMC) of gas turbines are the highest, i.e.,
br
a + cr, bs + cs < bg + cg. Otherwise, it might be beneficial to use gas turbines only. Note that
renewables capacity has an availability factor of a, i.e., 1

a capacity units are needed to provide one
available unit in expectations.

We denote the difference between LRMC of steam power and renewables by ∆C := bs + cs −
br
a − cr. If ∆C ≤ 0, the LRMC of renewables is higher than that of steam power, whereas the
latter technology has no stochastic component and is fully reliable. Consequently, ∆C ≤ 0 would
automatically imply ks > 0 and kr = 0.

Marginal costs of lost load are cu and dedicated to consumers only, that is, we abstract from
rationing costs and consider disruption costs only.8 Producing one unit with gas turbine capacity
is cheaper than accepting one unit of lost load, i.e, bg + cg < cu. Otherwise, lost load dominates
gas turbine production. Nevertheless, the choice between accepting lost load and providing (often
unused) back-up capacities is an optimization problem.

The essential assumption of peak-load pricing models is that capacities ks, kr, kg are fixed in
the short-run and load D must be decided before production decisions xs, xr, xg are made under
technological restrictions. Steam power production xs needs to be specified before the random
availability of renewables x̃r realizes and cannot be changed later. This places steam power earliest
in dispatch timing. The merit-order part of steam power capacity must be placed forwardmost
as well, which contradicts the merit-order ranking cr < cs < cg. To assure that this placement
is credible, we assume that the costs of ramping-down steam power are higher than the benefits
of replacing steam power with renewables production. Similarly, ramp-ups are technologically not
possible in the necessary time frame. After load and steam power production is fixed, renewables
availability realizes. If the actual availability of renewables is not sufficient to meet load, gas
turbines must be employed or lost load occurs.

7 One might implement a correlation measure as discussed in Chao (1983).
8 For a discussion of rationing, disruption, and utility losses by curtailment see Kleindorfer and Fernando (1993).
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3 Efficient Solution

In this section we determine the efficient production, load and investment decisions under the
technological restrictions described: limited dispatchability of steam power, random availability
of renewables, and fixed load due to contractual fixed prices. The efficient solution follows from
maximizing welfare J , given by the difference between utility and costs,

J = U −
∑
j

bjkj −
∑
j

cjxj − cuxu, (1)

within the constraints of the following decision structure. In Stage 1, a regulator selects capacities
ks, kr, kg. In Stage 2, a regulator selects load D. In Stage 3, production of steam power xs ≤ ks

must be decided. Then, the random availability of renewables realize and in Stage 4, production
of renewables xr ≤ x̃r must be decided. In Stage 5, a regulator selects gas turbine production
xg ≤ kg. Finally, lost load xu ≥ 0 could incur costs. We consider a one-period setup only, and
thus it is sufficient to consider all stage before the random variable x̃r realizes as one decision stage
(Stages 1 to 3) and maximize expected welfare E [J ]. The stages after realization of x̃r (Stages
4 and 5) constitute another decision stage where we maximize welfare (no expectations necessary
but rather conditional results). However, we choose the five-stage setup since this setting best
reflects the timing of electricity markets.

Production Decisions. Start with production decisions from Stages 3 to 5. Depending on the
realization of the random variable x̃r, we distinguish between four intervals of events. Renewables
dispatched occurs for x̃r ∈ Ω1 = [D, kr] and steam power dispatched if x̃r ∈ Ω2 = [D − xs, D).
Gas turbines dispatched realizes for all x̃r ∈ Ω3 = [D − xs − kg, D − xs) and lost load if x̃r ∈
Ω4 = [0, D − xs − kg). We call the union of both renewables and steam power dispatched, i.e.,
Ω12 = Ω1∪Ω2 = [D − xs, kr], excess capacity of renewables. Similarly, Ω34 = Ω3∪Ω4 = [0, D − xs)
is the union of gas turbines dispatched and lost load, which we call renewables fully used. We can use
these intervals to derive efficient production decisions as well as the resulting lost load conditional
on the interval that might realize as9

9 We omit detailed computations of efficient production decisions and provide intuitive explanations only. For a
comprehensive proof, see Eisenack and Mier (2018).
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xs = ks, (2)

xr =

x̃r for Ω34

D − ks else
, (3)

xg =


kg for Ω4

D − ks − x̃r for Ω3

0 else

, (4)

xu =

D − ks − x̃r − kg for Ω4

0 else
. (5)

Load is fixed (in Stage 2) when production decisions are made (in Stages 3 to 5). Steam power
needs to make production decisions before x̃r realizes. As excess capacity of steam power carries
no benefit in later stages, production should be increased under the given constraints in order that
xs = ks. After steam power production is fixed and x̃r is known, renewables should meet as much
of the remaining load D − xs as they can since they have the lowest marginal production costs.
If excess capacity of renewables realizes (Ω12), renewables are not fully needed but if renewables
are fully used in Ω34, the total available capacity of renewables is no longer sufficient to meet the
remaining load. In Ω34, gas turbines should be used to avoid lost load since cg < cu, i.e., producing
with gas turbines is cheaper than accepting lost load. In Ω3, gas turbines are dispatched since
the total gas turbine capacity is not needed to meet the remaining load D − ks − x̃r. The total
capacity of gas turbines would be employed if and only if lost load realizes in Ω4.

Load Decision. In Stage 2, load must be decided. Lost load occurs for all x̃r ∈ Ω4, i.e., consumers
obtain utility from load D if lost load does not occur and from total production if there is unmet
load, i.e.,

U =

U (ks + x̃r + kg) for Ω4

U (D) else
. (6)

Using the interchangeability of differentiation and expectations for continuous and continuously
differentiable random variables (see Chao, 1983; Eisenack and Mier, 2018), which we will use for
the following first-order conditions as well, we can maximize expected welfare with regard to load
and obtain the following first-order condition:

∂E [J ]

∂D
= U

′
Pr 123 − cr Pr 12 − cg Pr 3 − cu Pr 4 ≤ 0 [= 0 if D > 0] . (7)

In the model setup, we assumed that the Inada conditions are fulfilled, that is, the first-order
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condition (Equation (7)) must bind for at least some D > 0. Using U
′
Pr123 = U

′−U ′ Pr4 to solve
the binding first-order condition of Equation (7) for U

′
, enables us to find the necessary marginal

utility to maximize welfare with regard to load as

U
′

= cr Pr 12 + cg Pr 3 + cv Pr 4, (8)

where cv := cu+U
′
is the value of lost load, that is, the sum of utility losses U

′
and direct costs cu

from lost load. Equation (8) has both production and consumption components. The production
component is given by the first two terms on the right sight, that is, marginal production costs of
technologies weighted by the respective probabilities that they will be used as marginal technology.
If Ω12 realizes, renewables are the marginal technology to serve a marginal unit of load, whereas in
the gas turbines dispatched cases (Ω3), gas turbines are the marginal technology. The consumption
component considers that in lost load (Ω4), consumers suffer the value of lost load cv.

System Long-Run Marginal Costs. Before turning to efficient capacity decisions in the next
subsection we expand on the idea of system costs. Recall that LRMC are defined by br

a +cr, bs+cs <

bg + cg < cu, where br
a + cr ≥ bs + cs immediately implies that no renewables will be installed.

Joskow (2011) argues that an output-based metric (as described above) is flawed for variable
renewables. Lamont (2008) and Hirth (2013) mention that—from a system perspective—related
system costs are relevant. We call LRMC that account for system costs system LRMC and denote
them by Csysj .

Steam power capacity is fully used, i.e., Csyss = bs + cs. Gas turbines are used only when
renewables have been fully used (Ω34). A marginal unit of load in Ω12 could be served more
cheaply by renewables since there is unused capacity left. We obtain system LRMC that are lower
than LRMC, i.e., Csysg = cr Pr12 +bg + cg Pr34 < bg + cg since cg > cr.

LRMC of renewables are bN
a + cN . This formulation depicts only the average availability, not

the costs caused by variations of x̃r. We define the system LRMC of renewables as costs to provide
a unit of production even in the lost load events (at least in the average of these events), i.e.,

CsysN =

(
br
a4

+ cr

)
− (cg − cr)

a3 − a4

a4
Pr 3, (9)

Note that we use ac as a dummy to distinguish between ind and corr. The first term covers costs
to provide an available capacity unit in Ω4. The second term is benefits from replacing gas turbine
production in Ω3 by renewables due to the additional capacity installed to provide more available
capacity in Ω4. For the case of independence (ind), we have a4 = a3 = a and CsysN = bN

a + cN . If
a marginal generating unit of renewables behaves stochastically independent, then system LRMC
are equal to LRMC. On contrary, for corr, all marginal generating units produce less (or more) in
the same way and the first element of Equation (9) is higher than the LRMC due to a4 < a.
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Capacity Decision. Now consider capacity decisions at Stage 1. We need to maximize welfare
from Equation (1) w.r.t. ks, kg, kr by using the expectations. First-order conditions are

∂E [J ]

∂ks
= cr Pr 12 + cg Pr 3 + cv Pr 4 − bs − cs ≤ 0 [= 0 if ks > 0] , (10)

∂E [J ]

∂kg
= cv Pr 4 − bg − cg Pr 4 ≤ 0 [= 0 if kg > 0] , (11)

∂E [J ]

∂kr
= (cg − cr) a3 Pr 3 + (cv − cr) a4 Pr 4 − br ≤ 0 [= 0 if kr > 0] , (12)

Using U
′
from Equation (8) and system LRMC as described in the previous subsection, we can

rewrite each of these first-order conditions as ∂E [J ] /∂kj = U
′−Csysj . Intuitively, technologies will

used if and only if their system LRMC are equal to marginal utility, that is, the benefits from using
the respective technology. This immediately implies that system LRMC of each used technology
must be same in the efficient solution. This result even holds for applications with more than three
technologies and is underlined by Helm and Mier (2018) as well.

First, consider the first-order condition of steam power (Equation (12)). Steam power can
substitute for renewables in Ω12 and for gas turbines in Ω3. Steam power is reliable and avoids
lost load, i.e., cv Pr4 shows benefits from preventing lost load. The sum of these three terms is
total benefits and is equal to U

′
from Equation (8). The last two terms are the system LRMC,

which must be subtracted from the benefits. Steam power capacity must be increased as long as
the system LRMC Csyss are lower than the benefits U

′
.

Turn to the first-order condition of gas turbines (Equation (11)). Gas turbine capacity is not
fully used in the gas turbines dispatched events (Ω3) and, thus, gas turbine capacity is beneficial
only in lost load (Ω4). The last two terms are costs. To obtain ∂E [J ] /∂kg = U

′ − Csysg we need
to add cr Pr12 +cg Pr3 to the first term and obtain U

′
. Subtracting the same from the latter two

terms yields Csysg .
Finally, consider the first-order condition of renewables (12). Benefits and costs are mixed

in the first two terms. cg, cv denote benefits from substituting gas turbine production in Ω3 or
preventing lost load in Ω4, respectively, where cr are related production costs. Note that the
benefit from reducing lost load is smaller than that from using steam power and gas turbines since
a4 < 1. To obtain ∂E [J ] /∂kr = U

′ − Csysr , we must divide Equation (12) by a4, add/subtract
cr Pr123 +cg Pr3 and do some rearranging.

We would have U
′

= Csyss = Csysr , i.e., Equations (10) and (12) are binding simultaneously,
only for a boundary case ∆C = Φ with

Φ =
a− a3

a3

br
a

+
a3 − a4

a3
(cv − cr) Pr 4. (13)

From binding Equations (11) and (12) we obtain efficient probabilities that implicitly define
capacities of renewables and gas turbines,
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Pr 4 =
bg

cv − cg
, (14)

Pr 3 =
br − (cv − cr) a4 Pr 4

(cg − cr) a3
. (15)

Using Equation (15) in Equation (8) yields the efficient marginal utility

U
′

=
br
a

+ cr + Φ. (16)

Given that a certain share of renewables is installed, efficient marginal utility must be equal to
output-based LRMC of renewables plus a mark-up Φ as described by Equation (13). Steam power
will participate if and only if U

′
= bs + cs.

In the following we distinguish between the case of independence and the case of perfect corre-
lation since both cases provide different rationales for efficient price setting in the next section.

Case of Independence. Note that for ind, we have Φ = 0. Steam power and renewables coexist
if the LRMC are equal to each other, i.e., ∆C = Φ = 0⇔ bs + cs = br

a + cr. As argued in Section
2, this cannot be efficient and thus we have ks · kr = 0.

Case of Perfect Correlation. For corr, we have ac = ac. Here, we use the superscript ∗ to
denote the efficient variables that maximize expected welfare, e.g. U

′∗ = br
a + cr + Φ∗ is efficient

marginal utility, D∗ is efficient load and E [x∗u|Ω4] is the efficient expected lost load conditional
on the realization of Ω4, where Pr ∗4 is the efficient probability of lost load. Maximized expected
welfare is given by

E [J∗] = U (D∗)−
(
br
a

+ cr + Φ∗
)
D∗ −

(
∆U∗u −

(
br
a

+ cr + Φ∗
)
E [x∗u|Ω4]

)
Pr ∗4, (17)

where ∆U∗u := U (D∗)−U
(
k∗s + a∗4k

∗
r + k∗g

)
is the difference between expected (efficient) utility in

Ω123 and the expected (efficient) one in lost load events (Ω4).
Figure 1 shows U,U ′ on the vertical and D on the horizontal axis. Note the difference between

D as variable and D∗ as the efficient (fixed) value. The upward sloping curve depicts utility U . The
downward sloping curve depicts marginal utility U

′
. Both curves are related via U =

´D
0
U
′
dD̃.

The areas ABCL are the gross surplus. To obtain consumer surplus (AL), we must subtract
the costs of providing the efficient load. Remember, system LRMC Csysj are the costs of providing
the marginal unit of load and must be equal to efficient marginal utility (Equation (16)) as long as
kj > 0. So, we must subtract

(
br
a + cr + Φ∗

)
D∗ (see Equation (17)), which is given by the areas

BC.
Next, we have to account for possible surplus losses due to lost load. If lost load realizes,

consumers suffer losses of ∆U∗u =
´D∗
D∗−E[x∗u|Ω4]

U
′
dD̃, which is given by the areas CL. Conversely,
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Fig. 1: Illustration of welfare for corr

total production costs are reduced by the area C or by
(
br
a + cr + Φ∗

)
E [x∗u|Ω4] (see Equation

(17)), respectively. So, consumers suffer total losses of LPr4 in expectation, which is given by the
third term in Equation (17).

Note that we assumed positive levels of kr in the efficient solution, but maximized welfare
in a fully reliable system with steam power only would be given by J∗ = U (D∗) − (bs + cs)D

∗

(dropping the possible realization of Ω4 in Equation (17)). As soon as renewables enter the system,
we have Pr∗4 > 0—since providing a fully reliable system cannot be welfare maximizing. Thus,
using steam power only would lead to a higher welfare when ∆C = Φ∗ ⇔ bs + cs = br

a + cr + Φ∗.
Now turn to Φ and note that ac = ac.10 Obviously, if a3 < a, then Φ is positive since a3 < a4.

However, a3 > a is possible. Whether a3 > a or a3 < a crucially depends on the shape of the
distribution function of x̃r and on the total size of kr.

Start with the size of kr. For low kr the occurrence of events for which renewables are not fully
used (Ω12) is rare. Conversely, Ω34 occurs more often and even a3 (as the conditional availability
factor in gas turbines dispatched events) should be higher. If renewables capacity increases, we
would reach a3 ≤ a and Φ must be definitely positive. Thus, for kr close to D (note that Pr34 < 1

demands for kr > D since otherwise excess capacity of renewables never occurs) we would have
a3 > a. Whether such a small kr is efficient or even the second term in Φ compensates for the
negative first term could not be further determined.

It is illuminating to assume uniformly distributed random variables (additionally denoted by
superscript uni). We can use a3 Pr3 +a4 Pr4 = a34 Pr34 to obtain

Φcorr,uni =
a− a34

a34

br
a
− a34 − a4

a34
bg > 0. (18)

To conclude, for corr, there is strong intuition that Φ is positive but there could be some cases
where it is negative.

10 It is not longer necessary to use ∗.
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Summary of Results. We derived efficient production as well as load decision and, finally, de-
termined efficient capacities. We showed that there is an efficient solution for the combination of
technologies as long as their system LRMC are equal to efficient marginal utility. Marginal utility
shows system marginal costs for all technologies that are employed in the efficient solution. Steam
power and renewables will only coexist in the efficient solution for a boundary case ∆C = Φ. How-
ever, welfare has a discontinuity at this boundary (see Eisenack and Mier, 2018) and we need to
compare welfare of a fully reliable system with steam power only and of a system with renewables
(and lost load). This leads to the conclusion that steam power and renewables cannot coexists in
the efficient solution. We summarize this in Lemma 1.11

Lemma 1. Neither for ind nor for corr, is ks · kr > 0 the efficient solution.

4 Costs Recovery in a Day-Ahead Market

This paper is not focused on analyzing the efficient solution per se but on how such a solution might
be decentralized in a perfect competitive setup with symmetric and profit maximizing firms. We
choose this setup as a benchmark in investigating the problem and discuss the policy implications
that arise from it.12

Our model is comprised of a day-ahead market with steam power, renewables and gas turbine
firms. A benevolent regulator (henceforth, the system operator) determines the efficient dispatch,
that is, efficient production and load, and sets a price in advance of actual delivery. Consumers
need to pay this price; firms are obligated to deliver the sold amount of electricity. Steam power
production could be decided by firms after the price decision but before the random availability
of renewables realizes. Renewables and gas turbine firms in turn make production decisions after
the random availability realizes.

Profits of firm i follow from the difference between revenues earned and costs, where xij is
production, kij capacity of firm i, and x̃ir is the random availability of renewables capacity. Note
that xj =

∑
i x

i
j is total production of technology j and kj =

∑
i k
i
j total capacity. We assume that

firms do not consider how either own production or own capacity influence total production, total
capacity or prices and, thus, the occurrence of events and the related probabilitiesPrc are given.
The decision problem for each firm is to maximize profits, measured as the difference between
revenues and costs,

πij = (p− cj)xij − bjkij , (19)

within the constraint of the following decision structure. In Stage 1, firms select the technology
and install kij . In Stage 2, a regulator enforces a uniform ex-ante price p = U

′
so that load D is

11 Note that the exclusion result here is even stronger than in Eisenack and Mier (2018), that is, accounting for
utility losses due to lost load diminishes the possibility of renewables and steam power coexisting in the efficient
solution.

12 Zöttl (2010) found that—in a setup with fluctuating demand—strategic firms overinvest in baseload capacity
(steam power in our model) but total capacities are inefficiently low.
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fixed.13 In Stage 3, steam power firms decide xis ≤ kis. Then, the random availability of renewables
capacity for each firm x̃ir realizes and, in Stage 4, renewables firms decide xir ≤ x̃ir, whereas in
Stage 5 gas turbine firms decide xig ≤ kig.14

Capacity costs from Stage 1 must be considered as sunk costs in later stages and the price
p is fixed from Stage 2 onward. Firms’ profits manifest as the difference between revenues and
production costs, i.e., maxxi

j
(p− cj)xij . Decentralization of efficient production (see Equations

(2) to (4)) demands for three conditions. First, firms should not produce if doing so is not socially
beneficial. This could be incentivized by negative production profits (capacity costs are sunk at
the production Stages 3 to 5), i.e., p − cj < 0 would leads to xij = 0. Second, firms should not
increase production if doing so is beneficial. This occurs when p−cj = 0, i.e., firms would not have
an incentive to increase production up to capacity so that xij < kij or xir < x̃ir. Third, firms need
positive production profits when it is socially beneficial to use the total capacity of the respective
technology. This would lead to xij = kij or xir = x̃ir, respectively.

Efficient Dispatch. If the price is above the marginal production costs of gas turbines, i.e.,
p > cg, all firms produce with their whole capacity. In renewables or steam power dispatched
events (Ω1,Ω2), this would lead to inefficiently high production. If cg > p > cs, gas turbine firms
have no incentive to produce at all. If either p = cg or p = cs, gas turbine firms or steam power
firms, respectively, are indifferent between producing or not. If the price is below the marginal
production costs of stream power, i.e., p < cg, not even steam power firms are able to recover
short-term costs and have no incentive to produce.

Obviously, a day-ahead price p will never lead to efficient dispatch as long as consumers cannot
respond adequately to a price signal. Thus, the efficient production decisions must be enforced.
This is not as critical as one might think since system operators often enforce a more (or less)
optimal dispatch due to network constraints (and associated balancing costs), which are not inter-
nalized by the bids of different generators.

For the analysis in this section, we assume that the price will always be (weakly) above the
marginal production costs of gas turbines in order that each technology has at least some incentive
to produce in Stages 3 to 5. However, prices will not exceed LRMC of steam power since this
is the benchmark price that results from a fully reliable system with steam power only, i.e., p ∈
[cg, bs + cs].15

The dispatch is enforced by setting production limits for each firm. We call Di
j (x̃r|Ωc) the

(conditional) dispatch decision, that is, firm i producing with technology j is allowed to produce
xij ≤ Di

j (x̃r|Ωc) conditional on event x̃r realizing in Ωc. Note that this does not cover the whole
interval Ωc but rather refers to one specific realization x̃r in Ωc.

We now take a more detailed look at efficient dispatch and how it could be decentralized by
the system operator. In Stage 3, steam power firms are allowed to produce with full capacity, that

13 There is a long-run or short-run price elasticity determined by p = U
′
with U

′′
< 0 but no real-time price

elasticity (no real-time demand response).
14 Again, it would be sufficient to differentiate between all stages before and after the random variable.
15 We assume p ∈ [cg , bs + cs] to enable the efficient dispatch by setting maximum production limits. However,

even p < cg could be analyzed. The system operator just needs to enforce minimum production levels as well.
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is, the system operator sets Di
s = ks (independent of x̃r) and the firms decide for xis = ks since

p exceeds marginal production costs. In Stage 4, renewables firms are allowed to produce at full
capacity in the events of gas turbines dispatched and lost load but must reduce production below
available capacity in Ω12. Noting that E

[
Di
r (x̃r|Ω12)

]
= E

[
Di
r|Ω12

]
, it is expected that

E
[
xir
]

= E
[
x̃ir|Ω34

]
Pr 34 + E

[
Di
r|Ω12

]
Pr 12. (20)

In Stage 5, gas turbine firms are not allowed to produce in Ω12 since there is already enough
production from renewables and steam power. They are only allowed to use total capacity in the
events of lost load (Ω4), where the dispatch decision of the system operator binds in gas turbines
dispatched events (Ω3). Using E

[
Di
g (x̃r|Ω3)

]
= E

[
Di
g|Ω3

]
, leads to

E
[
xig
]

= kig Pr 4 + E
[
Di
g|Ω3

]
Pr 3. (21)

Enforcement of efficient dispatch as described so as to ensure the efficiency of a decentralized
solution requires that two additional conditions be met. First, profit-maximizing firms must provide
efficient capacity levels (efficiency condition, see the first-order conditions of Equations (10) to
(12)). Second, each firm’s expected profit must be zero (zero-profit condition); otherwise efficient
capacity decisions are not an equilibrium outcome due to exit or entry.

In the first part of the following analysis, we assume that a regulator enforces efficient capacities
in addition to enforcing efficient dispatch (capacity decisions enforced). We simply check whether
the zero-profit condition is violated or not. In the second part we show the decentralized equilibrium
outcome when a regulator no longer enforces efficient capacities (decentralized capacity decisions).
Finally, we assume that the system operator does not set a price equal to efficient marginal utility
(Equation (16)) but, instead, equal to marginal utility (Equation (8)) accounting for distorted
capacity decisions of firms (price adaption). We use superscript 1st, 2nd and 3rd to denote variables
for the different system operator actions.

Capacity Decisions Enforced (1st). The system operator enforces efficient capacities and sets
p1st = br

a + cr + Φ. Efficient steam power capacity requires p = bs + cs and we have xis = kis

from efficient production decisions. The zero-profit condition for steam power firms is obviously
fulfilled since E

[
πis
]

= (bs + cs − cs) kis − bskis = 0. Gas turbine firms cannot recover costs—for
two reasons. First, they are not operating at fully capacity in Ω123. Second, price is below their
LRMC since p ≤ bs + cs < bg + cg. Renewables firms are not allowed to use their whole capacity
in Ω12. Considering the mark-up Φ, the profits of renewables firms are

E
[
πir
]

=
br
a

(
E
[
xir
]
− E

[
x̃ir
])

+ ΦE
[
xir
]
, (22)
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where E
[
xir
]
< E

[
x̃ir
]
in order that the first term is negative. If the mark-up Φ is sufficiently

high, renewables firms recover costs. For ind, we know that Φ = 0 and, thus, renewables firms will
never recover costs. For corr, the mark-up could be positive or negative since a ≶ a3 as argued
before. If, additionally, the random variables are uniformly distributed, the mark-up is positive
(Equation (18)) and sufficient to recover costs. Lemma 2 summarizes the results.16

Lemma 2. If a regulator enforces the efficient solution, steam power firms recover costs, whereas
gas turbine firms suffer losses, as do renewables firms for ind. For corr, renewables firms might
recover costs. For corr and uniformly distributed random variables, renewables firms make profits.

Decentralized Capacity Decision (2nd). We now analyze firms’ capacity decisions when such
decisions are not enforced by the regulator. Note that the implication for cost recovery from
Lemma 2 does not change since the regulator continues to enforce p = br

a + cr + Φ. Using xis = kis

and expected production of gas turbine firms (Equation (21)) yields first-order conditions of profit
maximizing steam and gas turbine firms by differentiating expected profits,

∂E
[
πis
]

∂kis
= p− bs − cs ≤ 0

[
= 0 if kis > 0

]
, (23)

∂E
[
πig
]

∂kig
= pPr 4 − bg − cg Pr 4 ≤ 0

[
= 0 if kis > 0

]
. (24)

Let us start with steam power firms. Binding Equation (23) demands for p = bs + cs, i.e., the
efficiency condition is fulfilled if ∆C = Φ. Next, consider gas turbine firms. Solving the binding
first-order condition of Equation (24) yields Pr4 =

bg
p−cg > 1 since p < bg + cg, a contradiction.

Thus, no gas turbine capacity will be installed.17 Note that if kg = 0, there is no longer an efficient
solution. All computations without gas turbine capacity are just optimal given that gas turbine
capacity is not an option (2nd best).

Turning next to renewables firms, steam power will be used as long as p = bs + cs and for all
prices p ≤ bs + cs, gas turbine capacity cannot exist in the market. Consequently, Pr3 = 0 and the
first-order condition of renewables—from the perspective of both welfare and profit-maximizing
firms—changes to

∂E [J |kg = 0]

∂kr
= (cv − cr) a4 Pr 4 − br ≤ 0 [= 0 if ks > 0] , (25)

∂E
[
πir|kg = 0

]
∂kir

= (p− cr) a4 Pr 4 − br ≤ 0
[
= 0 if kis > 0

]
. (26)

Note that, by assumption, p ≤ bs + cs < cv. Consequently, the price is too low for renewables
firms to provide the optimal amount of capacity. The probability of lost load follows from binding

16 This result is found by Eisenack and Mier (2018) as well. Our setup only differs from their by accounting for
the proper value of lost load. However, the proof (see Appendix A) is equivalent.

17 First-order condition, as well as expected profits would be negative.
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Equation (26) and is higher than the optimal one from binding Equation (25). Note that Φ from
Equation (13) is general enough to cover situations with kg = 0 as well. Dropping Ω3, we obtain
Φ2nd = a−a4

a4
br
a . It follows that p

2nd = br
a + cr + Φ2nd.

Price Adaptation (3rd). Now we assume that firms’ capacity decisions affect price setting by the
system operator in Stage 2. Price follows from Equation (8) and not from the efficient marginal
utility (Equation (16)), that is, the system operator accounts for different outcomes based on
capacity decisions. Still, steam power requires that p = bs + cs and gas turbines cannot exist.
Using Pr4 from binding (26), we obtain the adapted price

p3rd =
br
a

+ cr +

cv−cr
p−cr a− a4

a4

br
a
. (27)

Summary of Results. For ind, we have ac = a and all prices are equal to LRMC of renewables.
The prices are never sufficient to recover fixed costs of renewables (and gas turbine) firms, whereas
steam power firms recover costs if p = bs + cs = br

a + cr ⇔ ∆C = 0.18 For corr, prices differ due
to ac = ac. If installing gas turbine capacity is the efficient solution, then we must have Φ < Φ2nd

and, thus, p1st < p2nd.
Moreover, if the system operator adapts the price, it will result in higher prices, p2nd < p3rd

since p < cv. A higher price reduces the probability of lost load, which in turn leads to more
renewables capacity, i.e., k2nd

r < k3rd
r . But—simultaneously—a higher price keeps steam power

for lower ∆C (as long as p = bs + cs) in the market and prevents renewables from entry. We
summarize our result in the following Proposition.

Proposition 1. If a regulator does not enforce efficient capacities, (1) firms will never install gas
turbine capacities and (2) renewables firms will install inefficiently low capacity. A price adaption
in comparison to the efficient price leads to more renewables capacity if renewables have already
entered the market, but prevents renewables from entering at all since steam power remains in the
market for lower ∆C.

Note that in the 1st setup, we would not use steam power and renewables together, where in
the 2nd and 3rd setup this might be possible. We refrain from analyzing this situation, however,
and concentrate next on transfers to decentralize the efficient solution.

5 Day-Ahead Market with Transfers

In this section we show how a regulator can decentralize the efficient solution by implement-
ing transfer schemes. We continue to assume that a regulator enforces the efficient production.
However, some of the described transfer schemes will do this automatically. At this point, our
multi-stage decision process changes. Before firms choose capacities in Stage 1, a system operator

18 Notice, for ∆C = 0 the efficient solution demands for ks > 0 and kr = 0.
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imposes transfers in order that the efficiency conditions as well as the zero-profit conditions for
each technology type are fulfilled.

Denote technology-specific transfers by τj . Positive transfers are subsidies, negative transfers
are taxes. We consider transfers on installed capacity, τkj , conditional—meaning that the interval
of events Ωc realizes—production transfers, τxj,c, and lump-sum transfers, τ lsj . Then, the expected
profits of representative firm i using technology j after transfers are

E
[
πi,τj

]
=

∑
c

(
p+ τxj,c − cj

)
E
[
xij |Ωc

]
Pr c −

(
bj − τkj

)
kij + τ lsj , (28)

where p + τxj,c − cj are marginal conditional production profits after transfers and bj − τkj are
marginal capacity costs after transfers.

Steam Power Firms. Steam power firms always operate at full capacity. Note from Section 4
that p = bs + cs leads to efficient capacities and steam power firms recover costs. No transfers are
necessary.

Gas Turbine Firms. The production schedule for gas turbine firms is given by Equation (21).
Using this and assuming that positive levels of gas turbines are installed, maximizing profits w.r.t.
kig yields the efficiency condition,

∂E
[
πig
]

∂kig
= 0 ⇔ bg − τkg =

(
p+ τxg,4 − cg

)
Pr 4, (29)

that is, marginal capacity costs after transfers must be equal to expected marginal production
profits if lost load (Ω4) realizes. We can use this to obtain the zero-profit condition,

E
[
πi,τg

]
= 0 ⇔ τ lsg = −

(
p+ τx,3g − cg

)
E
[
Di
g|Ω3

]
Pr 3. (30)

Efficiency requires that transfers must be chosen so that Pr4 = Pr∗4 (superscript ∗ denotes the
efficient solution from Section 3). This is an equilibrium outcome if a lump-sum tax equal to the
expected production profits from the gas turbines dispatched events (Ω3) is imposed. Interestingly,
the transfers necessary to fulfill the efficiency condition (τkg , τxg,4) are independent from transfers
to fulfill the zero-profit condition (τxg,3, τ lsg ). However, the two conditions Equations (29) and (30)
allow for infinite transfer possibilities, which are set out in Table 1. We refrain from showing
detailed computations when such is not necessary. However, inserting the values from Table 1 into
Equations (29) or (30), respectively, shows that the transfers fulfill the respective conditions.

For the first two schemes, no. 1 and 2, start by assuming that production transfers could not
be conditional, i.e., τxg = τxg,3 = τxg,4. If capacity is fully subsidized (no. 1), a production transfer
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no. τkg τxg,3 τxg,4 τ lsg

1 bg cg − p 0

2 0 cv − p − (cv − cg)E
[
Di

g |Ω3

]
Pr 3

3 0 cg − p cv − p 0

Tab. 1: Transfers for gas turbine firms

of τxg = cg − p < 0 will be necessary.19 Given such a production tax no lump-sum transfer is
necessary in order that gas turbine firms recover costs. Such a transfer scheme subsidizes total
capacity expenses and eliminates all profits or losses, respectively, from production.

If capacity is not subsidized (no. 2), a higher production transfer of τxg = cv − p will be
required. This subsidy (cv > p by model assumptions) leads to additional profits in gas turbines
dispatched events (Ω3), which need to be eliminated by a lump-sum tax. Such a lump-sum tax
does not distort capacity decisions and eliminates total profits that arise from the (relatively high)
production subsidy. If conditional transfers are possible we can avoid capacity as well as lump-sum
payments by implementing (no. 3) a subsidy for production during lost load events and a transfer
during gas turbines dispatched events. Interestingly, this scheme also leads to efficient production
without enforcement by the system operator. Gas turbine firms are indifferent between increasing
production or not in Ω3 since they earn zero marginal production profits, but would operate at
full capacity in Ω4 since they earn cv − cg > 0.

Renewables Firms. We use the efficient production schedule of Equation (20) to maximize profits
w.r.t. kir. If positive levels of renewables capacity were installed by a renewables firm, we obtain
the efficiency condition

∂E
[
πir
]

∂kr
= 0 ⇔ br − τkr =

(
p+ τxr,3 − cr

)
a3 Pr 3 +

(
p+ τxr,4 − cr

)
a4 Pr 4. (31)

Similar to the situation for gas turbine firms, marginal capacity costs after transfers (br−τkr ) must
be equal to the expected marginal production profits in the events of full capacity use (Ω3,Ω4).
Note that efficiency requires that transfers must be chosen so that Pr3 = Pr∗3 and Pr4 = Pr∗4.20

Since the overall goal is to determine transfers that lead to efficient capacity choices we do not use
superscript ∗ in the following since all probabilities refer to the efficient one. We use Equation (31)
and obtain the following zero-profit condition for renewables firms:

E
[
πir
]

= 0⇔ τ lsr = −
(
p+ τxr,12 − cr

)
E
[
Di
r|Ω12

]
Pr 12

−
(
p+ τxr,3 − cr

)
(a3 − a3) Pr 3 −

(
p+ τxr,4 − cr

)
(a4 − a4) Pr 4. (32)

Renewables firms make a profit in Ω12 although they are not allowed to use total available
19 The transfer is a subsidy when cg > p and a tax when cg < p.
20 The respective values a3, a4 directly follow from Pr3,Pr4 and, thus, we forego denoting them with superscripts.
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capacity. These profits must be eliminated by a lump-sum tax. This is equivalent to the lump-
sum tax for gas turbine firms. Additionally, profit or loss could occur from events during which
renewables firms are operating at full capacity (Ω3,Ω4).

For corr, we have ac = ac so that the second line in Equation (32) vanishes and transfers needed
to fulfill the efficiency condition are independent from those of the zero-profit condition. For ind,
in contrast, both conditions are related since the second line could be positive or negative.

Again, we show and discuss only the most relevant and intuitive possibilities (see Table 2).
Again, the first two options (no. 1 and no. 2) assume that conditional production transfers are not
possible. The third option (no. 3) represents possible solutions for the most intuitive conditional
production transfers. Note that we need to distinguish between ind and corr.

No. 1, no. 2, and no. 3 for corr can be proved straightforwardly by inserting the supposed
transfers in Equations (31) or (32), respectively. For no. 3 and ind Appendix B provides additional
computations.

no. τkr , ind τkr , corr τxr,12 τxr,3 τxr,4 additional transfers

1 br cr − p none

2 abg a4bg cg − p τ lsr = − (cg − cr)E
[
Di

r|Ω12

]
Pr 12

3
a 0

0 cr − p cg − p cv − p
τx+
r,12 = 1

E[Di
r|Ω12] Pr12

a3kirγ

b aa3
a−a34

γ τx+
r,34 = − 1

(a−a34)ki
r Pr 34

a3kirγ

c 0 τ lsr = a3kirγ

γ = a−a3
a3

br
a

+ a3−a4
a3

(cv − cr) Pr 4 for ind, γ = 0 for corr

Tab. 2: Transfers for renewables firms

Given a production transfer of τxr = cr − p (which is a tax since p > cr), capacity must be
fully subsidized (no. 1), just as was he case for gas turbine firms. Subsidizing the total capacity
expenses means that production profits must be fully eliminated by taxing. If the production
transfer is higher, i.e., τxr = cg − p (could be a tax or a subsidy), capacity must be less subsidized
(differently for ind and corr) but remaining profits must be eliminated by a lump-sum tax (no. 2).
If conditional production transfers are possible, capacity subsidies and lump-sum taxation could
be fully avoided, at least for corr. Note that production transfers from no. 3 are sufficient to fulfill
the efficiency condition of Equation (31) for both extreme cases.

For corr, even the zero-profit condition is fulfilled since the first line vanishes due to τxr,12 = cr−p
and the second line in Equation (32) vanishes due to ac = ac. Moreover, the conditional production
transfers enforce the efficient production. In Ω12, renewables firms have no incentives to produce
more than actually needed since (marginal) production profits are zero, p + (cr − p) − cr = 0. In
all other situations, renewables produce at full capacity but production profits are highest during
lost load events (Ω4).

For ind, in contrast, renewables firms continue to suffer losses since the price is low. Using the
transfers defined in Table 2 and substituting them into renewables firm’s profit function yields

E
[
πi,3,indr

]
= −a3

[
a− a3

a3

br
a

+
a3 − a4

a3
(cv − cr) Pr 4

]
kir + τ lsr , (33)
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where the term in the square brackets is defined (see γ for ind in last line in Table 2) similarly to
Φ for corr (see Equation (13) and the discussion about whether Φ is positive or negative). The
difference is that Pr4, a3, a4 refer to the efficient values for ind.

Consider high kr so that a > a3. For both extreme cases, we have a4 < a34 < a < a12. Lost
load (Ω4) covers only the lowest realizations of x̃r, Ω34 covers also some higher ones from Ω3, and
Ω12 contains only the highest realizations of x̃r. Additional availability is beneficial only in Ω34

because in Ω12 there is remaining unused renewables capacity. For ind, the marginal performance
is always a and, thus, overestimates the ability of the total capacity to produce in Ω34. Thus, ind
yields too low prices, which does not reflect total costs. For corr, the price reflects total costs and
no further transfers are necessary to obtain zero-profits.

The problem for ind could be solved by implementing an additional production subsidy in Ω12

(no. 3a). In the renewables and steam power dispatched events (Ω12), expected production of a
renewables firm is E

[
xir|Ω1

]
Pr1. Losses could be avoided by choosing τx+

r,12 (superscript + denotes a
production transfer in addition to τxr,12) so that τx+

r,12E
[
xir|Ω12

]
Pr12 = −E

[
πi,ind,3r

]
(see Equation

(33)). In total, a renewables firm makes a profit in Ω12, which—again—distorts the production
decision because of the incentive to increases production up to the availability restriction. The
system operator will need to enforce efficient production.

Two avoid distorting production decisions, the system operator can impose a lump-sum subsidy
equal to the losses (no. 3c). However, there is another solution (no. 3b). In Ω34, renewables firms
do not need further incentives to produce since marginal profits are already positive. We could
decide to eliminate some of the profit. The zero-profit condition would be fulfilled by imposing
τx+
r,34, as shown in Table 2. Such a transfer distorts the efficiency condition since capacity is fully
used by renewables firms in Ω34 so that capacity must be supported by τkr (see Table 2).21 We
summarize:

Proposition 2. Equations (29) to (32) define transfers for gas turbine and renewables firms such
that decentralized capacity choices are efficient and there is an equilibrium outcome (zero profits).
Subsidy schemes for both technologies are summarized in Tables 1 and 2.

6 Policy Implications

Consumers. In the analysis thus, we have ignored consumers’ incentives to actually consume
the efficient load. Note that the system operator sets a price equal to efficient marginal utility
(Equation (16)). So, we need to check whether utility maximization by consumers—given p =
br
a + cr + Φ—would lead to efficient load.

We assume that utility maximization of consumers lead to inverse demand U
′
(D) with U (D) =´D

0
U
′
(
D̃
)
dD̃. In case of lost load, the system operator curtails consumers with the lowest

willingness-to-pay.22 Call Du the system operator’s dispatch decision, where xu = D − Du is
21 Note that the total transfers paid in nos. 3a, 3b, and 3c (for ind) could be calculated by τx+

r,34E [x̃N |Ω34] Pr 34 +

τkr k
k
r , which must be equal to the negative value of the right side of Equation (33).

22 This is the perfect load shedding developed by Brown and Johnson (1969) and refined by Kleindorfer and
Fernando (1993). Note that—in contrast to Kleindorfer and Fernando (1993)—we abstract from rationing costs of
the system operator to obtain perfect load shedding and dedicate all additional losses to consumers.
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aggregated lost load. Depending on the realization of the random variable x̃r, consumer surplus,
denoted by CS, is given by

CS =

U (Du)− pDu − cu (D −Du) for Ω4

U (D)− pD else
.

In Stage 2, after price setting by the system operator, consumer decide consumption D, where
they take the price as given since the price is set before the load decision. Consumers maximize
their expected surplus w.r.t. D. The first-order condition becomes

∂E [CS]

∂Dk
=

(
U
′
− p
)

Pr 123 − cu Pr 4 ≤ 0 [= 0 if D > 0] , (34)

where we have again used the interchangeability of differentiation and expectation. Note that a
price equal to marginal utility, p = U

′
, would imply ∂E [CS] /∂D = −cu Pr 4 < 0 in order that

D = 0. The price setting does not account appropriately for direct costs that arise from lost
load cu. To incentivize efficient consumption, that is, aggregate consumption should be equal
to efficient load, the system operator should compensate consumers for lost load. Suppose that
τDu is the compensation paid to the curtailed consumers conditional on lost load. Obviously,
τDu = cu = cv − p would lead to binding Equation (34). We summarize the consumer issues in the
following Proposition.

Proposition 3. Efficient load could be decentralized by a price signal in a fully reliable system
without lost load. As soon as renewables reduce system reliability and there is the possibility of
lost load, a day-ahead price signal is not longer sufficient to enforce efficient load. A transfer of
τDu = cv − p in case of lost load would circumvent this problem.

Interestingly, consumers’ utility losses due to lost load are already considered by the consumers,
where the additional costs of lost load cu are not taken into account. Intuitively, the ability
to curtail consumers if production capability is not sufficient to cover the whole load must be
understood in a way similar to the ability of offer an additional production technology. Offering
system flexibility requires—in the same way as gas turbines require— compensation or, more
precise, a subsidy. Note that such a compensation would not be necessary in a fully reliable
system with steam power only. Surplus maximization of consumers would require that p = bs + cs

so that a system operator could easily set a price to decentralize load decisions.

Value-Adequate Price Signal To this point, the analysis has revealed that a constant price will
not lead to efficient capacities (or load). The literature (see, e.g., Joskow, 1976, 2011; Borenstein,
2016) suggests that short-run marginal costs pricing with scarcity rents will create a price signal
that reflects the current value of electricity produced and consumed. We call such a price signal
value-adequate (denoted with superscript va) and define it as the marginal production costs of the
last (and most expensive) technology used to serve load (also marginal technology) conditional on
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the realized interval of events Ωc. Recall that steam power will never be the marginal generating
unit since steam power production cannot be reduced (are only at very high costs) after the random
variable realizes. So, a value-adequate price signal distinguishes between three interval of events:
Ω12,Ω3,Ω4, i.e., pva is the value-adequate price signal and pvac is conditional on the interval of
events Ωc that might realize. In Ω12, there is excess capacity of renewables, which are the marginal
technology and, therefore, price should be equal to their marginal production costs cr. In Ω3, gas
turbines are the marginal capacity type and in Ω4 consumers are curtailed. We have

pva =


cv for Ω4

cg for Ω3

cr for Ω12

, (35)

where E [pva] = p∗. Such a price signal could be implemented by transfer schemes no. 3 from
Tables 1 and 2 as well as by consumer compensation in case of lost load, that is, τDu = cv − p. We
summarize in Proposition 4.

Proposition 4. A value-adequate price signal could be implemented by a transfer scheme. For
corr, such a transfer scheme enforces efficient dispatch, load, and capacities, but for ind, addi-
tional transfers for renewables firms are necessary to ensure efficient capacities and an equilibrium
outcome.

We next question the necessity of complex transfer payments and investigate whether the
market could be designed in such a way that transfers would be unnecessary.

Retail Market with Real-Time Wholesale Market In this section we abandon the idea of a day-
ahead market. Now, firms not supply consumers directly. Retailers buy from firms on a real-time
wholesale market and sell to consumers on a retail market (ahead of actual production). In such
a real-time wholesale market the marginal technology sets a price equal to marginal production
costs, resulting in a value-adequate price signal as described by Equation (35).23

Consider a (perfect competitive) retail market. Representative retailer R sells a fixed amount
of load DR at price p to consumers. The retailer buys the same amount from a wholesale market
with real time pricing at price pvac . Note that

∑
RD

R = D but retailers do not account for their
influence on prices (as firms and consumers). Then, representative retailer’s profits are

E
[
πR
]

= DR (p− pva12 Pr 12 − pva3 Pr 3 − pva4 Pr 4) . (36)

Profit maximization (via differentiation of E
[
πR
]
w.r.t. DR and if DR > 0) yields a retail price

equal to the efficient one, i.e., p = E [pva] (see Equation (8)). Moreover, the zero-profit condition
for retailers is fulfilled. We summarize this in the following Proposition. For a proof, see Appendix
C.

23 Note that we need to consider consumers as a fourth technology which operate at costs cv .
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Proposition 5. A retail market in combination with a real-time wholesale market including in-
voluntary consumer shedding and compensation is equivalent to a transfer scheme with consumer
compensation that implements a value-adequate price signal

Note that firms can recover costs (at least for corr) just by allowing real-time pricing. However,
such a setup forces consumers involuntarily participate, that is, the market has to pay consumers
the compensation described in Proposition 4. Moreover, in the absence of perfect correlation, we
need additional transfer to ensure that efficient capacity decisions are an equilibrium outcome.

Over-the-Counter with Market for Imbalance Energy. In the next scenario, there is no retail
market, and, once again, firms supply consumers directly. We assume that firms supply consumers
over-the-counter. Representative firm i using technology j signs contracts with consumers of Di

j

at price p. If firms are not able (or not willing) to produce Di
j on their own, they would require

imbalance energy. Conversely, they could offer imbalance energy in the case they experience excess
capacity. Denote by xij,im > 0 imbalance energy sold to other firms, where xij,im < 0 is imbalance
energy purchased. Profits of firm i are

E
[
πij
]

= pDi
j +

∑
c

pvac E
[
xij,im|Ωc

]
Pr c − bjkij − cjE

[
xij
]
.

Steam power firms will never need or supply imbalance energy, since it is optimal for them to
use their total capacity all the time. So, we focus on renewables and gas turbine firms.

If renewables capacity is not fully used (Ω12), both renewables and gas turbine firms offer im-
balance energy in total.24 The marginal suppliers are renewables firms and the price for imbalance
energy must be cr. In Ω3, renewables and gas turbine firms might offer imbalance energy but
the imbalance energy offered from renewables firms is already fully used in order that gas turbine
firms are the marginal supplier and the price must be cg. Note that in Ω3, renewables firms could
also demand (in total) imbalance energy; however, the price implications are the same. If lost
load (Ω4) realizes, the marginal supplier of imbalance energy are consumers, who are dispatched
by the system operator at total costs cv, which is the price for imbalance energy in Ω4. Thus, a
market for imbalance energy leads to a value-adequate price signal as defined in Equation (35) and
a consumer price equal to the efficient one, i.e., p = E [pva]. Using this we can make the following
Proposition. For a proof, see Appendix D.

Proposition 6. A market for imbalance energy including involuntary consumer shedding and
compensation provides a value-adequate price signal and leads to the same outcome as a retail
market in combination with a real-time wholesale market.

24 For ind, there might be individual demand/supply for imbalance energy for each renewables firm since weather
conditions for each might differ. However, price follows from total demand/supply for imbalance energy.
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7 Concluding Remarks

We model an electricity system comprised of steam power, renewables, and gas turbines. Steam
power is limited dispatchable, renewables supply is stochastic, and load is fixed. We derive the
efficient solution (production, load, capacities) and show that steam power and renewables cannot
coexists in the efficient solution (Lemma 1). Next, we consider a perfectly competitive day-ahead
market with firms acting as price takers. A regulator enforces the efficient price as a uniform
ex-ante price. The efficient dispatch must be enforced by the regulator since the uniform ex-
ante price is incapable of doing so. When the regulator enforces efficient capacities, steam power
recovers costs, gas turbines do not, and renewables do not recover costs when marginal generating
units are independently distributed (independence case), whereas they might recover costs in the
presence of perfectly correlated marginal generating units (perfect correlation case). For the specific
assumption of a uniform distribution, renewables will definitely make a profit (Lemma 2). If the
regulator does not enforce efficient capacities, gas turbine capacity will never build and renewables
capacity will be inefficiently low. Moreover, if the regulator adapts the efficient price according to
efficient pricing rules, the uniform ex-ante price is higher, which allows steam power to stay in the
market for greater differences in LRMC of steam power and renewables (Proposition 1).

The regulator can implement capacity, production, and lump-sum transfers to decentralize
efficient capacity decisions and ensure an equilibrium outcome, that is, firms make zero profit.
We describe different transfer schemes with and without capacity payments (Proposition 2). A
transfer scheme subsidizing total capacity expenses might lead to too much capacity; however,
an auctioning scheme should avoid this situation. Profits/losses could be eliminated by a lump-
sum tax. This solution appears easy to implement in the case of symmetric firms but could be
more complicated in a world with asymmetric ones. However, the most intuitive transfer scheme
does not involve any capacity payments and lump-sum transfers. To even decentralize efficient
load, consumers must be compensated for disruption costs (Proposition 3). Combining the most
intuitive transfer scheme with the necessary consumer compensation leads to a value-adequate
price signal (Proposition 4). It could be that the system operator must tax consumers for budget
compensation, that is, to finance transfers for renewables and gas turbine firms. Shifting surplus
from consumers to producers is always possible, either by using lump-sum transfers that does not
cause any distortions or by imposing distorting electricity taxes. However, consumer acceptance in
the case of switching from a steam power to a renewables-based system can be increased if surplus
gains from the switching will not be totally eliminated by the regulator.

Finally, we describe two market designs that allow for a value-adequate price signal although
load is still fixed in advance of actual delivery. Supporting a (perfectly competitive) retail market
that closes the gap between the fixed load of consumers and simultaneously offers a value-adequate
price signal on a real-time wholesale market mitigates the need for complex transfers. Firms that
sell to consumers over-the-counter but offer and demand imbalance energy on a market that works
in real time leads to as the same outcome the other market design (Proposition 6). However,
consumers still need to be compensated (Proposition 5) and face involuntary load management
on such markets. The finding regarding the necessary involuntary load shedding of consumers
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is highly relevant. Under the assumptions of our model, we must curtail consumption to obtain
the efficient outcome, which is not good news for the feasibility (regarding social acceptance) of
an energy turnaround. However, allowing higher consumer surplus by not eliminating all surplus
gains from the energy turnaround might create a countervailing effect.

Note that a regulator can enforce the efficient probability of lost load by enforcing an appropri-
ate “price for lost load”. The respective supplier must pay this price to consumers that suffer lost
load. The obligation to deliver consumers (and the related risks of lost load) are fully dedicated to
the retailers in the setup with a retail market, where the risks are back to the generating firms in
the setup with an imbalance energy market. To obtain the efficient result here, we need risk-neutral
retailers and generating firms or, at least, the possibility of costless hedging.

Note that, as soon as the perfect correlation case does not apply (not even independence is
necessary), firms definitely need additional transfers. The perfectly correlated price signal would
allow a value-adequate price signal to decentralize the efficient outcome since total costs are per-
fectly covered by marginal costs. A price signal on the basis of independently distributed marginal
generating units of renewables leads to insufficient prices that do not cover costs since the ability
to provide production in events of low availability is overestimated by the marginal perspective.

The are a few limitations of our analysis. For example, we do not model periodic load or the
intermittency of renewable energies. Eisenack and Mier (2018) show that this does not change the
exclusion result. However, even in a multi-period setup the efficient outcome could be decentralized
either by transfer schemes and consumer compensation or by markets that provide a value-adequate
price signal. This would prevent steam power from entering the market to provide the efficient
outcome again. Furthermore, we consider just the two extreme cases. Following the Chao (1983),
one might implement a correlation measure—as he does for demand—on the supply side. However,
this would not change the important policy implications of our findings.

That is, a value-adequate price signal (or capacity payments) would still be necessary and only
for the perfectly correlated case is such a price signal completely sufficient. Moreover, we use
a perfectly competitive market as benchmark, which is far from reality, especially in electricity
markets. However, even this strong assumption of perfectly competitive markets dies not cloud
the important policy implications of our findings. The impact of imperfect competition might
overlap our basic results.

The main restriction is the assumption of very strict dispatchability levels. In reality, steam
power is at least partially able to react instantly to stochastic fluctuations in the supply of renew-
ables, albeit at a higher cost. Indeed, modern steam power has higher ramp-up and ramp-down
possibilities and lower costs than was formerly the case. Investigating the effect of flexible steam
power in a dynamic investment setup with inflexible steam power, renewables and gas turbines
would be an interesting and useful topic for future work.
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Appendix

A Proof of Lemma 2

For corr and uniformly distributed random variables, we use Equations (18) in (22) to obtain
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[
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,

where the second fraction is positive due to a34 > a4 (when Pr3 > 0 due to kg > 0) and the first
fraction is positive as well due to

E
[
xir
]

= E
[
Di
r|Ω12

]
Pr
12

+E
[
x̃ir|Ω34

]
Pr
34

> E
[
x̃ir|Ω34

]
E
[
Di
r|Ω12

]
> E

[
x̃ir|Ω34

]
.

In Ω12 the firm i is dispatched by the system operator and cannot use their whole production
capacity so that the previous inequation holds.
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B Calculations for Table 2

We now demonstrate how to calculate Equation (33) and the transfers for no. 3b (for ind) from
Table 2). Using the conditional production transfers specified in Table 2 and the efficient produc-
tion schedule Equation (20), from Equation (28) expected profits of a renewables firm are given
by

E
[
πi,τr

]
= (cg − cr)E

[
x̃ir|Ω3

]
Pr 3 + (cv − cr)E

[
x̃ir|Ω4

]
Pr 4 −

(
br − τkr

)
kir + τ lsr . (37)

Note that in Ω12 marginal production profits are zero due to τxr,12 = cr − p. The efficiency
condition in Equation (31) becomes

br − τkr = (cg − cr) aPr 3 + (cv − cr) aPr 4,

where ac = a for ind. Substituting marginal capacity costs after transfers in Equation (37), we
obtain expected profits of

E
[
πi,τr

]
= − [(cg − cr) (a− a3) Pr 3 + (cv − cr) (a− a4) Pr 4] kir + τ lsr ,

where E
[
x̃ir|Ω3

]
= a3k

i
r and E

[
x̃ir|Ω4

]
= a4k

i
r. We use Pr3 = Pr∗3 from Equation (15)

and—after some rearranging–obtain Equation (33), i.e.,

E
[
πi,τr

]
= −

[
(cg − cr) (a− a3)

br
a − (cv − cr) Pr 4

(cg − cr)
+ (cv − cr) (a− a4) Pr 4

]
kir + τ lsr .

= −
[
(a− a3)

br
a

+ (a3 − a4) (cv − cr) Pr 4

]
kir + τ lsr

= −a3

[
a− a3

a3

br
a

+
a3 − a4

a3
(cv − cr) Pr 4

]
kir + τ lsr .

We now turn to the transfer in subsidy scheme 3b (for ind). Accounting for τx+
r,34 and assuming

that τ lsr = 0, expected profits change from Equation (37) to

E
[
πi,τr

]
= (cg − cr)E

[
x̃ir|Ω3

]
Pr 3 + (cv − cr)E

[
x̃ir|Ω4

]
Pr 4 −

(
br − τkr

)
kir +

τx+
r,34E

[
x̃ir|Ω34

]
Pr 34.

Using ∂E
[
x̃ir|Ω34

]
/∂kir = a, the new efficiency condition becomes
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br − τkr = (cg − cr) aPr 3 + (cv − cr) aPr 4 + τx+
r,34aPr 34.

and new expected profits are

E
[
πi,τr

]
= −a3k

i
r

[
a− a3

a3

br
a

+
a3 − a4

a3
(cv − cr) Pr 4

]
− (a− a34) Pr 34k

i
rτ
x+
r,34

This can be solved to obtain the value for τx+
r,34 in Table 2, i.e.,

τx+
r,34 = − a3

(a− a34) Pr 34

[
a− a3

a3

br
a

+
a3 − a4

a3
(cv − cr) Pr 4

]
.

Rearrangering the new efficiency condition by using Pr3 = Pr∗3 and τx+
r,34 yields

τkr = −br − (cg − cr) aPr 3 − (cv − cr) aPr 4

+
a3

(a− a34) Pr 34

(
a− a3

a3

br
a

+
a3 − a4

a3
(cv − cr) Pr 4

)
aPr

34

=
aa3

a− a34

[
a− a3

a3

br
a

+
a3 − a4

a3
(cv − cr) Pr 4

]
.

C Proof of Proposition 5

Profits of firm i are

E
[
πij
]

= (pva12 − cj)E
[
xij |Ω12

]
Pr 12 + (pva3 − cj)E

[
xij |Ω3

]
Pr 3

+ (pva4 − cj)E
[
xij |Ω4

]
Pr 4 − bjkij

= (cr − cj)E
[
xij |Ω12

]
Pr 12 + (cg − cj)E

[
xij |Ω3

]
Pr 3

+ (cv − cj)E
[
xij |Ω4

]
Pr 4 − bjkij , (38)

where we have used pva from Equation (35). For gas turbine and renewables firms, we have

E
[
πig
]

= (cv − cg) kig| − bgkig (39)

E
[
πir
]

= (cg − cr)E
[
x̃ir|Ω3

]
Pr 3 + (cv − cr)E

[
x̃ir|Ω4

]
Pr 4 − brkir. (40)

Differentiation yields the efficient first-order conditions in Equations (11) and (12). Resubsti-
tution into Equations (39) or (40), respectively, yields zero profits.
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D Proof of Proposition 6

Profits of firm i are

E
[
πij
]

= pDi
j + pva12E

[
xij,im|Ω12

]
Pr 12 + pva3 E

[
xij,im|Ω3

]
Pr 3

+pva4 E
[
xij,im|Ω4

]
Pr 4 − bjkij − cjE

[
xij
]

= pDi
j + crE

[
xij −Di

j |Ω12

]
Pr 12 + cgE

[
xij −Di

j |Ω3

]
Pr 3

+cvE
[
xij −Di

j |Ω4

]
Pr 4 − bjkij − cjE

[
xij
]

= (cr − cj)E
[
xij |Ω12

]
Pr 12 + (cg − cj)E

[
xij |Ω3

]
Pr 3 + (cv − cj)E

[
xij |Ω4

]
Pr 4

−bjkij + (p− cva12 Pr 12 − pva3 Pr 3 − pva4 Pr 4)Di
j , (41)

where the last line vanishes due to retailer’s maximization problem, i.e., p = E [pva]. Then,
Equations (41) and (38) are equivalent.
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